
A Minimalist Approach to Path Following among Unknown Obstacles

Matteo Campani, Francesco Capezio, Alberto Rebora, Antonio Sgorbissa, Renato Zaccaria

Abstract— The article proposes a feedback control system for
path following in presence of obstacles that is an extension of
previous work and is made of two components: (i) a sensor-
based, real-time model that generates and periodically updates
the path on–line in order to avoid both known and unforeseen
obstacles, and (ii) a feedback-control model that is capable
of driving a unicycle vehicle along the collision free path.
The system has some unique characteristics, among which it
requires very few computational resources as a consequence of
its extreme simplicity.

I. INTRODUCTION

The article proposes a feedback control system for path

following in presence of obstacles. The approach is an

extension of the work proposed in [1], however it has many

differences with the original work.

This article consider an indoor AGV with unicycle kine-

matics moving in a partially known environment (e.g., a

hospital, a warehouse, etc.), which has to follow a prescribed

path but can encounter unforeseen obstacles: in particular,

it can happen that the prescribed path cannot be followed

due to objects left unattended, pieces of furniture, other

vehicles, people, and finally errors in localization. Under

these conditions, the approach used by commercial AGVs to

avoid obstacles in real–world situations (e.g., in a corridor

crowded with people) is often not to avoid them at all1:

experience tells that if the vehicle slows down or stops,

warns people, and waits, it definitely has more probability

of success that trying to find a path to the goal by all means,

with the risk of ending up in a configuration from which it

is difficult to come out. However, it appears reasonable that

slight deviations from the nominal path should be taken into

considerations to guarantee a safe and efficient behaviour:

for example, even a small error in localization can prevent

the AGV from passing through a narrow door or enter

an elevator, a situation which could be easily handled by

allowing deviations from the path.

In literature, the problem of obstacle avoidance is often in-

vestigated separately from path following [2][3][4][5]. Some

of the most successful approaches to obstacle avoidance

[6][7] rely on the idea of computing “artificial” repulsive

forces which are exerted on the robot by surrounding ob-

stacles, and an attractive force exerted by the goal. All of

these forces are then summed up to produce a resulting

force vector that is used to control the motion of the robot.

M. Campani, F. Capezio, A. Rebora, A. Sgorbissa, R. Zaccaria are
with DIST, Department of Communication, Computer and System Sciences,
University of Genoa, Via Opera Pia 13, 16145, Genoa, Italy. Corresponding
Author email:{antonio.sgorbissa}@unige.it.

1See the description of a successful case study in
http://www.swisslog.com/hcs-agv-memorialhermann.pdf

Artificial Potential Fields (APF) and similar approaches have

well known problems [8], among which the presence of

local minima in the field (e.g., in correspondence of narrow

passages). In addition, if occupancy grids are used to store

sensor data, APF can produce oscillation in the resulting

velocity vector (and hence on the robot path) due to the finite

resolution of the grid. The problem is well described in [9],

which argues that the latter two problems are both due to the

fact that a huge amount of sensor data are summarized in just

one force vector, and proposes the Vector Field Histogram

(VFH) as a solution. In VFH, the concept of “resulting force”

is substituted with the concepts of “valleys” towards which

the robot is allow to navigate. VFH has been applied both in

indoor and outdoor robotic applications, and improvements

are described in [10][11]. Recently, obstacle avoidance in

very dense, complex and cluttered scenario has been consid-

ered in [14]. In spite of the many important differences, all of

the previous approaches share a common characteristic: they

face obstacle avoidance as a totally separate problem from

path following, therefore requiring to transform the velocity

vector into commands to actuators in a separate phase, which

turns out to be a complex task in presence of nonholomic

and other kinematics constraints.

This problem is explicitly considered in [15], which

presents the Curvature-Velocity Method (CVM) that formu-

lates obstacle avoidance as a problem of constrained opti-

mization in velocity space. Physical limitations (velocities

and accelerations) and the configuration of obstacles place

constraints on the translational and rotational velocities of

the robot. The robot chooses velocity commands that satisfy

all the constraints and maximize an objective function that

trades off speed, safety and goal-directedness. A variant

of the approach is proposed, e.g., in [16]. In a similar

spirit, [17] presents the Dynamic Window approach (DW),

which relies on the idea of performing a local search for

admissible velocities which allow to avoid obstacles while

meeting kinematics constraints. A theoretical treatment of

the algorithm’s convergence properties is proposed in [18].

CVM and the DW allow to deal with kinematics constraints,

however they still have the problem of local minima. To

avoid them, a solution is proposed in [19] by introducing

a planning stage in DW which produces collision-free local

paths with a given velocity profile.

An extension of the traditional APF in order to deal with

kinematics constraints is proposed in [20][21], where the

whole path is ideally deformed on the basis of forces exerted

by surrounding obstacles. In particular, the initial path is

augmented by a set of paths homotopic to it, represented

implicitly by a volume of free space in the work space

The 2010 IEEE/RSJ International Conference on 
Intelligent Robots and Systems 
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 3604



which describes the maximum allowed deviation from the

path. During execution, reactive control algorithms are used

to select a valid path from the set of homotopic paths, using

proximity to the environment in a sense very similar to [6].

The concept of path deformation is considered also in [22],

in which the current path is described as a mapping from an

interval of real numbers into the configuration space of the

robot, and iteratively deformed in order to get away from

obstacles and satisfy the nonholonomic constraints of the

robot. The approach has been shown to work with complex

non-holomic systems (e.g., a trailer) with complex shapes.

Approaches based on path deformation avoid local minima

since the path connection is preserved during deformation.

However, they have high computational and memory re-

quirements, because they require either to memorize a set

of alternative paths, or to compute the path deformation in

run–time.

Obstacle avoidance is fully integrated with path following

in [23]: path following is achieved by controlling explicitly

the rate of progression of a “virtual target” to be tracked

along the path [4][5], and obstacle avoidance relies on the

deformable virtual zone principle, that defines a safety zone

around the vehicle, in which the presence of an obstacle

drives the vehicle reaction. However, as stated by authors,

the combination of path following with a reactive - local -

obstacle avoidance strategy has a natural limitation coming

from the situation where both controllers yield antagonist

system reactions. This situation leads to a local minimum,

where a heuristic switch between controllers is necessary.

Finally, even if the problem is not explicitly addressed in

this work, it is worth remarking that obstacle motion predic-

tion has been performed in [26][25], and more recently in

[28][29][24][27]. All of these approaches increase robustness

at a price of a higher computational complexity.

In this general scenario, the contributions of this work are

the following.

First, it proposes a method for obstacle avoidance which

is highly integrated with path following, and produces paths

which are directly executable by an AGV with unicycle kine-

matics [31] (a similar goal is shared by [15][17][20][23], as

well as by our maze–solving algorithm [30]). This approach

is completely different from standard APF, which returns a

force vector [6][7] which must be properly transformed into a

velocity profile to be fed to actuators. Deadlock situations are

avoided by allowing only slight deviations from the nominal

path, which appears reasonable in many indoor applications:

however, there are situations in which a path to the goal is

not found even if it theorically exist.

Second, the approach offers a new solution to the well–

known dilemma that one has to face when dealing with mul-

tiple sensor readings, i.e., whether it is better, to summarize

a huge amount of sensor data, to consider only the closest

sensor reading [6], to consider all sensor reading separately

to compute the composite force vector [7], or to build a local

map or histogram to cluster data in some way [9], [32]. In

this work, similarly to APF, all sensor readings returned by

proximity sensors are considered separately, as if they would

describe a cloud of “point–like” obstacles. Next, a simple

rule is used to compute a motion law that avoids all point–

like obstacles which can cause a collision, while keeping the

AGV as close as possible to the nominal path. In particular,

this is achieved by artificially reducing or increasing the

position error (i.e., the distance to the nominal path) through

simple, real–time computations that consider only dangerous

point–like obstacles in the immediate surroundings. The

approach requires very little memory and computational

resources with respect, e.g., to path–deformation approaches

[20][21][22], and for this reason it can be used in any kind

of unknown or changing environment, even by very simple

robots.

Section II describes the system. Section III shows experi-

mental results. Conclusions follow.

II. OBSTACLE AVOIDANCE

A. General Ideas

Consider a robot which is given a sequence of waypoints

to be reached, either they have been specified by the user,

or they have been produced by a high–level path planner

on the basis of a model of the environment. Consider, as

an additional constraint, that waypoints have been chosen

in such a way as to guarantee that, in absence of obstacles

and in case of perfect localization, it is always possible to

navigate from a via point to the next one by following a

straight path: in the following this straight path is referred to

as the nominal path. This work focuses on the problem of

locally modifying the nominal path between two waypoints

in order to guarantee that, even in presence of unforeseen

obstacles and of big errors in localization, the robot will still

be able to find a way to the next via point given that a path

exists.

Under these assumptions, the nominal path between sub-

sequent waypoints can be described through its implicit

equation in the form:

f(X,Y ) = aX + bY + c = 0. (1)

Without loosing generality, through a proper coordinate

transform, it is possibile to define a local Cartesian Frame

F such that the path lies along the X-axis of F . The implicit

equation of the straight line in F simply becomes:

f(X,Y ) = Y = 0. (2)

Assume now a robot with unicycle kinematics, whose

position and orientation in F are described through a vector

η ≡ [XrYrψr]
T . The motion of the robot can be described

through the following state equations:

Ẋr = u1 cosψr

Ẏr = u1 sinψr

ψ̇r = u2,

(3)

where inputs u1 and u2 are – respectively – the translational

and the rotational velocities.

3605



Fig. 1. A point obstacle pi and the corresponding error function E(X).

In [31] a method has been presented which allows to

achieve convergence to a generic curve expressed through

its implicit equation in the form f(X,Y ) = 0 by setting:

u1 = U1

u2 = K(−‖∇f‖f − d
dt
f) + ψ̇c,

(4)

where fX = ∂f(X,Y )
∂X

, fY = ∂f(X,Y )
∂Y

are the partial

derivatives of f = f(X,Y ), and ‖∇f‖ = ‖∇f(X,Y )‖ is the

norm of the gradient of f . The angle ψc is the orientation of

the tangent to the level curve of f(X,Y ) = 0 in (Xr, Yr),
which can either be computed as ψc = tan−1 (−fX/fY )
or ψc = cot−1 (−fY /fX); ψ̇c is the derivative of ψc with

respect to time. The term U1 is a positive constant2.

In order to avoid obstacles detected by sensors, the gen-

eral idea is that of choosing an error function E(X,Y )
which is subtracted from f(X,Y ), and to use the new

quantity f ′(X,Y ) = f(X,Y ) − E(X,Y ) = 0 to substitute

f(X,Y ) in (4). If the error function is properly chosen

such as E(X,Y ) > 0 in the close proximity of obstacles

and E(X,Y ) ≈ 0 otherwise, the new path expressed as

f ′(X,Y ) = 0 almost overlaps with the nominal path while

locally avoiding obstacles.

Consider for example an ideal point obstacle pi ≡ [XiYi]
T

which has been detected at time t and lies on the robot’s

path (Figure 1). After having decided a steering direction

for avoiding the obstacle (i.e., left or right), it turns out that,

if the nominal path is a straight line aligned with the X-axis,

a good choice for E(X,Y ) is:

E(X,Y ) = E(X) = Aie
−

(X−Xi)
2

2w2
i , (5)

which returns the following expression for f ′(X,Y ) = 0:

f ′(X,Y ) = Y − E(X) = 0. (6)

Equation (6) describes a Gaussian aligned with the X−
axis. The parameter Ai represents the height of the Gaussian,

and must be chosen in order to allow the vehicle to safely

avoid the point obstacle pi. Towards this end, it is possible

to set:

Ai = Yi + I, (7)

where the absolute value I depends on the dimensions of the

robot and on a safety distance arbitrarily chosen, and its sign

depends on the steering direction which has been chosen to

avoid the obstacle.

2The method has been recently updated to consider a generic speed profile
[33], but the work has not been yet published.

Fig. 2. Gray circle: robot. Black circles: sensor readings. Dashed ellipse:
cluster of sensor readings modelled as a single obstacle.

The parameter wi determines at which distance from Xi

the contribution of E(X) becomes negligible. That is, by

varying wi it is possible to vary the time instant in which a

robot in [YrXrψr]
T must leave the nominal path in order to

avoid the obstacle.

Remark 1. Since the error in (5) is computed only for

the current robot position and on the basis of sensor data

returned at a time t, there is never a waste of computational

resources: the motion planner never re–plans a whole path to

the goal, but computes just what is needed “here and now”.

To stress this fact, the error is always written as E(Xr) in

the following. �

Obstacles detected by sensors at time t usually do not

consist in a single point pi, but in a cloud of points pi ∈ P ,

with i = 1 . . . N . Therefore, it is necessary to compute

an error E(Xr) which depends on all sensor data which

have been returned. The rest of the paper deals with this

problem, which plays a fundamental role in all reactive–

methods which are required to deal with a huge amount of

sensorial data.

B. Obstacle Model

Given a cloud of points pi ∈ P , with i = 1 . . . N , describ-

ing the environment around the robot, i.e., corresponding

to sensor readings returned by a proximity sensor, it is

necessary to decide how to interpret them.

A possible approach is that of clustering nearby points

which could belong to the same obstacle [1]. This approach,

however, has some limitations. Consider Figure 2, showing

an extreme situation in which a cloud of points distributed

along a wall have been modelled as a single ellipsoidal

obstacle: it is straightfoward to notice that the corresponding

ellipse is too big to allow avoiding the obstacle in a reason-

able way. Different geometric primitives, e.g., line segments,

can be used to model obstacles. However, two major prob-

lems remain: i) clustering is computationally expensive; ii)

the shape of obstacles is necessarily approximated by the

geometric primitive adopted.

In this work a different approach is proposed, which share

some similarities with reactive–planning approaches based

on Artificial Potential Fields but also overcome some of their

limitations. The basic idea is that of introducing the concept

of dangerous points. A point pi ≡ [Xi, Yi] (corresponding

to a sensor reading) is considered dangerous for navigation

if and only if one of the two following conditions is true:

• the point is closer to the nominal path than the robot

(initialization of dangerous points);

3606



• the point is close to another dangerous point less than

Dmax, a threshold value which takes into account the

dimensions of the robot (propagation of dangerous

points).

More in details, given a set pi ∈ P of points returned by

the laser at time t, and radially ordered according to their

azimuth direction with respect to the laser, it is possible to

identify dangerous points through the following algorithm.

Algorithm 1 Find dangerous points

Require: [XrYrψr] {robot position}
I {used for initialization}
Dmax {used for propagation }
P {radially ordered set of N points}
B {ordered buffer of M points}

Ensure: D {ordered set of dangerous points}
1: if Yr ≥ 0 then

2: for all pi ∈ P do

3: if −I ≤ Yi ≤ Yr + I then

4: PUSH(pi,D) {initialization}
5: PUSH(pi,B) {the point is buffered}
6: else

7: for all bj ∈ B do

8: if |pi − bj | ≤ Dmax then

9: PUSH(pi,D) {propagation}
10: PUSH(pi,B) {the point is buffered}
11: break

12: end if

13: end for

14: end if

15: end for

16: end if

17: return D

The algorithm assumes that robot steers to the left when

approaching an obstacle, therefore being always in the half

plane with Yr ≥ 0 (line 1). A symmetrical check should be

performed if the robot is allowed to steer to the right.

Line 2 considers points pi, i = 1 . . . N according to their

radial disposition around the robot: this allows to simplify

the following computations, since the search for dangerous

points operates on an ordered set. Line 3 checks whether the

current point pi is closer to the nominal path than the robot or

not. If so, pi is initialized as dangerous (line 4) and buffered

(line 5). If not, dangerous points in the buffer are considered

in inverse order, and the algorithm checks whether one of

these points bj is closer to pi that Dmax (line 8). If so, bj
propagates to pi, which is classified as dangerous (line 9)

and buffered (line 10).

Remark 2. According to Line 2 and 7, for every point

pi ∈ P it is necessary to check the distance from all

dangerous points which have been stored in the buffer

so far. The complexity of the algorithm can be reduced

to O (NM) by limiting the dimension of the buffer to a

finite value M (in experiments it has been set M = 1).

Since the algorithm memorizes only points with correspond

Fig. 3. Gray circle: robot. Black circles: dangerous points. White circles:
not dangerous points.

to the last laser scan (i.e., without building any map of

the environment), it requires a minimal amount of storage

memory and computational power, thus being executable in

real–time even in less powerfull microcontroller.

In Figure 3 it is possible to notice points which are clas-

sified as dangerous by the algorithm (black circles). Points

belonging to objects O1 and O2 are classified as dangerous

since they are closer to the path than the robot (line 3 in

the algorithm). Points belonging to object O3 are classified

as dangerous since they are closer to other dangerous points

than Dmax (line 8 in the algorithm). Finally, points belonging

to object O4 do not meet any of the previous conditions,

and therefore they are classified as not dangerous. Points

are checked in their radial order starting from point p1 to

pN , i.e., the order in which they were stored during laser

scanning.

When M is high, the computational complexity increases,

but the efficiency of the algorithm increases as well. To verify

this, consider Figure 4 in which it has been set M = 1.

The robot is moving along the path by avoiding obstacles

O1 and O2, but the points belonging to O3 have not yet

been classified as dangerous. This happens because, when

considering point p9, the algorithm checks the distance with

the only dangerous point in the buffer, i.e., point p8 ∈ B.

Since the distance between these latter two points is greater

than Dmax, point p9 is classified as not dangerous. However,

the distance between point p9 and point p6 ∈ D is less than

Dmax, which would have been easily detected by increasing

the dimension of the buffer, e.g., by setting M ≥ 3.

Even by setting M = 1, the robot still manages to

deal with the difficult situation. In fact, while the robot

moves in order to avoid obstacles O1 and O2, Yr necessarily

increases. If the distance between point p6 and p9 is smaller

than I , sooner or later the algorithm will classify point

p9 as a dangerous point in subsequent scans by applying

the initialization condition in line 3. Obviously, an early

detection of obstacles improves the run–time behaviour of

the robot, since it allows to start steering earlier, therefore

producing paths with a lower curvature. The limit situation

M = N guarantees to detect all dangerous points as long

as obstacles appear in the field of view, at the price of a

3607



Fig. 4. Gray circle: robot. Black circles: dangerous points. White circles:
not dangerous points.

Fig. 5. Error fuctions generated by dangerous points.

compexity O(N2).
Once dangerous points have been detected, it is necessary

to choose a proper error E(Xr) to be added to Xr. Differ-

ently from previous work, the approach proposed here is to

define an error Ei(Xr) for every dangerous point pi ∈ D
with i = 1 . . .K using the same expression in (5), i.e.:

Ei(Xr) = Aie
−

(Xr−Xi)
2

2w2
i . (8)

Finally,

E(Xr) = max
i
Ei(Xr), i = 1 . . .K, (9)

that is the error is computed as the maximum among all

contributions given by dangerous points.

An example is shown in Figure 5. By observing the Figure

one could expect that, as Xr varies, the robot moves along

a wavy profile due to the finite angular resolution of the

laser sensors, which produce a finite number of Gaussian

curves Ei(X) even in presence of straight obstacles (e.g.,

walls). However, it is important to remark that the final path

followed by the robot cannot be computed using (9) by

varying Xr. In fact, even in absence of moving obstacles,

the position of dangerous points pi ∈ D = D(t) at time t, as

well as their number K = K(t) depends on the configuration

of the robot itself η(t) = [Xr(t)Yr(t)ψr(t)].
Therefore, the profile followed by the robot turns out to

be, at every t:

T (t) = max
i
Aie

−
(Xr(t)−Xi(η(t)))2

2w2
i , i = 1 . . .K (t) . (10)

This concept can be clarified by assuming a robot that

moves parallel to an ideal infinite wall: as the robot moves,

the number K(t) of dangerous points and their positions

relative to the robots pi ∈ D(t) do not vary with t, thus

necessarily producing a constant profile for T (t). This is

compatible with (10) as t varies, but different from what can

be expected from (9) as Xr varies.

Remark 3. The profile T (t) is never stored in memory. At

every control cylce, path following requires only the value

of E(Xr) in Xr to compute controls as defined in (6) and

(4). To stress this point, the dependence on time has not been

written explicitly in (8) and (9). �

Finally, a mechanism is introduced to overcome limitations

of real sensors, in particular on the maximum sensing angle3.

If the sensing angle is less than 360o, it can happen that the

set of points pi ∈ D(t) (which depends on η(t)) changes

dramatically at time t+ 1 simply because a big obstacle has

disappeared behind the robot. To avoid this effect, the system

memorizes at time t the parameters Xj(t), Aj(t), wj(t) of

the Gaussian Ej(Xr(t)) that has been selected to contribute

to E(Xr(t)), that is:

j(t) = arg max
i
Ei (Xr (t)) , i = 1 . . .K(t). (11)

At time t+ 1, and if and only if Xr(t+ 1) > Xj(t) (i.e.,

the robot is on the descending side of the Gaussian), Xj(t),
Aj(t), wj(t) are used to compute an additional Gaussian

which is then compared with the K(t+1) Gaussians derived

from dangerous points pi ∈ D(t+ 1). This guarantees that,

even if the obstacle which produced Ej(Xr(t)) suddenly dis-

appears behind the robot, the robot still smoothly converges

to the nominal path along the same profile.

III. EXPERIMENTAL RESULTS

In order to validate the model, many tests have been

performed in a real indoor environment. Towards this end,

a LabMate robot with unicycle kinematics has been used,

equipped with a SICK laserscanner with a maximum sensing

angle of 180o and a sensing range of about 16 meters. Experi-

mental runs shown here have been classified into 3 typologies

of tests, which represent typical situations encountered in real

application domains. Tests have been performed for different

values of the translational speed, ranging from 0.15 to 0.6
m/s. Finally, in case that the obstacle avoidance mechanism

described is not sufficient to find a path to the goal (which

can happen, for example, in the case of a very cluttered

or crowded environment) an additional safety mechanism

is implemented which stops the robot, turns it towards the

goal, and possibly asks people for help. In a complete

architecture for robot navigation, this situation could require

the intervention of a high–level path planner which finds an

alternative solution. This problems is not faced here.

Figure 6 shows the first test typology. The robot is

requested to follow a nominal path which lies on the border

of a wall. This can happen as a consequence of a localization

3The robot used for experiments uses a SICK with a 180o angular width

3608



Fig. 6. Test 1: moving along a corridor with a localization error.

Fig. 7. Plot of (Xr(t), T (t)) and (Xr(t), Yr(t)) for test 1.

error. Even if the nominal path was defined in order to stay

in the middle of the corridor at a safety distance from both

walls, the robot has a wrong estimate of its own position:

in absence of an obstacle avoidance strategy, it would try to

converge to the path on its right, thus incurring in a collision.

The test validates the performance of the system to keep

the robot at a safety distance from the wall, while avoiding

additional obstacles on its path.

Figure 7 shows a plot of the imposed and the actual path at

a speed of 0.3 m/s. The X-axis is oriented along the corridor,

with a nominal path expressed as Y = −0.5 (dashed line).

The yellow curve shows the plot of (Xr(t), T (t)): this

corresponds to the imposed profile that the robot is instructed

to follow by the obstacle avoidance algorithm. The curve in

blue shows the actual profile (Xr(t), Yr(t)) followed by the

robot, provided by odometry. The average and the standard

deviation of the difference Dr = |T (t)−Yr(t)| between the

imposed and the actual profile are computed. Notice that the

actual path does not asymptotically converge to the imposed

path: this is due to the fact that the imposed path changes

every time t depending on sensor readings, according to (10).

Table I reports the statistics of Dr, averaged over different

runs of test 1, for different speeds.

Figure 8 shows the second test typology, which consists

in passing through a door. The passage is quite narrow

compared with the robot’s dimensions (it is only 25cm wider

than the robot), and therefore this test is performed only at

the lower speed of 0.15 m/s for safety reasons. Figure 9

shows a plot of the imposed and the actual path. Statistics

are shown in Table I. The system proves to perform well

even in a situation which, in APF–based approaches, is very

likely to produce local minima in the potential function (a

problem which requires carefully tuning of all parameters to

be avoided).

Fig. 8. Test 2: passing through a door with a localization error.

Fig. 9. Plot of (Xr(t), T (t)) and (Xr(t), Yr(t)) for test 2.

Figure 10 shows the third test typology, which consists in

avoiding two subsequent obstacles that intersect the nominal

path. In this experiment, a method has been implemented for

automatically choosing the steering direction (left or right)

on the basis of some heuristics. This allows to find a path

which could not be found otherwise. Figure 11 shows a plot

of the imposed and the actual path at a speed of 0.3 m/s.

Statistics are shown in Table I.

Experiments with moving persons have been performed

as well, but are not reported here since are hardly repeatable

and therefore it is not easy to draw quantitative results about

theme. In spite of this, and from a qualitative point of view,

the system proves to perform properly even in presence of

dynamically moving obstacles.

Fig. 10. Test 3: avoiding two obstacles by choosing the steering direction.

Fig. 11. Plot of (Xr(t), T (t)) and (Xr(t), Yr(t)) for test 3.

3609



TABLE I

RESULTS OF EXPERIMENTS

Test Type Speed [m/s] D̄r [m] σDr
[m]

test 1 0.15 0.034 0.037
test 1 0.3 0.08 0.033

test 2 0.15 0.021 0.019

test 3 0.15 0.042 0.079
test 3 0.3 0.064 0.101
test 3 0.6 0.094 0.098

IV. CONCLUSIONS

The article describes a novel approach to obstacle avoid-

ance which shares some similarities with Artificial Potential

Fields and methods based on the online deformation of the

path, but offer some advantages.

First, it proposes a method for obstacle avoidance which

is highly integrated with path following, and produces paths

which are directly executable by an AGV with unicycle

kinematics. Second, it proposes an original and efficient

approach to deal with a huge amount of sensor data.

Experiments with a real robot has been performed up to

a speed of 0.6m/s, both with statics and dynamic obstacles,

allowing to validate theoretic results. In the close future this

work will be extended in order to consider the case that the

nominal path is not a straight line, but is represented as a

generic curve in 2D expressed through its implicit equation

in the form f(X,Y ) = 0 [31].

REFERENCES

[1] A. Sgorbissa, A. Villa, A. Vargiu, and R. Zaccaria, A Lyapunov-stable,
sensor-based model for real-time path-tracking among unknown ob-
stacles, 2009 IEEE/RSJ Int. Conf. on Intelligent RObots and Systems,
October 11 – 15, 2009, St. Louis, MO, USA

[2] Samson, C. and Ait-Abderrahim, K., Mobile Robot Control Part 1:
Feedback Control of A Non-Holonomic Mobile Robots, Technical
Report No. 1281, INRIA, Sophia-Antipolis, France, June 1991.

[3] C. Canudas de Wit, H. Khennoul, C. Samson, and O. J. Sordalen,
Nonlinear control design for mobile robots, in Recent Trends in Mobile
Robots, ser. Robotics and Automated Systems, Y. F. Zheng, Ed. World
Scientific, 1993, ch. 5, pp. 121-156.

[4] M. Aicardi, G. Casalino, A. Bicchi, and A. Balestrino. Closed Loop
Steering of Unicyle-Like Vehicles via Lyapunov Techniques. IEEE
Robotics and Automation Magazine, 1995.

[5] D. Soetanto, L. Lapierre, A. Pascoal, Nonsingular path-following
control of dynamic wheeled robos with parametric modeling uncer-
tanity. Proceedings of the 11th International Conference on Advanced
Robotics, ICAR 2003, Coimbra, Portugal.

[6] O. Khatib, Real-time obstacle avoidance for manipulators and mobile
robots, Int. J. of Robotics Research, vol. 5, no. 1, 1986.

[7] R. C. Arkin: Motor Schema-Based Mobile Robot Navigation. Int. J.
of Robotic Researcg. 8(4): 92–112, 1989.

[8] Y. Koren and J. Borenstein, Potential Field Methods and Their
Inherent Limitations for Mobile Rabat Navigation, Proc. IEEE Conf.
on Robotics and Automation, Sacramento, CA, pp. 1398-1404, Apr.
7–12, 1991.

[9] J. Borenstein and Y. Koren, The Vector Field Histogram – Fast
Obstacle Avoidance for Mobile Robots, IEEE Journal of Robotics and
Automation, Vo1.7, No.3, June 1991, pp.278–288.

[10] I. Ulrich and J. Borenstein, J., VFH+: Reliable Obstacle Avoidance
for Fast Mobile Robots, IEEE Int. Conf. on Robotics and Automation,
May 1998, pp. 1572–1577.

[11] I. Ulrich and J. Borenstein, VFH*: Local Obstacle Avoidance with
Look-Ahead Verification, IEEE Int. Conf on Robotics and Automation,
April 2000, pp. 2505–2511.

[12] L. Linhui, Z. Mingheng, G. Lie, Z. Yibing, Stereo Vision Based Ob-
stacle Avoidance Path-Planning for Cross-Country Intelligent Vehicle,
Sixth Int.. Conf. on Fuzzy Systems and Knowledge Discovery, FSKD
’09, pp. 463 – 467 2009.

[13] R. Kurozumi, T. Yamamoto, Implementation of an obstacle avoidance
support system using adaptive and learning schemes on electric
wheelchairs, 2005 IEEE/RSJ Int.. Conf. on Intelligent Robots and
Systems, pp. 1108 – 1113, 2005.

[14] J. Minguez, The obstacle-restriction method for robot obstacle avoid-
ance in difficult environments, 2005 IEEE/RSJ Int.. Conf. on Intelli-
gent Robots and Systems. pp. 2284 - 2290, 2005.

[15] R. Simmons, The Curvature-Velocity Method for Local Obstacle
Avoidance. In IEEE Int. Conf. on Robotics and Automation, pp. 3375-
3382, Minneapolis, USA, 1996.

[16] F. Zhang, A. O’Connor, D. Luebke, P.S. Krishnaprasad, Experimental
study of curvature-based control laws for obstacle avoidance, 2004
IEEE Int. Conf. on Robotics and Automation, pp. 3849 – 3854, 2004.

[17] D. Fox, W. Burgard, and S. Thrun. The Dynamic Window Approach to
Collision Avoidance. IEEE Robotics and Automation Magazine, 4(1),
1997.

[18] P. Ogren, N.E. Leonard, A convergent dynamic window approach to
obstacle avoidance, IEEE Transactions on Robotics, Volume: 21, Issue:
2, pp. 188 – 195, 2005.

[19] K.O. Arras, J. Persson, N. Tomatis, R. Siegwart, Real-time obstacle
avoidance for polygonal robots with a reduced dynamic window, IEEE
Int. Conf. on Robotics and Automation, pp: 3050 – 3055, 2002.

[20] O. Brock and O. Khatib, Elastic strips: a framework for motion
generation in human environments, Int. J. of Robotics Research, vol.
21, no. 12, pp. 1031–1052, Dec. 2002.

[21] S. Quinlan and O. Khatib. Elastic Bands: Connecting Path Planning
and Control. In IEEE Int. Conf. on Robotics and Automation, volume
2, pages 802807, Atlanta, USA, 1993.

[22] F. Lamiraux, D. Bonnafous, and O. Lefebvre, Reactive path deforma-
tion for nonholonomic mobile robots, IEEE Trans. on Robotics and
Automation, vol. 20, no. 6, pp. 967–977, Dec. 2004.

[23] L. Lapierre, R. Zapata, P. Lepinay, Simultaneous Path Following and
Obstacle Avoidance Control of a Unicycle-type Robot, 2007 IEEE Int.
Conf. on Robotics and Automation, pp. 2617 - 2622, 2007.

[24] Y. Li, C. Li, R. Song, A new hybrid algorithm of dynamic obstacle
avoidance based on dynamic rolling planning and RBFNN, IEEE Int.
Conf. on Robotics and Biomimetics, ROBIO ’07, pp. 2064 – 2068,
2007.

[25] Y. S. Nam, B. H. Lee, M. S. Kim, View-time based moving obstacle
avoidance using stochastic prediction of obstacle motion, IEEE Int.
Conf. on Robotics and Automation, pp. 1081 – 1086, 1996.

[26] Zhu, Q., Hidden Markov model for dynamic obstacle avoidance of mo-
bile robot navigation, IEEE Transactions on Robotics and Automation,
Vol. 7 , No. 3, pp 390 – 397, 1991.

[27] C. Fulgenzi, A. Spalanzani, C. Laugier, Dynamic Obstacle Avoidance
in uncertain environment combining PVOs and Occupancy Grid, 2007
IEEE Int. Conf. on Robotics and Automation, pp: 1610 - 1616, 2007.

[28] G. Bianco, P. Fiorini, Visual avoidance of moving obstacles based on
vector field disturbances, IEEE Int. Conf. on Robotics and Automation,
pp. 2704 - 2709, 2001.

[29] G. Zong, L. Deng, W. Wang, A Method for Robustness Improvement
of Robot Obstacle Avoidance Algorithm, IEEE Int. Conf. on Robotics
and Biomimetics, ROBIO’06. pp. 115 – 119, 2006.

[30] F.Mastrogiovanni, A. Sgorbissa, and R. Zaccaria, Robust navigation
in an unknown environment with minimal sensing and representation,
2009 IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, Volume 39, Issue 1, pp. 212–229, 2009.

[31] A. Sgorbissa and R. Zaccaria, A Minimalist Feedback Control for Path
Tracking in Cartesian Space, 2009 IEEE/RSJ Int. Conf. on Intelligent
RObots and Systems, October 11 – 15, 2009, St. Louis, MO, USA

[32] M. Piaggio and A. Sgorbissa, Ai-cart: an algorithm to incrementally
calculate artificial potencial fields in real-time. Proceedings of the
IEEE International Conference on Robotics and Automation, pp. 238-
243, Monterey, CA, 1998.

[33] A. Morro, A. Sgorbissa, and R. Zaccaria, Path
Following for Unicycle Robots with Arbitrary Path
Curvature, Technical Report, 2010. Available online:
http://www.robotics.laboratorium.dist.unige.it/index.php?section=5

3610




