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Abstract— We propose to incrementally learn the segmen-
tation of a demonstrated task into subtasks and the individ-
ual subtask policies themselves simultaneously. Previous robot
learning from demonstration techniques have either learned
the individual subtasks in isolation, combined known subtasks,
or used knowledge of the overall task structure to perform
segmentation. Our infinite mixture of experts approach instead
automatically infers an appropriate partitioning (number of
subtasks and assignment of data points to each one) directly
from the data. We illustrate the applicability of our technique
by learning a suitable set of subtasks from the demonstration
of a finite-state machine robot soccer goal scorer.

I. INTRODUCTION

We consider Robot Learning from Demonstration (RLfD)

as seeking to enable users to instantiate desired autonomous

control policies onto robots without requiring explicit coding

or procedural analysis of the task itself. The idea is that the

user demonstrates the task and the robot collects data which

when processed results in a control policy that can operate

the robot autonomously in novel situations. A particularly

compelling branch of RLfD is interactive-RLfD, where learn-

ing occurs as the demonstration is performed, enabling active

learning and rapid appraisal of the learned skills [1].

There have been many techniques advanced for perform-

ing RLfD (see [2] for an overview), based both on ideas

from Reinforcement Learning (RL) [3] and Direct Policy

Approximation (DPA) [4]. Both classes of techniques seek to

infer a control policy that maps the robot’s state into actions.

A main difference between the two is that RL considers a

reward function underlying the policy, while DPA does not.

Both approaches have achieved success when the policy

mapping is one- or many-to-one, when the robot’s state

uniquely determines the correct action to perform [5], [6].

However, when this is not the case, and the underlying policy

is one-to-many (a multimap or multiple-valued function1),

such techniques are unsuitable. Such policies are known to

occur in Finite-State-Machine (FSM) controllers [7].

To be able to deal with FSM controllers, current RLfD

techniques require additional information to disambiguate the

outputs. Learning FSMs is thus related to the problem of

Perceptual Aliasing (PA) [8], where two states that should

lead to different actions generate the same perception. One

solution is to augment the robot’s state with the required

additional information, by perhaps including a direct tempo-

ral dependency, incorporating history, operating in a belief

1Consider
√

x as a common multimap, where
√

4 → 2,−2. Unimap
regression techniques average possible results and return 0.

(a) Full FSM (b) Transitions (c) Policies (d) Proposed

Fig. 1: FSM learning (a) requires us to discover the number

of subtasks, their policies, and the transitions between them.

Current techniques either use known subtasks and learn the

transitions between them (b), or use a known segmentation

and learn the individual policies (c). We propose to learn the

segmentation and subtask policies simultaneously (d).

space, or including higher-level features. Another technique

is to first segment the task into subtasks (the FSM states),

each of which is a unimap and can be learned in isolation.

The overall task can then be performed by transitioning

between these subtasks in an appropriate fashion.

We propose to instead perform segmentation and subtask

learning simultaneously using only the demonstration data,

without any additional analysis on the part of the demonstra-

tor. To be applicable to the interactive learning paradigm,

our technique is incremental, updating the learned policy

after each observed data point, and provides controls for

setting the runtime speed of policy inference. We illustrate

here that our approach can discover appropriate subtasks by

manually combining those subtasks to perform the overall

task. For complete FSM learning, our technique will need to

be extended to simultaneously infer the transitions.

II. BACKGROUND AND RELATED WORK

Our view is that in order to learn an FSM, we must

learn both the necessary subtasks (including their number

and individual policies), and the transitions between them,

as illustrated in Figure 1a. As described in [7], this is

not possible by approximating the full policy with standard

techniques (either RL or DPA based), due to the fact that

the underlying mapping is one-to-many. Instead, current

approaches each address only part of the overall problem.

For example, given the transitions, the data can be seg-

mented into subtasks and each subtask learnt in isolation

(Figure 1c) [9]. Alternatively, if the individual subtasks are

already known, transitions between them can be inferred and

they can be sequenced properly (Figure 1b) [10].

The relation to PA arises when considering the identity

of the currently-active subtask as a form of hidden state.
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Fig. 2: ROGER, an infinite mixture of sparse Gaussian Process experts. A weighted particle set (left) approximates the

distribution over possible partitions of the data. Each particle (center) contains a set of experts in input space (Gaussian

Mixture Model) with assigned data (stars), and an empty expert (dashed). Each expert (right) is a nonparametric Sparse

Online Gaussian Process regressor that maps from inputs to a Gaussian distribution over outputs using a small basis set.

Including this information in the robot perception effectively

disambiguates which action should be performed in other-

wise identical situations. The underlying policy is then a

unimap (with respect to this extended state), and can be

learned as usual.

One approach to inferring the existence of this hidden

state is to examine the outputs associated with a particular

perception and determine if they are consistent or not. The

U-Tree algorithm [11] does this in the domain of discrete

reinforcement learning by extending the belief space of an

underlying POMDP. We act similarly here in the domain of

continuous DPA by positing the existence of a new subtask.

Particularly, our technique always considers the possibility

that an observed action has been generated from a previously

unobserved subtask. By doing so we are able to grow the

number of subtasks to fit the data, which is a form of model

selection. Within each expert (hypothesized subtask) we uti-

lize a Gaussian Process (GP) Regressor which approximates

the distribution over all unimaps consistent with that expert’s

observed data. As the total number of experts is not fixed in

advance, our model is an example of an Infinite Mixture of

Gaussian Process Experts (IMoGPE) [12].

Previous work in this model has focused on batch infer-

ence techniques, where all training data is collected before

learning. However, as we wish to operate in the interactive

RLfD paradigm, we require an incremental variant. Further,

we wish to be sparse to limit the amount of storage and

computation required. Sparsity is achieved within each expert

by minimizing the KL-divergence between the GP distribu-

tion based on all observed data, and one based on a smaller

dataset. We use the sparse approximation (SOGP) of [13],

because it has an incremental formulation.

We use our model, termed ROGER (Realtime Overlapping

Gaussian Expert Regression), to estimate both the number of

subtasks and their policies (Figure 1d) incrementally from

unsegmented demonstration data. The overall learned policy

is a multimap, where for a given perception multiple actions

(corresponding to the different subtasks) can be generated.

Proper action selection requires a transition matrix between

the subtasks, which we do not learn here.

III. ROGER

An overview of the ROGER model is in Figure 2. Each

expert is modeled as a Gaussian in robot perception (input)

space, along with an SOGP regressor that approximates the

subtask mapping from perception to action (Figure 2 right).

Areas of overlapping expert regions (gates) correspond to

multimaps, as outputs from each expert are applicable (Fig-

ure 2 middle). A single possible partitioning of the data into

overlapping experts constitutes a particle, and we maintain a

distribution over the possible partitioning of the data using

a weighted set of particles (Figure 2 left). The partitioning

itself is determined incrementally via the Chinese Restaurant

Process (CRP) [14]. Essentially, as each new data point is

considered, there is the possibility that it arises from (and is

assigned to) a heretofore unseen subtask.

Mathematically, the generative model underlying ROGER

is summarized in the following equations:

zi ∼ CRP(α)
Σ′

k ∼ Inverse-Wishartν0
(Λ0)

µ′

k ∼ Multivariate-normal(µ0,Σk/κ0)
xi|zi ∼ Multivariate-normal(µ′

zi
,Σ′

zi
)

yk|Xk, θ ∼ Multivariate-normal(0,Qk)

(1)

Where X and y are the observed perceptions and actua-

tions and z are a set of latent indicator variables that indicate

which expert generated each datapair. µk and Σk are the

parameters of the input Gaussian gates, which we analyti-

cally integrate over using the conjugate inverse-Wishart and

multivariate normal priors to produce the joint:
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Fig. 3: Inference in ROGER. New data is provisionally assigned to all possible experts, including previously empty ones.

Sampling from this set follows the optimal resampling technique of [15] and data is only incorporated after sampling.

P (X,y, z; Ω) = P (X|z; Ω)P (z|Ω)

K∏

k=1

P (yk|Xk,Ω) (2)

Here Ω = {α, µ0, κ0,Λ0, ν0, θ}, is the collection of all

parameters, and (Xk,yk) = (Xi,yi)∀i, zi = k are the

data associated with each expert. The GP parameters, θ =
{θw, θn}, are shared by all experts and used to generate the

individual covariance matrices in each one, Qk.

Note that by tracking multiple particles, we are in effect

performing Monte-Carlo integration over the possible parti-

tions. Further, we have simplified somewhat from [12] by

constraining all experts to use the same GP parameters. Do-

ing so decreases the computational and storage requirements

of ROGER (as individual GP parameters do not need to be

tracked), but at the cost of some flexibility.

A. Inference

At the heart of ROGER is the inference technique, who’s

goal is to find the z that maximizes Equation 2. At all times

we track a set of P particles, each with their own set of

experts, with its partitioning into K(p) experts denoted z(p).

Shown in Figure 3 and Algorithm 1, inference proceeds by

first temporarily assigning a new data point to each and every

Algorithm 1 ROGER-Inference

Require: Training pair (x, y)

P particles (P) and weights (w)

Hyperparameters (Ω = {α, µ0, κ0,Λ0, ν0, θ})

Ensure: Updated particles and weights

for p = 1 : P do

for k = 1 : K(p) + 1 do

create ρpk: assign (x, y) to expert k in particle p
Weigh putative particle ρpk by 2

Sample P putative particles and weights using [15].

Assign data to selected experts with [13]

expert over all particles, including a possible empty expert

(the +1 in the Algorithms). The resulting putative particles

are then weighed by their likelihoods under Equation 2.

We use the the optimal threshold technique of [15] to

select which putative particles to carry forward. This tech-

nique ensures that there is no duplication in the particle

set by computing an optimal threshold; all particles with

weights over this threshold are kept, and the rest are sampled

randomly. We delay incorporating new data into each expert

until after the final P particles are chosen. Further, each

expert has a maximum capacity β, so a new data point may

be incorporated without requiring additional storage.

B. Prediction

Prediction in ROGER for a query input is straightforward.

We first chose a particle, select an expert from that particle,

and generate an output from the chosen SOGP regressor. Our

approach is shown in Algorithm 2, where we have chosen to

always use the MAP particle, select the expert stochastically

based on the probability that the query point was generated

by their gating parameters, and return the predicted mean as

our output, as well as the estimated variance, which can be

used as a measure of confidence. When using ROGER to

control a robot, the stochastic selection of the expert will be

replaced by the selection dictated by the transition matrix.

Algorithm 2 ROGER-Prediction

Require: Query point (x′)

P particles (P) and weights (w)

Hyperparameters (Ω = {α, µ0, κ0,Λ0, ν0, θ})

Ensure: predicted output ŷ, variance σ2

p∗ = argmaxp wp

for k = 1 : K(p) + 1 do

ek = P (z′ = i|z(p))P (x′|µ0,Σ0,Λ0, κ0)
Sample e∗ according to e

Return mean (ŷ) and variance (σ2) from expert e∗
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TABLE I: ROGER parameters
PARAMETER MEANING

α CRP concentration
µ0 Center of Input-Gate Centers
κ0 Variance of Input-Gate Centers (with Λ0)
Λ0 Scale of Input-Gate variances
ν0 Degrees of freedom of Input-Gate variances
θw Kernel width of the GP
θn Observation noise of the GP
P The number of particles
β Maximum storage in each expert

Fig. 4: Our platform, a Sony AIBO equipped with rudi-

mentary vision and locomotion. We seek to learn the policy

mapping perceived INPUTs to action OUTPUTs.

C. Parameters

ROGER has 9 parameters, summarized in Table I, 7 which

define the model (α, µ0, κ0,Λ0, ν0, θw, θn), and an additional

2 which control the sparsity of the technique (P, β). The

sparsity parameters are the ‘knobs’ that enable us to deliver

realtime performance (∼ 30 Hz). The lower they are (fewer

particles, sparser experts), the faster the algorithm will be.

Speed comes at the cost of accuracy, and we set P and β as

high as possible while maintaining the desired runtime.

We set our other parameters heuristically, based on anal-

ysis of the data and prior knowledge. If we expect few

subtasks, we set α low. µ0 we set to the expected mean of

the data (known from the limits of the perceptual space), and

ν0 to the size of the input space plus one. We set the other

parameters to correspond to vague priors, so that they are

rapidly outweighed by observed data. In our experiments we

found our results robust in that optimizing the parameters

to maximize the likelihood of the training data did not

significantly change the results. The GP parameters we found

to be the most sensitive and future work will investigate

adapting these as data arrives, perhaps on a per-expert basis.

IV. EXPERIMENTAL VALIDATION

To validate ROGER as an incremental approach to model

selection and subtask learning, we generate data from an

FSM robot controller for a robot soccer scorer. The robot

platform is in Figure 4 and consists of a Sony AIBO

with color-based vision, a walk-gait engine, and two time-

extended motions. The full input space is 23D (6 colors × 3

attributes (2D location and size), 3 DOF head pose, 2 DOF

(a) Seek (b) Trap

(c) Aim (d) Kick

Fig. 5: Our multimap FSM task. In (c) the robot’s perception

does not include the location of the ball. Thus it can either

seek the ball (a), if it is absent, or kick (d) if it is present.

tail pose), while the output space is 9D (3 walk velocities

(front/back, left/right, angular), head/tail poses, and discrete

action indicator (kick, block, null)).

We use the FSM policy shown in Figure 5. The policy is

to locate the ball, walk towards it, and when it is in range,

“trap” the ball under the chin of the robot. Then, the robot

turns towards the goal and kicks. However, while aiming,

a multimap scenario occurs, as the robot is unable to see

the ball and goal at the same time, and the robot’s pose is

insufficient to determine the appropriate action.

To provide demonstration data from this policy, we use

a hand-coded controller (HCC), structured as the FSM in

Figure 6a. As our focus is on learning the subtasks, we

use an HCC instead of human joystick control in order

to remove variability in the demonstration, and generate a

ground-truth subtask assignment. Testing our HCC on the

spread of locations in Figure 6b, we establish a baseline

69% success rate (goal scored within 2.5 minutes).

We collect data from one shot (failures included) from

each location. Anticipating a bias towards subtasks that have

produced more data, we first downsample (without changing

the order) to 1000 random data points from each subtask

and train ROGER on this data. While data collection was

done in batch, data processing was incremental to show the

applicability of ROGER to incremental learning scenarios.

A. Results

Using ROGER (α = 0.5, µ0 = 0, κ = 0.1,Λ = 1, ν0 =
24, θw = 0.1, θn = 0.1, β = 300, P = 10), we automatically

determine a number of experts, the assignment of data to

experts, and their individual policies. ROGER discovers 85

experts in our data, which is more than the 4 that were coded

in the HCC. However, this difference is not an indication
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(a) Human (b) ROGER (c) Grouped

Fig. 7: (a) The multimap goal scoring demonstration data, mapped into 3D with PCA and colored by hand-coded subtask.

(b) Using ROGER, 85 experts are discovered. (c) Grouping the experts by subtask for transitioning purposes, we see that

the discovered segmentation accords with the ground truth.

(a) FSM Controller (b) Field Setup

Fig. 6: (a) Our controller as a finite state machine. Multiple

subtasks that are applicable in in the same perceived state

lead to multimap control policies. (b) The 13 locations from

which we test our goal scoring behaviors.

that ROGER has failed. Rather, the discovered experts may

just represent an alternate partitioning of the overall task into

subtasks than that which we used when coding. In fact, under

our model, our discovered partitioning is more likely than the

ground truth, even when the parameters were optimized to

maximize the ground truth, including setting α to a very

small value. These differences may result from simplifying

assumptions in our model that do not accurately reflect the

properties of the data. Changes to the model may make

partitions with fewer experts more likely.

1) Segmentation analysis: We project the data into 3D us-

ing PCA on the joint space and color it according to ground-

truth subtask in Figure 7a, and ROGER-discovered experts

in Figure 7b. Further, to examine the data assignments, we

plot them per expert as a stacked histogram in Figure 8.

We first note that almost all of the data from the kick

subtask is assigned to one data point, number 43, corre-

sponding to our a priori segmentation of the task. The data

associated with this subtask is thus sufficiently similar to

itself (in terms of inputs and outputs), and different from

the data from other tasks that it is isolated and assigned to
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Fig. 8: The ROGER discovered experts and the data assigned

to them, colored by subtask.

an expert. However, not all data from this subtask is in this

expert, and this expert contains data from other subtasks as

well. The data assigned to other experts can be thought of as

outliers from this subtask, data which is sufficiently different

that the gating GMM and output SOGP do not well describe

it. Likewise, data from other subtasks that are included in this

expert can be thought of as overlap data, from the regions

where multiple subtasks are applicable.

Concerning the aiming subtask, the data is assigned pre-

dominantly to two experts, numbers 37 and 42. Examining

in Figure 7b we see that one expert (orange) corresponds

to one side of the data, and the other expert (green) to the

other side. These sides correspond physically to the situations

when the robot has the ball and must turn left to the goal, and

the one where it must turn right. Upon consideration, this

is a reasonable distinction to make. While the HCC treats

these two cases as the same, it could also have contained
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different subtasks for each. ROGER is thus able to discover

distinctions not originally thought of by the demonstrator.

This property is key, as it will allow ROGER to determine

subtasks unknown even to the demonstrator.

Regarding the other subtasks (seek and trap) we note that

data for these subtasks are not distributed randomly over

experts, but rather split over a series of them. Each individual

expert contains data from predominantly only one subtask,

rather than a blend. Extrapolating from our previous point,

we posit that ROGER is finding distinctions in the data that

are not as obvious to us as the left/right split of the aiming

task. Thus, a problem here may be that ROGER is finding

too many distinctions, rather than not learning to distinguish.

2) Task Performance: Our goal is to discover experts that

are sufficient for reperforming the overall task, which we

test by combining the discovered experts with our known

transitioner. If we are able to successfully score a goal in

the intended fashion (via seek-trap-aim-shoot instead of by

accident), then we can deem the subtasks sufficient. However,

to use our coded transitioner we must map between subtasks

and experts. We choose to group experts according to the the

subtask that generated the majority of their data (major color

in Figure 8), and the resulting groups are shown in Figure

7c, where they visually accord well with the ground truth.

We tested the resulting controller (HCC transitioner with

ROGER-derived subtasks), with 3 attempts from each of the

same 13 locations and achieved a 31% success rate. Thus we

say that the learned experts, when combined appropriately,

are sufficient (at least in some situations) to perform the

overall task. For comparison, consider that standard DPA

approaches score 0% of the time when trained on the same

data, as they are unable to deal with the underlying multimap.

V. DISCUSSION AND FUTURE WORK

While our results show that ROGER is capable of discov-

ering sufficient subtasks, with an additional 38% of goals

missed over the performance of the HCC, there is much room

for improvement in the learned goal scorer. The majority of

the misses resulted from improper transitioning where, for

example, the robot would find the ball, but fail to execute

the trap maneauver. Future work that learns the transition

matrix alongside the experts should alleviate these errors.

One possible adaptation would be to change the distribu-

tion over partitions, as in [16]. By making it more likely

that a point is assigned to the same expert as the data point

immediately temporally preceding it, we can encourage the

formation of chains of data points that represent temporally-

extended subtask execution. The trace of subtask activity

over time would then accord with our intuition that in FSM

controllers, rapid subtask oscillation does not occur.

Other errors result from improper subtask learning, due

either to over- or under-generalization in each expert, or

contamination between experts. The second issue should be

addressed by the same techniques that encourage temporal

consistency. The first issue we plan to address by allowing

the GP parameters in each expert to vary, to better fit the data

assigned to it. Further, this modification should also help with

the large number of experts that are identified. Currently, our

GP parameters are set small, so that multiple experts may

be needed where one, larger, expert would suffice. However,

uncoupling the GP parameters greatly enlarges the parameter

space for each particle, and negatively impacts runtime.

VI. CONCLUSION

In the paradigm of interactive RLfD, we investigate

incremental algorithms for policy learning. When dealing

with perceptual aliasing arising from FSMs, current state of

the art techniques require that the user provide indications

of subtask switching, or take the subtasks as known in

advance. We have gone beyond this by applying multimap

regression based on an infinite mixture of sparse Gaussian

process experts to automatically infer the number of subtasks

and their individual policies from unsegmented, unannotated

demonstration data. Using these learned subtasks, we have

successfully recreated the overall composite task using a

hand-coded transitioner. By incorporating a transition learner,

future developments may be able to learn complete FSMs.
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