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Abstract— In this paper, the problem of positioning a team of
mobile robots for a surveillance task in a non-convex environ-
ment with obstacles is considered. The robots are equipped with
global positioning capabilities (for instance they are equipped
with GPS) and visual sensors able to monitor the surrounding
environment. Furthermore, they are able to communicate one
with each other. The goal is to maximize the area monitored
by the team, by identifying the best configuration of the team
members. Due to the non-convex nature of the problem, an
analytical solution can not be obtained. The proposed method
is based on a new cognitive-based, adaptive optimization al-
gorithm (CAO). This method allows getting coordinated and
scalable controls to accomplish the task, even when the obstacles
are unknown and the team is heterogeneous, i.e. each robot
is equipped with a different type of visual sensor. Extensive
simulations are presented to show the efficiency of the proposed
approach.

I. INTRODUCTION

The use of multi-robot teams has gained a lot of attention

in recent years. This is due to the extended capabilities that

the teams have to offer comparing to the use of a single robot

for the same task. Robot teams can be used in a variety

of mission including: surveillance in hostile environments

(i.e. areas contaminated with biological, chemical or even

nuclear wastes), environmental monitoring (i.e. air quality

monitoring, forest monitoring) and law enforcement missions

(i.e. border patrol), etc. In all the aforementioned tasks the

deployment of limited resources (robots) to maximize the

area monitored is the key issue. This can be achieved by

optimizing the way that the robots are deployed so that the

area monitored by each team member is maximized and at

the same time the overlap of these areas is minimized.

As far as it concerns the optimal coverage using a team

of robots, two problems have been identified and formally

approached up to now, both by introducing a suitable opti-

mization function. The first problem deals with the optimal

arrangement of the team members, so that for every point

in the area to be covered, the closest robot is as close as

possible to that point. This corresponds to the exigency of

having the possibility to intervene as fast as possible, in all

the points of the area with at least one robot. In this case,

the corresponding cost function which will be minimized
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depends on the distance of the robots from the points of the

area to be covered.

The second problem deals with the maximization of an

area monitored by a team of robots using vision sensors. In

this case, a point is considered monitored regardless of its

distance from a robot, as long as it is in the field of view of

at least one vision sensor.

Both problems can be solved in very special situations,

i.e when the environment is convex and without obstacles,

which is not the case in the majority of real scenarios.

Regarding the second problem, the visibility of a given point

is assumed to be independent of the distance of the point

from the robot, which is unrealistic since there are constraints

in the performance of the optical sensors. There are cases

that when a point is in the field of view of a vision sensor,

it can not be monitored because its distance is larger than a

given threshold (the value of this threshold depends on many

factors, e.g. the resolution of the adopted vision sensor).

In this paper we consider a case similar to the second

problem, for a non-convex environment with obstacles, con-

sidering a threshold on the maximum distance of a point to

be monitored. The presence of this threshold dramatically

changes the nature of the cost function and makes the prob-

lem analytically unsolvable even for a convex environment.

A. Previous contributions

Several approaches have been proposed in the literature

considering the first problem described in the previous sec-

tion. In [3], the authors present an analytical solution for the

optimal coverage with a team of mobile robots in a convex

environment, i.e. without obstacles, based on the Voronoi

partition. A similar approach, for a convex environment, is

proposed in [12], where additionally the robots estimate a

function indicating the relative importance of different areas

in the environment, using information from the sensors. A

case for a non-convex region without obstacles (i.e. in a

simply connected space), is analyzed in [10]. In this work

the Voronoi partition is obtained by using the geodesic

distance instead of the Euclidean one taking into account the

particular topology of the problem. All the aforementioned

approached have limited value in realistic scenarios since

they are based on strong assumptions and they cannot deal

cases which consider one or more obstacles. A possible

extension for the non-convex case with unknown obstacles

based on a combination of Voronoi partition and artificial

potential field method is proposed in [11].

As far as it concerns the second problem described in the

previous section, different solutions have been proposed in
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the literature. In [4] the authors propose a gradient-based

algorithm for the case of a single robot case and they prove

that the visible area is almost everywhere a locally Lipschitz

function of the observer location. In [5], an approach for the

multi-robot problem is presented based on the assumption

that the environment is simply connected. The visibility

problem is also related with the Art Gallery Problem where

the goal is to find the optimum number of guards in a non-

convex environment so that each point of the environment is

visible by at least one guard [1], [13]. All the aforementioned

solutions are based on the hypothesis that a given point

can be monitored regardless of its distance from the vision

sensor.

B. Paper contribution

In this paper we propose a cooperative algorithm to max-

imize the monitored areas in a 2D non-convex environment,

even if it is unknown1, by using a team of mobile robots.

In particular, we consider the second problem previously

mentioned by also accounting a maximum distance in the

region visible from a vision sensor. To the best of our

knowledge this problem has never been approached by fol-

lowing a coordinated control strategy. On the other hand, an

incremental deployment algorithm can be found in [6]. Our

goal is to approach this problem by introducing a learning

strategy able to provide a coordinated control algorithm for

all the team members. In particular, the proposed approach is

based on the Cognitive-based Adaptive Optimization (CAO)

methodology. The CAO methodology, which was recently

introduced in [8], [9], is able to efficiently handle optimiza-

tion problems for which an analytical form of the function

to be optimized is unknown, but the function is available for

measurement at each iteration of the algorithm employed to

optimize it. This suits for perfectly in the case of multi-robot

optimal coverage in non-convex environments, since the

analytical form of the function to be optimized is unknown

but at the same time, the function is available for mea-

surement (through the robots sensors) for each multi-robot

configuration. The CAO approach extends the popular Si-

multaneous Perturbation Stochastic Approximation (SPSA)

algorithm [14]. The difference between the SPSA and the

CAO approach is that SPSA employs an approximation of the

gradient of an appropriate cost function using only the most

recent experiments, while the CAO approach employs linear-

in-the-parameters approximators that incorporate information

of a user specified time window of the past experiments

together with the concept of candidate perturbations for

efficiently optimizing the unknown function. It has to be

emphasized that for complicated optimization problems like

the one treated in this paper, the SPSA algorithm may fail

to produce efficient solutions contrary to the CAO approach

which always achieves to efficiently and rapidly move the

robots to locations that optimize the particular coverage

criterion. It is finally mentioned that the CAO or the SPSA

1Obviously, in this case each robot has to be equipped also with range
sensors in order to get metric information from the environment (as it has
been done in the past when the environment is unknown [5], [6]).

do not create an approximation or estimation of the obstacles

location and geometry; instead, they on-line produce a local

approximation of the – unknown – cost function the robots

are called to optimize. For this reason, they require simple –

and thus scalable – approximation schemes to be employed.

This paper is organized as follows. In the next section

we describe the stochastic optimization approach used in

this work, the CAO algorithm, and how it is applicable to

a generic coverage-like problem. In section III we math-

ematically characterize the particular problem we want to

solve. Then, in section IV, we show explicitly the proposed

solution based on the CAO algorithm. Finally, in section V,

we present the results of the numerical simulations in order

to evaluate the performance of the proposed method.

II. THE COGNITIVE-BASED ADAPTIVE OPTIMIZATION

APPROACH

The Cognitive-based Adaptive Optimization (CAO) ap-

proach [7]-[9] was originally developed and analyzed for

the optimization of functions for which an explicit form is

unknown but their measurements are available as well as

for the adaptive fine-tuning of large-scale nonlinear control

systems. In this section, we will describe how the CAO

approach can be appropriately adapted and extended so that

it can be applied to the problem of multi-robot coverage.

More explicitly, let us consider the problem where M robots

are involved in a coverage task, attempting to maximize a

given coverage criterion. Apparently, the coverage criterion

is a function of the robots’ positions or poses (positions and

orientations), i.e.

Jk = J
(

x
(1)
k , . . . , x

(M)
k

)

(1)

where k = 0, 1, 2, . . . denotes the time-index, Jk denotes

the value of the coverage criterion at the k-th time-step,

x
(1)
k , . . . , x

(M)
k denote the position/pose vectors of robots

1, . . . ,M , respectively, and J is a nonlinear function which

depends – apart from the robots’ positions/poses – on the

particular environment where the robots live; for instance, in

the 2D case the function J depends on the location of the

various obstacles that are present, while in the 3D case with

flying robots monitoring a terrain, the function J depends

on the particular terrain morphology.

Due to the dependence of the function J on the particular

environment characteristics, the explicit form of the function

J is not known in most practical situations; as a result,

standard optimization algorithms (e.g. steepest descent) are

not applicable to the problem in hand. However, in most

practical cases – like the one treated in this paper – the

current value of the coverage criterion can be estimated from

the robots’ sensor measurements. In other words, at each

time-step k, an estimate of Jk is available through robots’

sensor measurements,

Jn
k = J

(

x
(1)
k , . . . , x

(M)
k

)

+ ξk (2)

where Jn
k denotes the estimate of Jk and ξk denotes the

noise introduced in the estimation of Jk due to the presence
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of noise in the robots’ sensors. Please note that, although

it is natural to assume that the noise sequence ξk is a

stochastic zero-mean signal, it is not realistic to assume that it

satisfies the typical Additive White Noise Gaussian (AWNG)

property even if the robots’ sensor noise is AWNG: as J is

a nonlinear function of the robots’ positions/poses (and thus

of the robots’ sensor measurements), the AWNG property is

typically lost.

Apart from the problem of dealing with a criterion for

which an explicit form is not known but only its noisy mea-

surements are available at each time, efficient robot coverage

algorithms have additionally to deal with the problem of

restricting the robots’ positions so that obstacle avoidance

as well as robot formation constraints are met. In other

words, at each time-instant k, the vectors x
(i)
k , i = 1, . . . ,M

should satisfy a set of constraints which, in general, can be

represented as follows:

C
(

x
(1)
k , . . . , x

(M)
k

)

≤ 0 (3)

where C is a set of nonlinear functions of the robots’

positions/poses. As in the case of J , the function C depends

on the particular environment characteristics (e.g. location

of obstacles, terrain morphology) and an explicit form of

this function may be not known in many practical situations;

however, it is natural to assume that the coverage algorithm

is provided with information whether a particular selection

of robots’ positions/poses satisfies or violates the set of

constraints (3).

Given the mathematical description presented above, the

multi-robot coverage problem can be mathematically de-

scribed as the problem of moving x
(1)
k , . . . , x

(M)
k to a set

of positions/poses that solves the following constrained op-

timization problem:

maximize (1)

subject to (3) .
(4)

As already noticed, the difficulty in solving – in real-time and

in real-life situations – the constrained optimization problem

(4) lies in the fact that explicit forms for the functions

J and C are not available. To circumvent this difficulty,

the CAO approach is adopted – appropriately modified to

be applicable to the problem in hand – which is capable

of efficiently dealing with optimization problems for which

the explicit forms of the objective function and constraints

are not known, but noisy measurements/estimates of these

functions are available at each time-step. Next we describe

the CAO approach as applied to the multi-robot coverage

problem described above.

As a first step, the CAO approach makes use of function

approximators for the estimation of the unknown objective

function J at each time-instant k according to

Ĵk

(

x
(1)
k , . . . , x

(M)
k

)

= ϑτ
kφ

(

x
(1)
k , . . . , x

(M)
k

)

. (5)

Here Ĵk

(

x
(1)
k , . . . , x

(M)
k

)

denotes the approxima-

tion/estimation of J generated at the k-th time-step,

φ denotes the nonlinear vector of L regressor terms, ϑk

denotes the vector of parameter estimates calculated at the

k-th time-instant and L is a positive user-defined integer

denoting the size of the function approximator (5). The

parameter estimation vector ϑk is calculated according to

ϑk = argmin
ϑ

1

2

k−1
∑

ℓ=ℓk

(

Jn
ℓ − ϑτφ

(

x
(1)
ℓ , . . . , x

(M)
ℓ

))2

(6)

where ℓk = max{0, k−L−Th} with Th being a user-defined

nonnegative integer. Standard least-squares optimization al-

gorithms can be used for the solution of (6).

Remark 1: In order for the proposed methodology to

guarantee with efficient performance, special attention has to

be paid in the selection of the regressor vector φ. Polynomial

or polynomial-like regressor vectors as well as sigmoidal

regressor vectors can be employed for the construction of

φ. The particular choice adopted for the application treated

in this paper is described in section IV. See [7]-[9] for more

details on the design considerations for the regressor vector.

⋄
As soon as the estimator Ĵk is constructed according to

(5), (6), the set of new robots’ positions/poses is selected as

follows: firstly, a set of N candidate robots’ positions/poses

is constructed according to2

xi,j
k = x

(i)
k + αkζi,j

k , i ∈ {1, . . . ,M}, j ∈ {1, . . . , N} , (7)

where ζi,j
k is a zero-mean, unity-variance random vector with

dimension equal to the dimension of x
(i)
k and αk is a positive

real sequence which satisfies the conditions:

lim
k→∞

αk = 0,
∞
∑

k=1

αk = ∞,
∞
∑

k=1

α2
k < ∞ . (8)

Among all N candidate new positions x1,j
k , . . . , xM,j

k , the

ones that correspond to non-feasible positions/poses – i.e. the

ones that violate the constraints (3) – are neglected and then

the new robots’ positions/poses are calculated as follows:
[

x
(1)
k+1, . . . , x

(M)
k+1

]

= argmax
j ∈ {1, . . . , N}

xi,j
k not neglected

Ĵk

(

x1,j
k , . . . , xM,j

k

)

The idea behind the above logic is simple: at each time-

instant a set of many candidate new robots’ positions/poses

is generated and the candidate – among the ones that provide

with a feasible solution – that provides the “best” estimated

value Ĵk of the coverage criterion is selected as the new

set of robots’ positions/poses. The random choice for the

candidates is essential and crucial for the efficiency of the

algorithm, as such a choice guarantees that Ĵk is a reliable

and accurate estimate for the unknown function J ; see [8],

[9] for more details. On the other hand, the choice of a slowly

decaying sequence αk – a typical choice of adaptive gains in

stochastic optimization algorithms, see e.g. [2] – is essential

for “filtering out” the effects of the noise term ξk [cf. (2)].

The next theorem summarizes the properties of the CAO

2Here, N is a sufficiently large user-defined positive integer; typically it
suffices to choose N ∈ {20, . . . , 30}.
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algorithm described above. The proof of this theorem – not

presented here for brevity purposes – is among the same lines

as the main results of [8], [9]; the main difference between

the proof of the theorem presented below and that of [8],

[9] is that while in the case of [8], [9] it is established that

the CAO algorithm used there is approximately a gradient-

descent algorithm, the CAO algorithm used in this paper

is proven to be approximately a projected gradient-descent

algorithm.

Theorem 1: Let x(1∗), . . . , x(M∗) denote any – local –

minimum of the constrained optimization problem (4). As-

sume also that the functions J , C are either continuous

or discontinuous with a finite number of discontinuities.

Then, the CAO-based multi-robot coverage algorithm as

described above guarantees that the robots’ positions/poses

x
(1)
k , . . . , x

(M)
k will converge to one of the local minima

x(1∗), . . . , x(M∗) with probability 1, provided that the size

L of the regressor vector φ is larger than a lower bound L̄.

Remark 2: Strictly speaking, Theorem 1 is valid long

as the zero-mean, unity variance vectors ζi,j
k satisfy some

extra technical conditions (which are satisfied if e.g. ζi,j
k are

Bernoulli random vectors). However, extensive simulation

investigations have shown that – in practice – Theorem 1

is still valid even if the random vectors ζi,j
k are Gaussian

random vectors, despite the fact that such a choice does not

satisfy the aforementioned technical conditions. ⋄
Remark 3: As already noticed in section I, the CAO

algorithm requires only a local approximation of the un-

known function J and as a result the lower bound L̄ has

not to be large (as opposed to methods that construct a

global approximation of the unknown function J ). Although,

there exist no theoretical results for providing the lower

bound L̄ for the size of the regressor vector φ, practical

investigations on many different problems (even in cases

where the dimension of the variables to be optimized is as

high as 500; see [7]-[9] for more details) indicate that for

the choice of the regressor vectors according to Remark 1

such a bound is around 20. ⋄
Remark 4: As an alternative to the CAO approach, the

SPSA approach [14] may be employed in multi-robot cover-

age applications. According to the SPSA approach, the robot

positions/poses are updated according to






x
(i)
k+1 = x

(i)
k + βkζi

k , if k is even

x
(i)
k+1 = x

(i)
k + γk

Jn

k
−Jn

k−1

ζ
(i)
k−1

, if k is odd
(9)

where ζ
(i)
k are zero-mean, unity-variance random vectors and

βk, γk are slowly decaying sequences (similar as the se-

quence αk). The SPSA algorithm is computationally simpler

than the CAO one, but it does not perform as efficient as

the CAO approach as have been demonstrated in a variety

of approaches, see [7]-[9]. However, extensive simulation

experiments have demonstrated that a hybird scheme which

uses SPSA at the first 10-20 time-steps and then switches to

the CAO algorithm can have significant improvements over

schemes that employ only the CAO algorithm. This is due

to the fact that CAO, at its initial steps, may preserve a poor
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Fig. 1. Example of area monitored by two robots equipped with omnidi-
rectional visual sensor in a non-convex environment (the dots correspond
to the robots’ locations, and the rectangles denote the obstacles).

performance because it takes some iterations for the CAO

estimator (5) in order to come up with a reliable estimate Ĵk

of the unknown coverage function J . ⋄

III. MATHEMATICAL PROBLEM FORMULATION

The objective of this work is to maximize the monitored

area in a given region by using a team of mobile robots,

without any assumption on the topology of the environment.

Let us assume that a robot can monitor all the points which

satisfy both the following conditions:

• are connected by a line-of-sight with it;

• are at a distance smaller than a given threshold value.

The first condition is independent of the robot orientation

meaning that the assumed visual sensor is omnidirectional.

To emphasize the importance of considering also the second

condition, we point out that, if the environment is convex,

by considering only the first condition every configuration

of the robots is an optimal configuration. It is clear that in

reality for every kind of surveillance mission this is not an

acceptable solution.

In fig. 1 it is shown an example of the monitored area

given the positions of two robots and a maximum monitoring

distance of 5m for both the robots. We can mathematically

define the problem in the following way.

Let us consider a planar non-convex environment and let

Ω be the region accessible by the robots. Let P = {x
(i)
k }M

i=1

denote the positions of the M robots at the time step k and

R = {ri}
M
i=1 the relative maximum distances of monitoring.

In our approach, we consider the monitoring of a point q ∈ Ω
a binary function

f(q,P) =

{

1 if q is monitored

0 otherwise
(10)

and a point q is monitored if

∃ xi∗ ∈ P : ‖q − xi∗‖ < r∗i & q xi∗ ∈ Ω , (11)

where q xi∗ is the segment joining the point q to the robot

with position xi∗ . Thus, we can define the cost function J
as follows:

J (P) =
1

V

∫

Ω

f(q,P) dq (12)
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where V =
∫

Ω
dq. Obviously, this is only an implicit

expression of the cost function and it is impossible to get

an explicit form because of the dependency on the particular

environment. However, as explained in the previous section,

we just need the numerical value of the cost function for

each time step and not its explicit expression. This is the

key advantage of CAO which does not require an a priori

knowledge of the environment.

Before describing the proposed CAO-based solution for

the problem previously formulated, we want to briefly

discuss how this problem is related to the two coverage

problems enunciated in the introduction. We remark that,

when the threshold on the maximum distance of a point

to be monitored is large with respect to the environment

size the problem here formulated becomes trivially the one

considered in [5] (i.e. the second problem enunciated in the

introduction). On the other hand, when the environment is

convex, the problem here formulated with an appropriate

choice of threshold becomes closer to the first one enunciated

in the introduction (i.e. the one discussed in [3]).

IV. THE PROPOSED CAO-BASED SOLUTION

In this section we explain how to apply, in practice, the

CAO method to our particular coverage problem. First of

all, the symmetry of the problem with respect to the robots’

orientation, due to the omnidirectionality of the sensors,

allows us to consider only the positions in the state vector
(

x
(1)
k , . . . , x

(M)
k

)

. Hence, its dimension is

dim(x
(i)
k ) = 2M . (13)

Then, a fundamental point for a good behavior of the algo-

rithm is an appropriate choice of the form of the regressor

vector φ, introduced in equation (3). As mentioned in remark

1, several different choices for its explicit expression are

admissible. However, for the particular application treated in

this paper, it was found that it suffices to choose the regressor

vector as follows:

1) choose the size of the function approximator L to be

an odd number;

2) select the first term of the regressor vector φ to be the

constant term;

3) select randomly the next (L − 1)/2 terms of φ

to be any 2nd-order terms of the form x
(i)
a · x

(j)
b

[with a, b ∈ {1, . . . ,dim(x(i))}, i, j ∈ {1, . . . ,M}
randomly-selected positive integers];

4) select the last (L − 1)/2 terms of φ to be any 3rd-

order terms of the form x
(i)
a · x

(k)
b · x

(j)
c [with a, b, c ∈

{1, . . . ,dim(x(i))}, i, k, j ∈ {1, . . . ,M} randomly-

selected positive integers].

Once the regressor vector φ has been set and once the

values of the cost function (12) are available for measurement

at each time step, it is possible to find at each time step the

vector of parameter estimates θk and thus the approximation

of the cost function Ĵk. The other important choice in order

to assure the convergence of the algorithm is the expression
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Fig. 2. Four robots with a maximum monitoring distance r = 3.5m

in a convex environment. The green points show the initial positions of
the robots, the final ones are in blue, in red the trajectories. The solution
reproduces that one known in literature, where the robots’ positions are the
generator of the centroidal Voronoi partition.

of the sequence αk, defined in equation (5). A typical choice

for such a sequence is given by

αk =
c

(k + 1)η
, (14)

where c is a positive user-defined constant and η ∈ (0, 1/2).
In our implementations we set c = 0.2 and η = 0.15.

Remark 5: Please note that the CAO algorithm’s compu-

tational requirements are dominated by the requirement for

solving the least-squares problem (6). As the number of free

parameters in this optimization problem is L, most popular

algorithms for solving least-squares problems have – in the

worst case – O(L3) complexity (polynomial complexity with

respect to L). Please note that for a realistic situation where

3-5 robots are employed for optimal coverage, our simulation

investigations indicate that a “good” value for L is around

20, i.e. around twice the dimension of the problem. ⋄

V. SIMULATIONS

To evaluate the efficiency of the proposed algorithm, sev-

eral simulations with varying number of robots and different

monitoring maximum distances, have been performed in a

variety of environments. The size of the teams studied, in

the experiments presented, is varying from three to five.

The teams are considered to be homogeneous since the

maximum distance of monitoring for each robot is the same,

although it is not the same in all simulated scenarios. This

assumption has been made for simplification purposes and

easier comprehension of the results.

The presented results have been obtained using the CAO

algorithm and not the hybrid SPSA/CAO scheme (see Re-

mark 4). In our case the method based on the CAO only

assures good results although as previously stated in section

II, the hybrid scheme may have a higher performance.

As a first test, we consider the trivial case of a convex

environment. Indeed, this case has been extensively consid-

ered in the literature and the solution is known [3]. In fig.

2, we show that the proposed method is able to reproduce
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Fig. 3. Three robots with a maximum monitoring distance r = 5m.

such solution, which corresponds to the centroidal Voronoi

partition where the robots’ positions are the generators of

the partition. This result is an important test for our method,

although the main objective of our work is to study the

coverage problem in a more realistic scenario. We remark

that for the simply visual-based problem, with no restriction

on the maximum monitoring distance, for the convex case

every different robots’ placements are completely equivalent.

In the second simulation presented in fig. 3, the team

is composed by three robots with a maximum monitoring

distance r = 5m. The cost function, in fig. 3(b), indicates

that the algorithm is able to provide a very good solution. The

efficiency of the proposed solution can also be evaluated by

observing the robot trajectories in fig. 3(a). The robots move

in order to eliminate all the shadow regions generated by the

obstacles and to minimize the overlapping zones monitored

by more than one sensor.

In the rest of the simulations presented, similar alignment

can be obtained, also in the case were the robots are initially

very close to each other, which corresponds into a more

realistic staring configuration of a multi-robot task. These

simulations include a larger number of robots because the

position and the number of the obstacles make the monitoring
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Fig. 4. Five robots with a maximum monitoring distance r = 4m.

of the environment more complicated. As for the case

illustrated in fig. 3, the proposed algorithm works very well.

This is proved by the behaviour of the cost function and

also by looking the robot trajectories (fig. 4(a) and 5(a)).

We have performed several simulations by changing all the

parameters characterizing the environment and the team. The

results which were obtained are similar to the ones here

presented.

VI. CONCLUSION AND FUTURE WORK

A new method for obtaining cooperative and scalable

multi-robot controls for an optimal coverage problem, in

a 2D non-convex environment with unknown obstacles has

been proposed. The goal is to maximize the area monitored

by the visual sensors that the robots have. The optimization

problem is solved by using a new stochastic method, the

cognitive-based adaptive optimization algorithm.

The proposed approach has the following key advantages

with respect to previous works:

• it does not require any a priori knowledge on the

environment;

• it works in any given environment, without the necessity

to make any kind of assumption about its topology;
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Fig. 5. Four robots in with a maximum monitoring distance r = 6m.

• it can incorporate any kind of constraints, for instance

regarding a possible existing threshold on the maximum

distance on the monitored region, beyond which the

region is considered uncovered;

• it does not require a knowledge about these constraints

since they are learnt during the task execution;

• its complexity is low allowing real time implementa-

tions.

The advantages of the proposed methodology make it

suitable for real implementations and the results obtained

through numerical simulations give us the motivation to

adopt the CAO also in other frameworks. We are interested

in extending the problem to the 3D case. Our aim is to

develop a strategy for the surveillance of an unknown urban-

like environment with a UAV swarm. For this case we will

consider a cone of visibility for each robot, instead of an

omnidirectional monitoring. Thus, apart from the position

the orientation of each robot has to be considered.

Furthermore, we are currently working on extending the

approach proposed in this paper, so that it is implementable

not only in the case where the robots can access all sensor

information from the rest robots, but also in situations where

– due to communication constraints – the robots can use

only local sensor information coming from their neighboring

robots. In such a case, distributed versions of the centralized

algorithm presented in this paper are required.
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