
Real-time Moving Object Recognition and Tracking Using Computation

Offloading

Yamini Nimmagadda, Karthik Kumar, Yung-Hsiang Lu, and C. S. George Lee

Abstract— Mobile robots are widely used for computation-
intensive tasks such as surveillance, moving object recogni-
tion and tracking. Existing studies perform the computation
entirely on robot processors or on dedicated servers. The
robot processors are limited by their computation capability;
real-time performance may not be achieved. Even though
servers can perform tasks faster, the communication time
between robots and servers is affected by variations in wireless
bandwidths. In this paper, we present a system for real-
time moving object recognition and tracking using computation
offloading. Offloading migrates computation to servers to reduce
the computation time on the robots. However, the migration
consumes additional time, referred as communication time in
this paper. The communication time is dependent on data size
exchanged and the available wireless bandwidth. We estimate
the computation and communication needed for the tasks and
choose to execute them on robot processors or servers to
minimize the total execution time, in order to satisfy real-time
constraints.

Index Terms— mobile robots, surveillance and tracking, com-
putation offloading, moving object recognition

I. INTRODUCTION

Video surveillance, moving object recognition, and robotic

platforms are the fields that have been extensively studied in

recent years. Most of the existing studies on surveillance

systems use stationary cameras and can track objects only

within limited ranges. Moving objects can be tracked by

placing cameras on mobile robots. These robots can be

used in a variety of fields such as recognizing and tracking

suspicious persons or objects. In this paper, we present a real-

time mobile robot surveillance system to recognize and track

moving objects. Our system has five modules: (1) image

capture, (2) motion detection, (3) object recognition, (4)

binocular stereovision, and (5) path-planning and tracking.

The block-diagram of this system is shown in Figure 1.

In our system, the robot captures images at regular in-

tervals, checks for a moving object, recognizes and tracks

the moving object. The gray colored modules in Figure 1

have to be performed on the robot because the cameras are

mounted on the robot and obstacles are detected by laser

and sonar sensors of the robot. For the other modules, our

method decides where to execute the computation. In this

paper, we use the terms modules and tasks interchangeably.

In our method, the tasks of image capture, motion detection,

The authors are with the School of Electrical and Computer Engi-
neering, Purdue University, IN, USA {ynimmaga, kumar25, yunglu, cs-
glee}@purdue.edu

This work was supported in part by the National Science Foundation
under Grant CNS 0855098. Any opinions, findings, and conclusions or
recommendations expressed in this paper are those of the authors and do
not necessarily reflect the views of the National Science Foundation.

Fig. 1. Block diagram of our system. The gray modules: image capture and
path planning, are performed on the robot. Other modules can be performed
either on the robot or the server. The dashed line indicates that input from
image capture to object recognition does not intersect other lines.

stereovision, and path-planning are executed in a periodic

manner after every image is captured; hence these tasks have

deadlines. Object recognition also has to be performed before

the object moves out of the surveillance range. The deadlines

for the tasks are governed by factors such as frequency

of image capture and surveillance range. We use the terms

deadlines and real-time constraints interchangeably.

In most existing systems, the computation is performed

entirely on robots or entirely on dedicated servers. These

approaches have the following limitations: (a) Entirely on

robots: Mobile robots have low-end processors; therefore

the execution time is often too long to meet deadlines. (b)

Entirely on dedicated servers: The systems in which the

entire computation is performed on the servers are affected

by the variations in wireless bandwidths. At high bandwidths,

data from robots are transmitted to the servers faster; hence

communication overhead is less. At low bandwidths, com-

munication time can become the dominant overhead.

In our system, the robot recognizes and follows a moving

object. As the robot moves, the amount of computation to

recognize objects varies because the backgrounds change

and images with different complexities are captured. If the

images are more complex, more features are needed to

discern the object; hence more computation is needed. Robot

processors, with limited computing capabilities, may not

always execute tasks within real-time constraints due to

variable amounts of computation. With the recent advances

in cloud computing [7], servers with scalable computing

capability are available. Hence, migrating computation to

these servers reduces the computation time. The mechanism

of migrating computation to servers to reduce computation

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 2449

time is called “computation offloading” [8]. Computation

offloading, however, has communication overhead. We es-

timate the computation and communication involved in each

of the tasks. Based on this estimation, we choose to perform

a task either on the robot or the server such that the execution

time is minimized and the tasks satisfy real-time constraints.

We believe this is the first study to use computation of-

floading for applications with variable computation and real-

time constraints. Our contributions include: (1) We propose a

method to adaptively estimate the computation based on the

complexity of images captured. (2) We analyze the effect of

wireless bandwidths on data exchange between the robot and

the server. (3) Based on the computation and communication

of the tasks, we present an offloading framework to reduce

the execution time, while satisfying real-time constraints.

II. RELATED WORK

Many studies have been conducted on moving object

recognition and object tracking. The majority of these studies

consider the two modules separately. Each module requires

heavy computation, hence consuming tremendous amounts

of time on robot processors. We propose a computation of-

floading framework to divide the computation between robot

processors and servers to achieve real-time performance.

A. Object Recognition

Object recognition usually uses the following steps: (1)

feature extraction, (2) training, and (3) testing. Features

extracted from Haar wavelets [12], intensity/color histograms

[14], and visual cortex models [11] are widely used for

recognizing objects. Serre et al. [11] use Gabor filters to

model visual cortex for recognizing objects. They show

that the visual cortex model outperforms many methods in

recognizing multi-class objects. We use the same method to

recognize objects in our system. The feature extraction and

training are performed offline in our method. The feature

database is stored in both robots and servers.

B. Moving Object Tracking

Several methods have been proposed for tracking moving

objects. Schulz et al. [10] track multiple objects with a

mobile robot. Chen et al. [1] present real-time tracking of

a single moving object. Gohring et al. [4] use multiple

robots for finding positions of moving objects. Kobilarov et

al. [5] present an algorithm to track people outdoors. Qian

et al. [9] propose a probabilistic approach for simultaneous

robot localization and tracking people. Chen et al. [2] use a

background subtraction method for real-time tracking. These

systems track and follow moving objects or recognize single-

class objects. In contrast, we present a real-time tracking

system with multi-class object recognition.

C. Computation Offloading

Migrating computation was proposed in [8]. Computa-

tion offloading was used in grid computing to perform

collaborative (and thus faster) computation. Offloading is

emerging as a solution to bridge the gap between the limited

Technique Processing Real Object BA CA
Location time Recognition

[10] server Yes None No No
[1] server Yes None No No
[4] robot No None No No
[5] robot No single-class No No
[9] server Yes single-class No No
[2] server Yes None No No

Our method server Yes multi-class Yes Yes
or robot

TABLE I

COMPARISON OF OUR SYSTEM WITH EXISTING STUDIES (BA:

BANDWIDTH ADAPTIVE, CA: COMPUTATION ADAPTIVE).

computational capabilities of mobile systems and demand

for increasingly complex functionalities. Existing studies use

computation offloading to reduce energy consumption [6] or

to reduce execution time [13]. We believe this is the first

study to use computation offloading for applications with

real-time constraints in mobile robots.

D. Our Contributions

Table I shows the comparison of our system with existing

systems. Existing systems use single-class object recogni-

tion. They transmit data from robots and use servers for

computation. They assume that the wireless bandwidths are

always sufficient for exchanging data in real-time. However,

the wireless bandwidths may vary due to signal strength

attenuation or channel contention. These systems also do

not consider tasks with variable amounts of computation.

Our system differs from existing studies with the following

contributions: (1) We present a real-time tracking system

with multi-class object recognition. (2) We consider tasks

with variable amounts of computation; we estimate the com-

putation and communication of the tasks before executing

them. (3) We present an offloading decision framework for

different amounts of computation and wireless bandwidths.

III. OFFLOADING DECISIONS FOR MOVING OBJECT

RECOGNITION AND TRACKING

Our system consists of five modules as shown in Figure

1. Image capture and path-planning are performed on the

robot. The other modules: motion detection, stereovision,

and object recognition may execute on the robot or on a

server. The data exchange between these modules is small.

For example, the data sent from motion detection to object

recognition is only one bit: the bit 1 (shown as yes in the

figure) is sent if motion is detected and the object recognition

starts, otherwise 0 is sent. Hence, we consider these modules

independently.

The decision of where to execute the modules depends

on their amounts of computation and communication. We

first estimate the computation involved in the modules, then

estimate the communication consumed by offloading these

tasks to servers. Based on this estimation, we decide where to

execute the tasks such that they satisfy real-time constraints.

Motion detection and stereovision have fixed amounts of

computation for a given image resolution. We determine the

relationship between the amounts of computation for these

2450

two modules and show that their offloading decisions are

related. Under some conditions, elaborated in Section III-C,

the same offloading decision holds for both motion detection

and stereovision. Object recognition, however, has a variable

amount of computation; hence we estimate the computation

and communication to make a decision, irrespective of the

other two modules’ decisions. We first describe the setup of

our system in III-A and identify the real-time constraints.

Next, we provide an offloading decision framework for

motion detection, stereovision, and object recognition.

A. System Setup

Our system consists of a pioneer 3DX mobile robot and an

on-board computer with a Intel core2-duo 2 GHz processor

and two stationary cameras, each with a resolution of 640 ×

480. We use a Intel Xeon Linux server, with eight quad-core

2.33 GHz processors and 8 GB RAM. When parallel tasks

are executed on the server, we achieve a speedup of about 20

times. The robot setup is shown in Figure 2 (a). The robot is

stationed at the surveillance location and images are captured

at a frequency of 20 images/sec to detect motion. Once

motion is detected, the features of the object are extracted

and compared against the categories in a target database. If

the object belongs to the target database, the location of the

object is computed using stereovision. The robot then follows

the object by continuously capturing images and computing

the location of the object. To detect motion and to recognize

the object, images from one camera are used, whereas for

stereovision, images from both cameras are used. We use

the following assumptions in our system: (1) The velocity of

the moving object is less than the maximum velocity of the

robot. (2) There is only a single moving object.

The tasks involved in moving object recognition and

tracking are governed by deadlines. Motion detection and

stereovision have to finish execution by the time the next

image is captured. The deadline for motion detection is ts,

the image capture period (1/20th sec in our system). The

selection of ts depends on the algorithm used to detect

motion, and is described in Section III-B. Stereovision is

performed after motion detection to compute the object’s

distance. Hence, the deadline for stereovision is ts − tmd,

where tmd is the motion detection time. Object recognition

has to finish execution before the object moves out of

camera’s view. If the camera’s angle of view is θ, and the

object is first identified at a distance d, the minimum distance

it can travel before it moves out of camera’s view is d sin θ

as shown in Figure 2 (b). If the velocity of the object is vt,

the deadline for object recognition is d sin θ
vt

.

B. Motion Detection

We use background subtraction to detect motion [15]

by comparing adjacent frames and identifying differences.

We use rectangles to identify the regions with differences

because computing exact contours of objects is computation-

intensive. Since the robot follows the moving object, the

background also changes continuously. Hence, several blocks

with differences are observed. In order to detect the motion

(a) (b)

Fig. 2. (a) Robot setup, (b) Camera’s angle of view.

Symbols Meaning Units

α background complexity -

γ database size -

η speed-up factor of the server -

β wireless bandwidth kbps

θ camera angle of view degrees

vt velocity of the target object m/sec

ts image capture sampling time sec

fr robot processor speed GHz

N number of pixels -

df file size of features kB

dI file size of image kB

tmd, tsv , tor execution times of motion detection,
stereovision, object recognition

sec

kmd, ksv , kor computation/pixel of motion detection,
stereovision, object recognition

cycles

TABLE II

TABLE OF SYMBOLS

of the object while ignoring the background change, we

capture images at a high frequency (20 images per second).

By using high frequency to capture images, the changes

in the background become insignificant and the motion of

the object is detected. The robot moves with the object;

hence small motion of the object results in smaller changes

in background and the object can still be tracked. The

movement of the center of the rectangle with the largest area

gives the direction of object’s movement.

The computation involved in motion detection cmd de-

pends on the resolution of the images. As the resolution

increases, more pixels are compared to identify regions with

differences. The computation is given by cmd = kmd × N ,

where kmd is an algorithm-specific constant that represents

the computation per pixel (in cycles) for motion detection

and N is the total number of pixels. We first estimate the

computation at the instruction level. Our algorithm performs

the following instructions per pixel on average: two load

instructions to read the pixels from the current and the

previous frames, one subtraction to determine the difference

between these pixels, one store to write the difference, one

load to scan the difference image, one store to write motion

blocks. The number of cycles per instruction (CPI) is a

platform-dependent constant; therefore we compute kmd as

the product the number of instructions and the CPI of the

target platform. When the entire computation is performed

on a robot processor with speed fr, the time consumed by

motion detection tmd,r is given by:

2451

tmd,r =
cmd

fr

=
kmd × N

fr

. (1)

If the entire computation is offloaded to a server, with an

effective speed-up factor of η, the computation time becomes
tmd,r

η
seconds because the images can be divided into sev-

eral parts and the differences can be computed in parallel.

However, transmitting images to the server consumes an

additional dI

β
seconds for every image of file size dI at a

wireless bandwidth of β. The total time tmd,s required for

motion detection, when offloaded to the server is given by:

tmd,s =
cmd

η × fr

+
dI

β
. (2)

We offload the computation to the server when tmd,r >

tmd,s as shown in Equation (3). If this inequality does not

hold, we perform motion detection on the robot. Hence

the time for motion detection is the smaller value between

tmd,r and tmd,s. If the smaller value exceeds the deadline

ts, we skip motion detection for the next sample to avoid

accumulation of delay for later samples.

kmd × N

fr

>
kmd × N

η × fr

+
dI

β
. (3)

C. Binocular Stereovision

We use binocular stereovision [3] to compute the distance

of an object. The left and right images are rotated and shifted

to find matching parts. The shifted amount in pixels is called

disparity. We use the disparity map to compute the distance

of the object. The actual distance x of an object is computed

as x =
y×i

j
, where y is a known distance of an object, i is the

disparity map intensity of the object, and j is the disparity

map intensity of the object whose distance is measured [3].

The amount of computation required by stereovision csv is

proportional to the resolution of the images. As the resolution

increases, more pixels are used to compute disparity maps.

The computation is given by csv = ksv ×N , where ksv is an

algorithm-specific constant that represents the computation

per pixel (in cycles) and N is the total number of pixels. At

the instruction level, our algorithm needs 8 loads, 5 stores

and 4 arithmetic operations per pixel on average, to read both

left and right images, rotate and shift them, and compute the

disparity. The value of ksv is computed similar to kmd as

the product of the number of instructions and the CPI. For

our algorithms, we observe that ksv ≈ 3 × kmd.

The analysis for offloading stereovision is similar to the

motion detection. Similar to Equation (3), stereovision is

offloaded to the server if tsv,r > tsv,s, where tsv,r and

tsv,s are the execution times on the robot and the server

respectively. The computation for stereovision is larger than

motion detection because ksv > kmd. The communication

for stereovision is twice that of motion detection (2dI

β
) be-

cause two images are sent to the server. Similar to Equation

(3), stereovision should be offloaded if:

ksv × N

fr

>
ksv × N

η × fr

+ 2 ×
dI

β
. (4)

By comparing Equations (3) and (4), we infer that stere-

ovision is always offloaded, when motion detection is of-

floaded, provided stereovision consumes at least twice the

amount of computation as motion detection (ksv ≥ 2kmd).

This eliminates an additional step of decision for stereo-

vision. However, if the motion detection is not offloaded,

nothing can be inferred about the decision for stereovision;

hence Equation (4) is used for the decision. If stereovision

consumes less than twice the amount of computation as

motion detection (ksv < 2kmd), we perform stereovision

on the robot, if motion is detected on the robot. However, if

the motion detection is offloaded, we use Equation (4) for

the decision. Table III summarizes the relationship between

offloading decisions of motion detection and stereovision.

In our system, ksv > 2kmd; hence we always offload

stereovision, when motion detection is offloaded.

Condition Motion Detection Stereovision

ksv ≥ 2kmd
offload offload
robot Equation (4)

ksv < 2kmd
offload Equation (4)
robot robot

TABLE III

OFFLOADING RELATIONSHIP BETWEEN MOTION DETECTION AND

STEREOVISION.

The time for stereovision is the smaller value between

tsv,r and tsv,s. If the smaller value exceeds the deadline

ts − tmd, we skip stereovision for the next sample to avoid

accumulation of delay for later samples.

D. Object Recognition

We recognize objects using visual cortex model [11] in

two steps: (1) feature extraction and (2) search through the

feature database. Features are extracted by applying a set of

Gabor filters with different scales and orientations to images

and combining their outputs to form complex vectors [11].

Serre et al. [11] show that 16 Gabor filters model the visual

cortex sufficiently. The computation of feature extraction is

proportional to the number of features nf . As the robot

moves, nf varies because images with different complexities

are captured; these images require different numbers of

features for discerning objects. The amount of computation

for search depends on the number of features compared and

the size of the object database γ. The computation is given

by cor = cf +cs = kf×nf +ks×nf×γ, where cf and cs are

computations of feature extraction and search, kf and ks are

algorithm-specific constants for computation per feature (in

cycles) for feature extraction and search, computed similarly

to kmd and ksv .

Existing studies treat images with different complexities

equally; hence the same computation is consumed. However,

as the robot moves, object recognition requires variable

amounts of computation. If the same nf is used for all the

images, performance of object recognition deteriorates for

small nf ’s and real-time constraints may not be met for

large nf ’s. Hence, we develop a metric called “background

complexity” (α) to estimate the complexity of images and

2452

(a)

0 50 100 150 200 250

100

200

300

400

Luminance Intensity

N
u

m
b

e
r

o
f

P
ix

e
ls

(b) (c)

0 50 100 150 200 250
0

10

20

Luminance Intensity

N
u

m
b

e
r

o
f

P
ix

e
ls

x10
4

(d)

Fig. 3. (a) Image with background clutter, (b) Luminance histogram of (a). The histogram is dispersed,
(c) Image without background clutter, (d) Luminance histogram of (c). The histogram has long narrow
peaks. Images are taken from Caltech 101 object database.

(a) (b)

Fig. 4. Object and background with (a)
similar colors, (b) different colors. Images
belong to Caltech 101 database.

determine nf adaptively for different images. The complexity

α arises from two factors namely clutter (αc) and similarity

(αs) and is given by α =
αc+αs

2
.

Clutter αc: The difficulty of discerning an object from its

background increases with the background clutter. Figures 3

(a) and (c) show images with and without background clutter.

We quantify the amounts of clutter as the dispersion of the

images’ luminance histograms, measured using a statistical

metric called quartile coefficient of dispersion measured as

follows: The data are sorted in increasing order of their

magnitudes and three numbers from the sorted data are

selected such that they divide the data into four almost equal

sums. These numbers are called quartiles. Quartile coefficient

is defined as q3−q1

q1+q3

, where q1, q2, and q3 are the three

quartiles. Quartile coefficient of dispersion ranges between

0 and 1. Figures 3 (b) and (d) show luminance histograms

of (a) and (c). Figure 3 (b) has short dispersed peaks (αc =

0.8) whereas (d) has long narrow peaks (αc = 0.1).

Similarity αs: The complexity also increases with the

similarity between the colors of object and background. We

consider all the pixels in the rectangle determined by the

motion detection as the object. We use correlation between

chrominance histograms of the object and its background to

quantify the similarity. The value of αs ranges between 0

(no correlation) and 1 (100% correlation). Figures 4 (a) and

(b) show two images with and without background similarity

(αs = 0.79 and 0.02 respectively).

The value of α ranges between 0 and 1, because α =
αc+αs

2
. For images with different values of α, we need

different numbers of features to achieve a given accuracy

of classification [11]. The classification accuracy is defined

as the ratio of number of objects similar to the query object

to the total number of objects in the category. We use 20

categories from Caltech101 object database, each category

containing 200 to 500 images. To obtain a classification

accuracy of at least 90%, Figure 5 shows the number of

features required for different α’s. Using regression, we find

the following relationship between nf and α. The value of

nf ranges between 1135 (α = 0) and 4881 (α = 1).

nf = −16089α4
+30411α3

−14268α2
+3692α+1135 (5)

The time taken by the robot processor tor,r to perform

object recognition is given by:

tor,r =
cor

fr

=
cf + cs

fr

(6)

0 0.2 0.4 0.6 0.8 1
1000

2000

3000

4000

5000

Background Complexity

N
u
m

b
e
r

o
f
F

e
a
tu

re
s

Experimental Data
Polyfit Curve

Fig. 5. Number of features for different background complexities to achieve
90% accuracy.

If the entire object recognition is offloaded to the server,

the computation time becomes
tor,r

η
secs. However, transmit-

ting images to the server consumes an additional dI

β
secs. The

total time tor,s, when offloaded to the server is given by:

tor,s =
cf + cs

ηfr

+
dI

β
(7)

We also consider a scenario in which the object recog-

nition is partially offloaded to the server. In this scenario,

feature extraction is performed on the robot and search

is offloaded to the server. The total time tor,p for partial

offloading is given by:

tor,p =
cf

fr

+
cs

ηfr

+
df

β
(8)

where df is the file size of features. We take the smaller value

among tor,r, tor,s, and tor,s. If tor,r is smaller, we perform

the entire computation on the robot. If tor,s is smaller, we

offload the entire computation to the server. If tor,p is smaller,

we offload the computation partially to the server. If the

smaller value is greater than the deadline d sin θ
vt

, we turn

the robot in the direction of object and obtain more time to

recognize the object.

IV. EXPERIMENTS AND RESULTS

Our system has many parameters such as the distance of

the object, the speed of the object, the camera’s angle of

view, the image capture frequency, the wireless bandwidth,

the server speed-up, and the amount of computation. We

first show a base case with fixed parameters, and analyze

how offloading decision is affected by varying the wireless

bandwidth, the server speed-up, the background complexity

and the object database size, by varying one at a time.

A. Base Case

Consider a robot stationed at the surveillance location. A

moving object is spotted at a distance of 2m from the camera

2453

ts d vt tmd,r tsv,r tor,r α η

0.05s 2m 1.5m/s 0.06s 0.2s 1.7s 0.5 10

β γ dI df tmd,s tsv,s tor,p tor,s

50kbps 1000 20 kB 10 kB 0.41s 0.82s 0.55s 0.57s

TABLE IV

VALUES FOR BASE CASE.

with an angle of view 90◦. The velocity of the object is

1.5m/sec and the maximum velocity of the robot is 1.6m/sec.

The execution times for motion detection and stereovision on

the robot are 60 msec and 200 msec respectively. The object

recognition time on the robot with a background complexity

0.5 is 1.7sec (0.2sec for feature extraction and 1.5sec for

search) for a database containing 1000 images. The execution

times on the server for these modules are computed using

Equations (3), (4), (7) and (8). The values for the base case

are listed in Table IV. Motion detection and stereovision are

performed on the robot and object recognition is partially

offloaded for the base case.

B. Wireless Bandwidth

Wireless bandwidth (β) available to the robot may vary

due to signal strength attenuation and channel contention.

At low bandwidths, data exchange between the robot and the

server becomes a dominant overhead. This communication

is negligible at high bandwidths. Figures 6 (a), (b), and (c)

show the execution times and offloading decisions for motion

detection, stereovision, and object recognition for the base

case. The maximum wireless bandwidth observed in our lab

is 140 kbps. We vary the wireless bandwidth from 10 kbps to

140 kbps by introducing delay in data exchange. The amount

of computation does not vary with wireless bandwidths.

Motion detection consumes small amounts of computation;

hence communication becomes the dominant overhead at

low bandwidths. Motion detection is performed on the robot

for the available range of wireless bandwidths. Stereovision

is performed on the robot for bandwidths up to 110 kbps

and on the server for bandwidths greater than 110 kbps.

Object recognition consumes heavy computation; hence for

the given database size, we observe that partial offloading is

the best choice for wireless bandwidths up to 60 kbps and

full offloading above 60 kbps. The execution times of motion

detection and stereovision exceed deadlines and are avoided

for later samples until they finish execution. Bandwidths as

high as 54 Mbps can be achieved using 802.11g; at such

bandwidths, communication time becomes nearly zero and

the decisions will be dependent on computation alone.

C. Server Speed

As the server speed (η) increases, computation time re-

duces. We use a server with eight quad-core 2.33 GHz

processors and an on-board computer with one 2 GHz dual

core processor. Theoretically, maximum speed-up that can

be achieved for parallel applications, considering only the

processors, is 2.33×8×4

2×2
= 18.64. Experimentally, we find

that we achieve about 20 times speed up because of factors

such as cache, pipeline, and memory. We use the base-case

and vary the server speeds by turning off some processors.

α γ β Offload Decision

0

100 β ≤ 100 kbps robot
1000 β ≤ 6 kbps robot

β > 6 kbps and β ≤ 100 kbps partial
5000 β ≤ 100 kbps partial

0.5

100 β ≤ 65 kbps robot
β > 65 kbps and β ≤ 100 kbps server

1000 β ≤ 6 kbps robot
β > 6 kbps and β ≤ 65 kbps partial

β > 65 kbps and β ≤ 100 kbps server
5000 β ≤ 65 kbps partial

β > 65 kbps and β ≤ 100 kbps server

1

100 β ≤ 35 kbps robot
β > 35 kbps and β ≤ 100 kbps server

1000 β ≤ 35 kbps partial
β > 35 kbps and β ≤ 100 kbps server

5000 β ≤ 35 kbps partial
β > 35 kbps and β ≤ 100 kbps server

TABLE V

OFFLOADING DECISIONS FOR OBJECT RECOGNITION FOR DIFFERENT

BANDWIDTHS, BACKGROUND COMPLEXITIES, AND DATABASE SIZES.

Figures 6 (d), (e), and (f) show the execution times and

offloading decisions of motion detection, stereovision, and

object recognition for different speed-ups. We observe that

motion detection and stereovision are performed on the robot

at all the speeds because offloading consumes a tremendous

amount of communication time at a bandwidth of 50 kbps.

Object recognition benefits from partial offloading at this

bandwidth for the given server speeds. Almost infinite speed-

up can be achieved by using cloud computing; in such cases,

the decision will depend on communication alone.

D. Background Complexity

Object recognition has a variable amount of computation.

As the background complexity (α) increases, more features

are required for object recognition. The execution times on

both the robot and the server increase with the background

complexity. We use the base-case and vary α by considering

different images. Figure 7 (a) shows the execution times and

offloading decision for object recognition. For images with

α ≤ 0.55, object recognition benefits from partial offloading.

For other images, the entire computation is offloaded to the

server because of heavy computation resulting from larger

numbers of features. The computation is significant even

when α = 0, because 1135 features (Equation 5) are still

used for recognizing objects.

E. Database Size

The computation of object recognition also depends on

the size of the object database (γ). We use the Caltech

101 database for our experiments. We vary γ between 20

and 5000 images. As γ increases, search consumes higher

computation time. Figure 7 (b) shows the execution times

and offloading decision for object recognition for different

database sizes. For γ ≤ 150, the base-case is performed on

the robot processor. For γ > 150, object recognition benefits

from partial offloading. The computation time for feature ex-

traction remains the same, because it is not dependent on the

database size. As the database size increases, the feature ex-

traction time becomes negligible; hence the decision depends

2454

20 40 60 80 100 120 140
0

0.5

1

1.5

Bandwidth (kbps)M
o
ti
o
n
 D

e
te

c
ti
o
n
 T

im
e
 (

s
e
c
s
)

r robot server deadline

 robot

(a)

20 40 60 80 100 120 140
0

0.5

1

1.5

Bandwidth (kbps)

S
te

re
o
v
is

io
n
 T

im
e
 (

s
e
c
s
)

r robot server deadline

robot server

(b)

20 40 60 80 100 120 140
0

0.5

1

1.5

2

Bandwidth (kbps)O
b
je

c
t
R

e
c
o
g
n
it
io

n
 T

im
e
 (

s
e
c
s
)

p robot server partial deadline

Deadline
Crossing
 Point

partial
server

(c)

5 10 15
0

0.2

0.4

0.6

0.8

Server Speed−up FactorM
o
ti
o
n
 D

e
te

c
ti
o
n
 T

im
e
 (

s
e
c
s
)

f robot server deadline

robot

(d)

5 10 15
0

0.2

0.4

0.6

0.8

Server Speed−up Factor

S
te

re
o
v
is

io
n
 T

im
e
 (

s
e
c
s
)

robot server deadline

robot

(e)

5 10 15
0

0.5

1

1.5

2

Server Speed−up FactorO
b
je

c
t
R

e
c
o
g
n
it
io

n
 T

im
e
 (

s
e
c
s
)

f robot server partial deadline

partial

(f)

Fig. 6. (a),(b),(c) Execution times and offloading decisions for motion detection, stereovision, and object recognition for different wireless bandwidths.
(d),(e),(f) Execution times and offloading decisions for motion detection, stereovision, and object recognition for different server speeds. The dark gray
regions represent computation on the robot, light gray regions represent partial offloading, and white regions represent full offloading to the server.

0.2 0.4 0.6 0.8 1
0

1

2

3

4

Background ComplexityO
b

je
c
t

R
e

c
o

g
n

it
io

n
 T

im
e

 (
s
e

c
s
)

robot server partial deadline

partial server

(a)

1000 2000 3000 4000 5000
0

2

4

6

8

Object Database Size

O
b

je
c
t

R
e

c
o

g
n

it
io

n
 T

im
e

 (
s
e

c
s
)

robot

server

partial

deadline

robot partial

(b)

Fig. 7. Offloading analysis for object recognition for different (a)
background complexities, (b) database sizes. The dark gray regions represent
computation on the robot, light gray regions represent partial offloading, and
white regions represent full offloading to the server.

on the communication required for partial offloading and full

offloading. In the base-case, partial offloading consumes less

communication time. Therefore, object recognition benefits

from partial offloading.

We observe the offloading decisions of object recognition

by varying background complexity, wireless bandwidth and

database size together. Table V shows the offloading decision

for object recognition for different α’s, β’s, and γ’s. For low

background complexities and database sizes, the computation

is low; object recognition is performed on the robot. For high

background complexities and database sizes, computation is

high; object recognition is offloaded to server. For intermedi-

ate values, object recognition benefits from partial offloading.

V. CONCLUSION

We present a real-time moving object recognition and

tracking system. We estimate the computation and commu-

nication involved in the tasks. We develop an offloading

decision framework that divides the computation between the

robot and the server. We present an analysis of the effects of

wireless bandwidth, server speed-up, image complexity, and

object database size on offloading decisions.

REFERENCES

[1] Chen et al. A Moving Object Tracked by A Mobile Robot with Real-
Time Obstacles Avoidance Capacity. In International Conference on

Pattern Recognition, 2006.
[2] Chen et al. BEST: A Real-time Tracking Method for Scout Robot. In

IEEE/RSJ IROS, 2009.
[3] Cullen et al. Stereo Vision Based Mapping and Navigation for Mobile

Robots. In IEEE ICRA, 1997.
[4] Göhring et al. Multi Robot Object Tracking and Self Localization

Using Visual Percept Relations. In International Conference on

Intelligent Robots and Systems, 2006.
[5] Kobilarov et al. People Tracking and Following with Mobile Robot

Using an Omnidirectional Camera and Laser. In International Con-

ference on Robotics and Automation, 2006.
[6] Li et al. Computation Offloading to Save Energy on Handheld Devices:

a Partition Scheme. In International Conference on Compilers,

Architecture and Synthesis for Embedded Systems, 2001.
[7] Nurmi et al. The Eucalyptus Open-Source Cloud-Computing System.

In International Symposium on Cluster Computing and the Grid, pages
124–131. IEEE Computer Society, 2009.

[8] Powell et al. Process Migration in DEMOS/MP. ACM SIGOPS

Operating Systems Review, 17(5):110–119, 1983.
[9] Qian et al. Simultaneous Robot Localization and Person Tracking

using Rao-Blackwellised Particle Filters with Multi-modal Sensors.
In IEEE/RSJ IROS, 2008.

[10] Schulz et al. Tracking Multiple Moving Objects with a Mobile Robot.
In Conference on Computer Vision and Pattern Recognition, 2001.

[11] Serre et al. Object Recognition with Features Inspired by Visual
Cortex. In IEEE CVPR, pages 994–1000, 2005.

[12] Wang et al. Wavelet-based Indoor Object Recognition through Human
Interaction. In International Conference on Advanced Robotics, 2003.

[13] Xian et al. Adaptive Computation Offloading for Energy Conservation
on Battery-Powered Systems. In ICPDS, 2007.

[14] David Lowe. Object Recognition from Local Scale-Invariant Features.
In International Conference on Computer Vision, 1999.

[15] M. Piccardi. Background Subtraction Techniques: A Review. In
International Conference on Systems, Man and Cybernetics, 2004.

2455

