
Feasible RRT-based Path Planning Using Seventh Order Bézier Curves

Armando A. Neto Douglas G. Macharet Mario F. M. Campos

Abstract— This paper presents a methodology based on a
variation of the Rapidly-exploring Random Trees (RRTs) that
generates feasible trajectories for autonomous vehicles with
holonomic constraints in environments with obstacles. Our
approach is based on seventh order Bézier curves to connect
vertexes of the tree, generating paths that do not violate the
main kinematic constraints of the vehicle. The methodology also
does not require complex kinematic and dynamic models of the
vehicle. The smoothness of the acceleration profile of the entire
path is directly guaranteed by controlling the curvature values
at the extreme points of each Bézier that composes the tree.
The proposed algorithm provides fast convergence to the final
result with several other advantages, such as the reduction in
the number of vertexes of the tree because the method enable
connections between vertexes of the tree with unlimited range.
In an environment with few obstacles, a very small quantity
of vertexes (sometimes only two) is sufficient to take the robot
between two points. The properties of the seventh order Bézier
formulation are also used to avoid collisions with static obstacles
in the environment.

I. INTRODUCTION

The interest and research in Unmanned Aerial Vehicles
(UAVs) has been increasingly growing, specially due to the
decrease in cost, weight, size and performance of actuators,
sensors and processors. Clearly UAVs have their niche of
applications, which cannot be occupied by other types of
mobile robots, as far as the capacity of covering a broad
set of relevant applications is concerned. They are able to
navigate over large areas obviously faster than land vehicles,
with a privileged view from above, which is one of their
main advantages in monitoring and surveillance tasks.

As the availability increases, so does the possibility of
having multiple of such vehicles traversing a given volume of
the air space. Therefore, there is a growing need to study and
develop techniques for the generation of safe and feasible
trajectories considering specific constraints of different types
of aerial robots. One fundamental feature of a path planning
algorithm is to ensure that the vehicle will be able to execute
this path, which means that during the trajectory generation,
the movements restrictions of the vehicle must be considered
(i.e. nonholonomic constraints). For example, the radius of
curvature is one such restriction imposed on trajectories
generated for cars, since a typical car cannot move laterally.

In our approach, the more general case of UAV’s movement
is modeled as vehicles moving with non-zero speed and
limited turning rate. A novel adaptation of the well-known
probabilistic technique used for the motion planning problem,
called Rapidly-exploring Random Tree (RRT) [1] is described,

The authors are with the Computer Vision and Robotics Laboratory
(Verlab), Computer Science Department, Federal University of Minas Gerais,
Brazil. e-mails: {aaneto,doug,mario}@dcc.ufmg.br

where the possible link between new states is calculated based
on the use of seventh order Bézier functions. We also show
the advantages of using this approach in path planning for
robots in environments with obstacles.

II. RELATED WORKS

Path-planning problem for autonomous vehicles is the
subject of many investigations, and various works on this
topic is reported in the literature. One possible taxonomy of
the area can be based on the number of vehicles involved,
and the presence or absence of obstacles in the environment.
Even though the generation of feasible trajectories for
nonholonomic vehicles is in itself a great challenge, ignoring
the possible presence of obstacles limits even further a broader
use of such techniques.

Some approaches of single vehicle path planning in general
environments can be found in literature [2], [3]. Voronoi
diagram is a widely used technique to generate paths with
such constraints [4], [5]. Rapidly-exploring Random Trees
(RRTs) can also be used, especially for solving the path
problem for nonholonomic vehicles. In [6] the authors present
trajectory planning for both an automobile and a spacecraft. In
the later example, even though an obstacle free environment
is considered, the focus remains on the motion constraints
that need to be satisfied for a safe entry of the spacecraft in
Earth’s atmosphere. Other works like [7] use this technique
to generate nominal paths for miniature aerial vehicles. The
authors present an algorithm for terrain avoidance for the air
platform BYU/MAV, which , among other things, enables the
vehicle to fly through canyons and urban environments.

There are also some works that only deal with the
generation of safe paths for vehicles assuming an obstacle free
environment. Among those is the work of [8], which presents
one of the first methods based on the Pythagorean Hodograph
(a special type of Bézier curve) in the path planning for UAVs.
The author discusses numerous advantages of using such a
curve in the modeling of paths for vehicles with holonomic
constraints.

An important work that deals with the use of Bézier curves
in the RRT algorithm framework can be found in [9]. In
that work, the authors first calculate the RRT through the
environment, and after that they use cubic Bézier curves to
make the path feasible for a nonholonomic vehicle. This
approach is simple, however it requires a great number of
curves to compose a path in more complex environments (e.g.
with several obstacles).

There are two main differences between this and our
previous work [10]. First, this method focuses on a single
UAV with kinematic constraints. Second, in this work we deal

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 1445

with the problem of generating a motion plan with continuous
curvature profile throughout the path.

III. METHODOLOGY

A. Problem Statement

Our technique assumes the existence of an environment
with obstacles whose position and geometry are known. Also,
other limitations for the robot navigation are imposed by its
own kinematic and dynamic constraints. Two configurations,
Pinit and Pgoal respectively, describe the initial and final
poses (or states) which also define the position and orientation
of the robot in the extreme points of the path. These states
can represent any pair of waypoints in a set, which in turn,
is defined by the mission planning module at a higher level
in the robot’s architecture.

A path may be mathematically defined as a parametric
curve ~r(t) in the two-dimensional space, where t is the
parameter that continuously varies in R. Therefore, the path
planning problem for a single robot can be formally described
as:

Pinit(xinit, yinit, ψinit) = ~r(tinit),

Pgoal(xgoal, ygoal, ψgoal) = ~r(tgoal),
(1)

where tinit and tgoal are the initial and final parameter values,
respectively, for the curve parameter t. Each waypoint is
described by two positions (x, y) and one orientation (ψ)
variable. The variable ψ (also called yaw) is an angle about
the Z axis that describes the waypoint orientation parallel to
the XY plane.

Both local and global constraints are considered. The local
constraints are related to the kinematic and dynamic behavior
of the robot in the configuration space. The global constraints
represent the composition of the obstacles in the environment.
The RRT is a technique which generates paths that respect
both constraints.

In order to be considered a feasible path for the robot
(in an environment with or without obstacles), a curve ~r(t)
must simultaneously fulfill kinematic and dynamic constraints
and their maximum numerical values. The main kinematic
constraint considered in this work is the maximum curvature
κmax, that corresponds to the minimum curvature radius that
the vehicle can execute when moving in space. It is possible
to completely define a curve in R2 only by means of its
curvature function [11].

As far as classical mechanics is concerned, the curvature
may be defined as a quantity that is directly proportional
to the lateral acceleration of the robot in space. The value
of κmax is inversely proportional to the minimum curvature
radius (ρmin) of the curve that the vehicle is able to execute,
which is also proportional to the vehicle’s maximum lateral
acceleration. The curvature function of a curve in the n-
dimensional space is given by the following equation:

κ(t) =
|~̇r(t)× ~̈r(t)|
|~̇r(t)|3

. (2)

As far as dynamic is concerned, it is important to
consider the way in which such constraints vary in time.

The continuity of the curvature and velocity functions are
another fundamental characteristic in planning paths for
real vehicles. Discontinuities in the curvature function, for
example, may induce infinite variations of lateral acceleration
which, obviously, is unrealizable. The same reasoning is valid
for the velocity profile. Finally, the curve produced by the
path planning algorithm should be, at least, second order
differentiable, according to Equation 2.

As far as global constraints are concerned, one may define
two types of environments, the most common one being the
static environment, which is specified only by geometry,
position and orientation of the obstacles. In a dynamic
environment, the obstacles (which may also be other agents,
such as robots) move through space, and their trajectories
may or may not be previously known. As we will show later,
we lay hold of the RRT algorithm because of its capability
to generate trajectories which avoid static obstacles, but also
because it is easily extensible for scenarios with dynamic
obstacles.

Finally, a path ~r(t) is valid for a vehicle if, and only if,
the magnitude of the curvature function is smaller than the
vehicle’s absolute maximum curvature value, it is smooth in
acceleration and the curve is entirely contained in an obstacle
free region of the environment. In formal terms, we have
three constraint conditions:

• ~r(t)→ |κ(t)| ≤ κmax ,

• ~r(t) is C2 ,

• ~r(t) ∈ Pfree,

where Cn is a n-th order differentiable function and Pfree
represent the set of all states that satisfy the global constraints.

To calculate this path, we first established a curve between
states produced by the RRT algorithm. These curves will
be a composition of seventh order Bézier functions that
simultaneously fulfills the kinematic and dynamic constraints
of the robot (which fulfills the first constraint item above). The
second one is fulfilled by controlling the extreme curvature
values of each curve in order to keep the union of Bézier
curves continuous. Finally, the last item is guaranteed by the
RRT principles described below.

B. Rapidly-Exploring Random Trees

There are some key factors of a path generating method that
need to be considered, such as its efficiency, its ability to deal
with obstacles in the environment, and the feasibility of the
generated paths given the kinematic and dynamic constraints
of the robot. A known sampling based planning algorithm
used to solve this problem is a technique called Rapidly-
exploring Random Tree (RRT) [1]. The RRT algorithm has
shown to provide good solutions, mainly due to the fact of
its ability to quickly explore large areas and being able to
consider both the environment and the vehicle’s holonomic
constraints during its generation.

Among the interesting features related to the RRTs are (i)
that it is (probabilistically) complete under general conditions,
since the tree always remains connected regardless of the

1446

amount of edges, and (ii) that it is a relatively simple algorithm
when compared to other techniques. Algorithm 1 presents
the basic steps for generating the RRT.

Algorithm 1 GENERATE RRT(Pinit, K)
1: T .init(Pinit)
2: for k = 1 to K do
3: Prand ← RANDOM STATE()
4: Pnear ← NEAREST NEIGHBOR(Prand, T)
5: unew ← SELECT INPUT(Prand, Pnear)
6: Pnew ← NEW STATE(Pnear , unew)
7: T .add vertex(Pnew)
8: T .add edge(Pnear , Pnew , unew)
9: end for

10: return T

First of all, the starting point of the execution of the
algorithm needs to be chosen. The starting point represents
a robot pose (Pinit ∈ Pfree), and the maximum number
of iterations (K) that the algorithm must perform before it
stops. A random position on the map (Prand) is generated,
and this position will be used to guide the growth of the tree.
A search is executed through all nodes already in the tree to
find the one that is the closest to the new random position
(Pnear) according to some metric ρ (the Euclidean distance
is a commonly used metric). The tree will then expand from
this node.

A segment connecting Pnear to Prand must be inserted,
however only a certain and fixed part of it will actually be
used to expand the tree. A verification is made to check if
it is possible to expand the tree, which means to verify if
the segment doesn’t intersect any obstacle. If possible, a new
state is generated and added to the tree (Pnew). This segment
is computed by time integration of the differential model of
the vehicle, which means that is necessary to know several
parameters of the robot and to spend a lot of computational
time to determine the path.

In this paper, instead of using a complex model, we
compute the segments between vertexes of the RRT by
means of curves that are realizable by the considered vehicles.
These curves fulfill the three requirements described in the
previous section. This approach decreases the computational
complexity of the classical RRT method and eliminates the
task of building a mathematic model of the robot. Also,
instead of Euclidean distance, our method uses a metric ρ for
determining the Pnear that better fits the motion constraints
of the robot.

C. Tree Generation

The first step in calculating the RRT consists of initializing
the tree, which is accomplished by placing a node with the
specifications of the initial pose of the robot Pinit. This pose
not only describes the starting point of the tree but it also
includes the initial orientation of the vehicle.

Then, a new random state Prand is chosen for the
expansion of the tree. There are many ways to perform this
step, as shown in [6]. According to the authors, a good
approach is to perform a biased random choice of this state
so that the goal Pgoal is used some of the time. This step

helps in achieving a faster conversion to the final result. In
our work, the goal was chosen as a new position 20% of the
time.

After choosing the random state, the next step is to identify
which node of the tree is the closest to the generated one.
Such proximity is measured by a metric ρ, determined for
each specific item dealt with by the RRT. The most common
way to measure the proximity between two points in space
is through the Euclidean distance. However, this calculation
does not take into account the robot’s orientation in space.

When dealing with the navigation of nonholonomic vehicles
(as those considered here), it is also important to consider the
vehicle´s orientation, as the real distance between two states
can vary greatly between two positions. For this reason, a
nonholonomic distance calculation is used, which is the same
applied in the determination of the Dubins’ Path [12]. The
metric (ρ) that we use is described below.

There are six different kinds of paths between two con-
figurations Pi(xi, yi, ψi) and Pf (xf , yf , ψf) as determined
by the Dubins’ Path technique. Among those, four known
as the long case (CSC) represent an approximation for the
length of the Bézier curve, while the other two paths known
as the short case (CCC) generate configurations that can
compromise the convergence of the Bézier curve. Therefore,
the following condition will be used:

ρ =

{
min (Li) i = 1...4, if d > dmin,

∞ elsewhere,
(3)

where d = D/ρmin represents the Euclidean distance between
the points normalized by minimum radius of curvature of the
vehicle, and

dmin =

√
4− (| cosα|+ 1)

2
+ | sinα|, (4)

is a parameter used as a minimum distance between the two
poses. In this specific case, it is considered that the angle of
arrival at the final pose is always zero, and

α = ψi − tan−1
(
yf−yi
xf−xi

)
. (5)

Each of the four possible distances can be calculated as
follows [13]:

L1 =
√
d2 + 2− 2 cosα+ 2d sinα− α,

L2 =
√
d2 + 2− 2 cosα− 2d sinα+ α,

L3 =
√
d2 − 2 + 2 cosα+ 2d sinα− α− 2µ− γ,

L4 =
√
d2 − 2 + 2 cosα− 2d sinα+ α+ 2ν − γ,

(6)

where
µ = tan−1

(
−2

d2−2+2 cosα+2d sinα

)
,

ν = tan−1
(

2
d2−2+2 cosα−2d sinα

)
,

and
γ = tan−1

(
cosα+1
d−sinα

)
.

1447

This approach helps to avoid close vertexes from being
connected and allows the union of distant vertexes, once it
they not intersect with any obstacles. The consequence is
that the algorithm converges rapidly in environments with a
small number of obstacles.

Minimizing the function ρ gives an approximation to
the nearest node Pnear of the chosen random state. Now,
according to the RRT algorithm, we must define the Pnew
vertex. In this stage, the orientation ψrand of the random
point is chosen such that it sets the direction of arrival in
Pnew to zero,

ψrand = tan−1
(
yrand−ynear

xrand−xnear

)
.

This is an arbitrary choice that aims at reducing the number
of iterations of a typical RRT calculation (determination of
the unew entries), by the use of an analytic function. The
problem is that this may lead to critical points where obstacles
may hinder the progress of the tree in the direction of the
new point. In the event of such a collision, a random value
can be added to ψrand in order to avoid the obstacle.

As we use Bézier curves to connect Pnear and Pnew
vertexes, we can represent unew as a vector composed by
the eight control points of the seventh order Bézier curves,
as follows

unew = pk, k = [0...7].

The last step is the creation of new state Pnew, which will
be used to expand the tree. We consider this as the problem
of computing a Bézier curve which allows vehicle navigation
with limited and continuous curvature values. This curve can
be shaped as a seventh order function:

~p(τ) =

7∑
k=0

pk

(
7

k

)
(1− τ)7−kτk; τ ∈ [0, 1], (7)

where pk = [xk, yk] is the k-th control point and τ is the
parameter of the Bézier curve.

D. Smooth Path Calculation

In this section we present a method to calculate Bézier
curves that fulfills the three constraint conditions mentioned
before. The last one is less problematic, because, once
calculated the Bézier we only need to verify collisions with
the obstacles, and in positive case, eliminate the curve. The
other two needs more sophisticated solutions, as follows.

We begin with an interesting characteristic of Bézier curves.
They are infinity differentiable functions, which means that
one curve has continuous curvature profiles. However, if we
connect two or more curves in order to form a path ~r(t), we
will have discontinuity accelerations in the connecting points,
violating the second condition. Then, we must calculate
Bézier curves which curvature values at it extreme points are
equivalent, in order to keep the continuity.

According to [14], mathematically, the initial curvature of
a Bézier function can be determined by means of Equation
8.

κ(t)|t=0 =
(n− 1)

n

|p2 − p1|
|p1 − p0|

sinσ, (8)

where n is the Bézier order, and σ represents the angle
between the vectors −−−→p0p1 and −−−→p1p2. We can easily guarantee
a null curvature value at the initial point by making these,
collinear vectors. The same idea can be extended to the final
curvature value, where are considered the vectors −−−→p5p6 and
−−−→p6p7. Then, we always will have zero curvature value at the
extreme points of each Bézier, making its composition with
others curves (~r) a C2 function, as required.

The main reason which led us to choose using a seventh
order function is now clear. We must keep the three initial
and three final control points aligned, so we need at least
other two points to create a function with a point of inflexion,
in order to make a more flexible path.

With this idea, six of the eight control points can be
calculated by the following set of equations, which depends
only of the initial and final configuration at each edge of the
tree:

p0 = [xi, yi],

p1 = p0 + k0[cosψi, sinψi],

p2 = p1 + k0[cosψi, sinψi],

p5 = p6 − k7[cosψf , sinψf],

p6 = p7 − k7[cosψf , sinψf],

p7 = [xf , yf],

(9)

where k0 and k7 are gain factors that determined the vectors
modulus.

There are two problems to be solved at this point. First,
we must be able to calculate the remaining points, p3 and
p4 of the Bézier curve. Second, we must choose the best
values of k0 and k7 in order to comply with the curvature
constraint represented by the third constraint condition.

The first one can be done by considering a particular set
of Bézier curves, called Pythagorean Hodograph (PH) curves.
The PH curves are a special kind of parametric functions
that present many computational advantages over polynomial
parametric curves in general. They were introduced in
[15], where for the first time, PH curves of fifth order
for the two-dimensional case were presented. An Hermite
Interpolation algorithm was proposed in [16], where the author
demonstrated that there exist four possible solutions for the
curve in R2. The chosen solution is the one that minimizes
the cost function [17] (bending energy function) based on
the integral of the magnitude of the curvature function.

The PH provides several properties that can be considered
advantageous in the path planning problem. The most relevant
for this paper are: (i) uniform distribution of points along
the curve, which contributes to the smoothness of the path;
(ii) parametric speed (first order derivative) that provides
a continuous velocity profile; and finally (iii) a capability
to admit real-time interpolator algorithms for computer
numerical control.

To find the remaining points, we should solve the following
equation, modified from the Hermite Interpolation system

1448

presented in [16]:

p3 = p2 + 1
5

[
u0u1 − v0v1
u0v1 + u1v0

]T
,

p4 = p3 + 1
15

[
2u2

1 − 2v21 + u0u2 − v0v2
4u1v1 + u0v2 + u2v0

]T
.

(10)

The parameters [u0, u1, u2] and [v0, v1, v2] represent
coefficients of the polynomial function u(τ) and v(τ),
respectively, and are used in the traditional PH technique.
They can be calculated as[

u0

v0

]
=
√

5
2

[√
‖∆p1‖+ ∆x1

sgn(∆y1)
√
‖∆p1‖ −∆x1

]
, (11)

[
u2

v2

]
= ±

√
5
2

[√
‖∆p5‖+ ∆x5

sgn(∆y5)
√
‖∆p5‖ −∆x5

]
, (12)

[
u1

v1

]
= − 3

4

[
u0 + u2

v0 + v2

]
±
√

1
2

[√
c+ a

sgn(b)
√
c− a

]
, (13)

where
∆xk = xk+1 − xk,
∆yk = yk+1 − yk,

and
∆pk = [∆xk, ∆yk].

The a, b and c parameters can be determined as:

a = 9
16

(u2
0 − v20 + u2

2 − v22) + 5
8
(u0u2 − v0v2) + 15

2
(x5 − x2),

b = 9
8
(u0v0 + u2v2) + 5

8
(u0v2 + v0u2) + 15

2
(y5 − y2),

c =
√
a2 + b2.

There are four solutions for the curve calculation between
any initial and final waypoints, Pi and Pf , as it can be
readily seen in the ambiguity of equations 12 and 13. Instead
of minimizing the bending elastic energy function, as seen
in [17], we choose the solution with the smallest maximum
curvature. This allows curves with great curvature variance,
which is more desirable for environments with obstacles.

Once the Bézier points are computed, we must guarantee
that the generated curve does note violate the kinematic
constraints of the vehicle, according to the first constraint
condition. For this, we must determine the values of k0 and
k7 in Equation 9. As there is no closed form solution, these
values are increased iteratively, until ~p(τ) becomes realizable.
At this point, we just monitor the maximum curvature value
of the curve.

IV. EXPERIMENTS

Our technique was used to plan paths for a simulated
small unmanned aerial vehicle. The robot was modeled as a
fixed-wing aircraft based on a UAV named AqVS (Figure 1),
developed at Universidade Federal de Minas Gerais/Brazil.
It is a small hand launched hybrid electric motor sail plane,
equipped with GPS receptor, barometric altimeter, infrared
inclinometer, airspeed sensor and CCD camera, and controlled
by a set of PID stabilizators running on a Palm R© PDA for
autonomous navigation [10].

The AqVS presents the following characteristics: ρmin
about 30 meters, maximum cruising speed of approximately
50 km/h, and uncertainty of localization of 12 meters. The
above values were determined using data from actual flights,
considering a flight speed of approximately 50 km/h.

Fig. 1. AqVS, a UAV from the Universidade Federal de Minas Gerais-Brazil.

Figure 2 presents the evolution of a RRT composed by
seventh order Bézier curves between its vertexes for the
AqVS/UAV. As we can see, a few number of these vertexes
is required to reach the goal configuration in this particular
environment. Figure 3 shows the curvature profile of the
path in the tree. It is possible to note that all union points
between curves present null curvature values, which makes
the acceleration profile of the vehicle to be continuous (but
not differentiable).

Fig. 2. Rapidly-exploring random trees using seventh order Bézier curves.
The red line represents the final path at the tree.

We can see in Figure 2 that the use of analytical functions
as edges for the tree provides a fast convergence to the final
result, since there is no need to limit the reach of Pnew.
Compared with the traditional RRT algorithm, we found a
much smaller number of vertexes.

Tables I(a) and I(b) present a comparison between these
two techniques. In the first table we use a simple dynamic
linear model (which is used at the RRT integration step) with
the same velocity and curvature constraints to generate the
tree. In order to build these two tables, we consider three
different environments with 5, 20 and 100 obstacles (randomly
distributed), and we execute 50 experiments in every one of
them, taking the number of vertices used to expand the tree
until it reaches the goal. The mean and standard deviation of
vertices number of each experiment were organized into the
next tables.

1449

Fig. 3. Continuous curvature profile of the path presented at Figure 2.

TABLE I
TRADITIONAL RRT VERSUS RRT WITH 7th ORDER BÉZIER CURVES.

Obstacles Mean St. dev.
5 204.9 108.9

20 243.6 122.4
100 272.2 152.7

Obstacles Mean St. dev.
5 6.2 6.4

20 10.5 7.3
100 12.8 9.0

(a) Traditional RRT (b) RRT with 7th order Bézier

As discussed previously, the number of vertexes necessary
to define a path between simple (with few obstacles) and
complex environments (with several obstacles) is significantly
smaller when compared with the traditional technique, as
described in [6].

V. CONCLUSION AND FUTURE WORKS

We have described a technique that allows the planning
of paths for robots in environments with a variable number
of obstacles. While the RRT technique already allows the
generation of smooth paths for nonholonomic vehicles, in
some cases, the kinematic and dynamic models used in the
integration step of the algorithm can become very complex.
There is a great need for a reliable model of the vehicle,
otherwise there is a chance that the generated path may not
be achieved by a real robot. This is the case of a real aircraft,
where some of its aerodynamic coefficients and the external
disturbances (e.g. wind) are very difficult to model.

The use of analytical curves, such as Bézier curves, allows
for greater flexibility of this model with a low computational
cost. The design of these curves takes into account very
simple kinematics and dynamics constraints, which implies
the simplification of the model of the vehicle at few points
of operation.

An important advantage of our method is the reduction in
the number of vertexes of the tree because the use of seventh
order Bézier curves that enable connections between vertexes
of the tree with unlimited range. In an environment with few
obstacles, a very small quantity of vertexes (sometimes only
two) is sufficient to take the robot from Pinit to Pgoal.

As future work, we plan to expand the use of the technique
to the three-dimensional space, considering other kinematic
constraints, such as the maximum torsion and maximum climb
(or dive) angles. Initial results have shown that it is possible
to use an extension of the Bézier curves in three dimensions,

while maintaining most of the advantages described in this
paper.

VI. ACKNOWLEDGMENT
This work was developed with the support of CNPq,

CAPES and FAPEMIG.

REFERENCES

[1] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning,” Computer Science Dept., Iowa State University, Tech. Rep.,
1998.

[2] Y. Kuwata, A. Richards, T. Schouwenaars, and J. P. How, “Robust
constrained receding horizon control for trajectory planning,” in Proc.
of the AIAA Guidance, Navigation and Control Conference, 2005.

[3] M. Wzorek and P. Doherty, “Reconfigurable path planning for an
autonomous unmanned aerial vehicle,” Hybrid Information Technology,
2006. ICHIT ’06. International Conference on, vol. 2, pp. 242–249,
Nov. 2006.

[4] S. A. Bortoffl, “Path planning for uavs,” in Proc. of the American
Control Conference, 2000.

[5] A. Dogan, “Probabilistic path planning for uavs,” in Proc. of 2nd AIAA
Unmanned Unlimited Systems, Technologies, and Operations, 2003.

[6] P. Cheng, Z. Shen, and S. LaValle, “RRT-based trajectory design for
autonomous automobiles and spacecraft,” 2001.

[7] S. Griffiths, J. Saunders, A. Curtis, B. Barber, T. McLain, and R. Beard,
“Maximizing Miniature Aerial Vehicles,” Robotics and Automation
Magazine, IEEE, vol. 13, no. 3, pp. 34–43, Sept. 2006.

[8] M. Shanmugavel, A. Tsourdos, R. Zbikowski, B. A. White, C. A.
Rabbath, and N. Léchevin, “A Solution to Simultaneous Arrival of
Multiple UAVs using Pythagorean Hodograph Curves,” in Proc. of the
IEEE American Control Conference (ACC), Minneapolis, Minnesota,
USA, June 2006, pp. 2813–2818.

[9] K. Yang and S. Sukkarieh, “Real-time continuous curvature path plan-
ning of uavs in cluttered environments,” in Proc. of the 5th International
Symposium on Mechatronics and its Applications(ISMA08), Amman,
Jordan, May 2008.

[10] A. Alves Neto, D. G. Macharet, and M. F. M. Campos, “On the
generation of trajectories for multiple uavs in environments with
obstacles,” Journal of Intelligent and Robotic Systems, vol. 57, no. 4,
pp. 123–141, 2010.

[11] E. Kreyszig, Differential Geometry. New York: Dover Publications,
June 1991, vol. 1.

[12] L. E. Dubins, “On Curves of Minimal Length with a Constraint on
Average Curvature, and with Prescribed Initial and Terminal Positions
and Tangents,” American Journal of Mathematics, vol. 79, pp. 497–516,
1957.

[13] A. M. Shkel and V. Lumelsky, “Classification of the Dubins Set,”
in Robotics and Autonomous Systems, vol. 34, September 2001, pp.
179–202.

[14] T. W. Sederberg, Computer Aided Geometric Design. Brigham Young
University, April 2007, ch. 2, pp. 17–36.

[15] R. T. Farouki and T. Sakkalis, “Pythagorean Hodographs,” IBM Journal
of Research and Development, vol. 34, no. 5, 1990.

[16] R. T. Farouki and C. A. Neff, “Hermite Interpolation by Pythagorean
Hodograph Quintics,” Mathematics of Computation, vol. 64, pp. 1589–
1609, 1995.

[17] R. T. Farouki, “The Elastic Bending Energy of Pythagorean Hodograph
Curves,” Comput. Aided Geom. Design, vol. 13, pp. 227–241, 1996.

1450

