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Abstract— This article adresses aspects of the a-priori com-
putation of the Fisher information matrix. The aim of the
type of Fisher matrix discussed is the experiment design
for parameter estimation of nonlinear state space models. A
definition for the sampling of experiments is stated, which is
convenient for software implementation. Both, measurement
samples that belong to a coherent sequence and samples from
independent experiments, may be stored together in one single
data structure. Since the covariance matrix of the prediction
error is required in the Fisher matrix, a method for its a-priori
prediction is proposed.

A servo-hydraulic positioning system serves as a validation
example. The comparison of the a-priori and a-posteriori Fisher
matrices of this example show that the method proposed is
suitable to provide an approximation of an optimality criterion
for experiment design.

I. Introduction

This work focuses on hydraulic servo-systems, where non-

linear control has become quite common (e.g. [1]). There, the

model structures are well established [2], [3]. Unfortunately,

the most accurate models are highly nonlinear, which is due

to the physics of hydraulics [4], [5]. Hence, one has to choose

a model complexity that describes the system as accurate as

possible on one hand and that is simple enough so that the

parameters can be identified on the other hand. In related

research publications nonlinear models are used in practice,

but only to a certain level. The models are simplified which

allows the experiments to be designed by heuristic methods.

For example, model structures may be obtained which are

linear w.r.t. their parameters. In such cases the identification

problem may be tackled by least squares analysis [6].

Especially hydraulic systems with large valve cross sec-

tions compared to the cylinder piston diameter are vulnerable

to simplifications. If the dynamics of the system are also

influenced by the stiffness of the fluid transmission lines (e.g.

when hoses are used), such systems must be identified in

assembled configuration. Unfortunately, there is no method

to design experiments for such systems adequately. This arti-

cle contributes numerical considerations, which are required

for the a-priori evaluation of experiments. From the results

obtained here, a quality measure of the set of experiments

can be computed. An optimization of this set may then take

place to find the experiments wich shall finally be conducted

for parameter estimation.

In the following section this article proposes a definition

for experiment sampling. Based on this definition the a-priori
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calculation of the Fisher matrix is elaborated. The a-priori

computation of the covariance matrix of the prediction error

is studied, and issues of its implementation are treated in

detail. Finally, the theoretical propositions and results are

validated for a servo-hydraulic positioning system in order

to identify practical recommendations.

II. Model Structure, Parameter Estimation and Estimation

accuracy

A. Model Structure

Consider a continuous state space model structure:

ẋ(t) = f (x, u, θ) , x(t0) = x0 (1a)

y(t) = g (x(t), u(t), θ) (1b)

The functions f and g may be nonlinear but must be

piecewise differentiable with respect to the parameter vector

θ and the state space vector x. It is assumed that a model

equation for f (x, u, θ) and g (x(t), u(t), θ) is already chosen

and that there exists an a-priori estimate θ̃ of the parameter

vector.

B. Experiment Sampling

The task is to find the best estimate θ̂ of the parameter

vector θ. It is assumed that L samples ŷ are taken from

experiments which form the matrix of measured outputs Ŷ =
[

ŷ[1] . . . ŷ[L]
]T

. An estimator that uses the prediction error

matrix W = Y − Ŷ may determine the parameter vector then.

1) Definition of the Set of Experiments: The estimation

problem can be considered as a model following problem.

There, classically, the samples in Ŷ are taken from a coherent

set of samples. This means that the model output y[l] is

computed in discrete steps in the following way, given the

initial condition x0 and the input sequence u[l] :

x[1] = x[0] +

∆T∫

0

f (x, u[1], θ) dt, (2)

y[1] = g (x[1], u[1], θ)

...

x[l + 1] = x[l] +

(l+1)∆T∫

(l)∆T

f (x, u[l]θ) dt, (3)

y[l] = g (x[l], u[l], θ)

This means that subsequent samples are tied to the con-

straints of the dynamics of the system. For non-linear sys-

tems this restriction might not be favorable: Finding a single
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coherent input sequence from which all parameters may be

estimated with acceptable precision is rather complicated

or even impossible in this case. It is hence proposed to

release the prerequisite that the samples in Ŷ must belong

to a coherent set of experiments. For the realization of this

relaxation an experiment is described by the tupel

Ξ = {x0, u,∆t}. (4)

Consequently, the l-th measurement ŷ[l] is obtained from the

l-th experiment, which begins at the start condition x0[l]. ŷ[l]

is sampled at the time instant ∆t[l]. During ∆t[l] the system

is fed by the constant input u[l]. Ŷ is assembled from the

set of experiments Ξ consequently:

Ξ =

{

Ξ[1], . . . ,Ξ[L]
}

. (5)

In this way subsequent samples in Ŷ are no longer tied to

obey the system’s equations of dynamics.

For practical reasons the definition of Ξ is extended so that

coherent sets of experiments are treatable. Each experiment is

augmented by a coherency flag c ∈ 0, 1. Its value is 1, when

the experiment shall be treated coherent with the previous

one, or 0 if not. If c[l] = 1, the initial condition of Ξ[l] is

equivalent to the final state of the previous experiment:

Ξ[l] = {x0[l] = (x(∆t[l − 1]))[l − 1], u[l],∆t[1], c[l]}. (6)

This means that in a coherent sequence the initial conditions

are defined iteratively along the constraints of f , starting

from the initial condition of the first experiment that is

marked coherent. The definition in eq. (6) allows Ξ to

contain both, pieces of coherent and pieces of non-coherent

experiments. This definition helps to simplify the imple-

mentation of experiment design and parameter identification.

Data manipulations may be formulated compactly. For ex-

ample, Ξ may be concatenated conveniently from subsets

ΞS 1, ΞS 2 . . . of experiments where each subset is either

exactly one coherent sequence or one single experiment.

This is a convenient piece of infrastructure for the choice

of experiments and for parameter identification.

C. A-priori Estimation of the Fisher Information Matrix

The l-th measurement point ŷ[l] contains some noise ν[l]

ŷ[l] = y[l] + ν[l], l = 1, 2 . . .L. (7)

A maximum likelihood estimator is considered, which opti-

mizes the conditional probability density

p
(

Ŷ|U, θ̂
)

= max
θ

p
(

Ŷ|U, θ
)

. (8)

The lower bound of the covariance of an unbiased estimator

θ is given by the Cramér-Rao inequality [7]:

cov (∆θ) = E

{[

θ̂ − E{θ̂}
] [

θ̂ − E{θ̂}
]T

}

≥ F−1, (9)

where the parameter estimate is denoted by θ̂ and E{·} is

the expected value. Therefore, the Fisher matrix F or its

inverse are studied and used to indicate the information

which is contained in a given set of experiments [8], [9], [10].

Goodwin [7] states an approximation of the Fisher matrix:

F ≈ 2

L

L∑

l=1

(

dw[l]

dθ

)T

D(θ̂)−1 dw[l]

dθ
. (10)

Based on the relation w[l] = ŷ[l] − y[l] the differentiation of

w[l] with respect to θ yields

dw[l]

dθ
= −

dy[l]

dθ
= −

(

∂g

∂xT

dx

dθ
+
∂g

∂θ

)

[l]. (11)

The state sensitivity dx/dθ may be computed via integration

of the differential of ẋ

d ẋ

dθ
=
∂ f

∂xT

dx

dθ
+

d f

dθ
. (12)

The initial condition x0 is given by the experiment point Ξ[l],

the integration interval is given by ∆t[l].

D. A-priori Estimation of Prediction Error Covariance

The covariance matrix of the prediction error D(θ̂) may be

approximated a-posteriori by the sample covariance matrix

of the prediction error:

D(Ŷ, θ̂) =
1

L

L∑

l=1

w[l]w[l]T

=
1

L

L∑

l=1

(

ŷ[l] − g
(

x[l], u[l], θ̂
)) (

ŷ[l] − g
(

x[l], u[l], θ̂
))T
.

(13)

There is a dilemma which the experiment designer faces: The

sample covariance matrix D(Ŷ, θ̂) is not computable until the

measurement data from experiments is available. Hence the

information that is provided by a given sample may only be

computed a-posteriori, which is in contrast to the interest

of the experiment designer who requires the information

content a-priori. In order to solve this dilemma a method

which yields an a-priori estimate of the covariance matrix D

is proposed here.

A rough estimate θ̃ of the parameter vector is required

a-priori (in case nothing is known about θ, heuristic choices

from any available experiment data must be made) [11].

Also, the assumption is made that uncertainty in θ̃ may be

approximated by a Gaussian distribution with covariance σ
θ̃
.

Initially a simple choice is made, where σ
θ̃

may be reduced

to a diagonal matrix:

σ
2

θ̃
=





σ2(θ̃1) · · · 0
...

. . .
...

0 · · · σ2(θ̃N)





. (14)

The multivariate probability density that an estimate of the

parameter vector is equal to the best possible estimate is then

given by

p(θ, θ̃, σθ) =





√

(2π)N

N∏

n=1

σθ̃n





−1

exp





N∑

n=1

(θn − θ̃n)2

2σ2

θ̃n




.

(15)
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Based on this knowledge the parameter space in the proxim-

ity of θ̃ may be discretized. In this article, the discretization

in equidistant steps of ∆θ1, ..∆θN is considered. The number

of points wich is distributed over the parameter space of

interest is the product of the number of discretization points

of each parameter:

R =

N∏

n=1

Rn. (16)

Then the r-th discretization point r
θ is assigned to a corre-

sponding probability rP:

P(r
θ, θ̃, σθ) =

rP =

rθ1+∆θ1/2∫

rθ1−∆θ1/2

· · ·

rθN+∆θN/2∫

rθN−∆θN/2

p(θ, θ̃, σθ)dθ1 · · · dθN

(17)

Alternatively one might prefer to choose discretization in

non-equidistant steps, e.g. to receive a more dense coverage

of the area near the center of the Gaussian function. Then

the integral limits need to be adjusted individually for each

discretization point. In order to simplify the notation, this

article will concentrate on the equidistant case.

For each discretization point r
θ the corresponding output

of the model is computed (for convenience, this model will

be called “detuned”. The vector (r
θn− θ̃n)/θ̃n will be referred

to as the detuning vector). In order to obtain such meaningful

model output, a short piece of the trajectory of x(t) is

computed by solving the model eq. (1a) numerically. For

this simulation the desired experiment point Ξ[l] yields the

initial condition x0[l], and u[l] is used as constant input:

ẋ(t) = f
(

x(t), (u)[l], rθ
)

, x(t = 0) = x0[l], t = 0 . . .∆t[l]

(18)

The model output at t = ∆t of the detuned simulation is

denoted by

r y(∆t) = g
(

x(∆t), u[l], rθ
)

(19)

In the same way the trajectory of x(t) for the parameter

estimate θ̃ is calculated. Here the model output at t = ∆t

is denoted by ỹ(∆t) = g
(

x(∆t), u[l], θ̃
)

Then the sample covariance matrix of the model output

under the assumptions stated above may be summed up over

the weighed output deviations
(
r y − ỹ

)

:

σ̃
2[l]

(

(x[l], u[l]), θ̃,∆t
)

=

1
∑R

r=1
rP

R∑

r=1

rP ·
[(r y − ỹ

) (r y − ỹ
)T

]

∆t
(20)

This expression gives some insight into the prediction error

that will be achieved by Ξ[l]. Similar to the sum of squares

of the prediction errors which are calculated in eq. (13), the

modelled measurement covariances σ̃2[l] of the L experiment

points can be summed up to retrieve the a-priori sample

covariance matrix of prediction error. This matrix may be

Algorithm 1 Lazy calculation of D̃a-priori (non-coherent

sequence)

Require: Ξ and LazyThreshold = 0 . . . 1

1: for l = 1 to L do

2: D[l] = 0;
∑

P = 0

3: ỹ[l] = solve( f , θ̃,Ξ[l]) {Nominal model}
4: for r = 1 to R do

5: if rand() < LazyThreshold then

6: r y = solve( f , rθ,Ξ[l]) {Detuned model}
7: D[l] = D[l] + (ỹ − r y) · (ỹ − r y)T · rP

8:
∑

P =
∑

P + rP

9: D̃a-priori = D[l] · (
∑

P)−1

10: return D̃a-priori

treated as an approximate of the sample covariance matrix

in eq. (13):

D̃a-priori =
1

L

L∑

l=1

σ̃
2[l]

(

(x[l], u[l]), θ̃
)

≈ D(Ŷ, θ̃) (21)

D̃a-priori is in the unit of measurement of yyT . Equation (21)

contains the model prediction error only, no sensor noise.

If desired, it can be augmented by a covariance matrix of

sensor noise νs. νs[l] contributes to ν[l] in eq. (1a) and acts

additively on the model output, which is considered in the

following way:
(

D̃a-priori

)

+νs

= D̃a-priori + cov(νs, νs) (22)

III. Computational Considerations regarding D̃a-priori

The implementation of D̃a-priori must maximize code ef-

ficiency: D̃a-priori is intended to be a part of the optimiza-

tion of experiments. Then, D̃a-priori needs to be recalculated

whenever a change is made to Ξ. The major amount of

computational effort is spent on solving the model equation

f : One calculation run of D̃a-priori requires (R + 1) · L calls

of the solving function of f . If an exchange algorithm shall

be used, it is recommendable to buffer the σ̃2[l]. In that way

replacing an experiment means the subtraction of σ̃2 of the

experiment to be replaced, and calculation of σ̃2 of the new

experiment (which requires f to be solved R times).

A. Lazy Calculation of D̃a-priori

In order to reduce the computational effort required for

D̃a-priori lazy computation is proposed. This method relies

on the law of large numbers [12]. This law states that the

average of the results obtained from a large number of trials

should be close to the expected value. The application to

D̃a-priori means that the solutions of the detuned models (r
θ)

can be considered as trials. The expected value mentioned

in the law corresponds to D̃a-priori then. Since R may be

big enough to represent a large number1, a large number

of detuned models must be solved. It is proposed here to

skip some of these trials, what means that some calls to

1The parameter space may be of high dimension, and hence R � 1000
is not uncommon.

6183



Algorithm 2 Lazy calculation of D̃a-priori (coherent sequence)

Require: Ξ and LazyThreshold = 0 . . . 1

1: D̃a-priori = 0;

2: for r = 1 to R do

3: if rand() < LazyThreshold then

4: for l = 1 to L do

5: if l = 1 then

6: Ξ = {(u)[l], x0[l], T [l]}
7: else

8: Ξ = {(u)[l], x̃[l − 1], T [l]}
9: ỹ[l] = solve( f , θ̃,Ξ) {Nominal model}

10: r y = solve( f , rθ,Ξ[l]) {Detuned model}
11:

∑

(w[l]w[l]T ) =
∑

(w[l]w[l]T ) + (ỹ − r y) · (ỹ − r y)T

12: D̃a-priori = D̃a-priori +
∑

(w[l]w[l]T ) · rP

13:
∑

P =
∑

P + rP

14: D̃a-priori = D̃a-priori · (
∑

P)−1

15: return D̃a-priori

the solving procedure of f are skipped. Then
∑

σ̃
2 must be

normalized by
∑

rP, because
∑

rP , 1 (cf. eq. (21)). In this

way the lazy computation of D̃a-priori will tend towards the

full D̃a-priori matrix.

Algorithm 1 shows a proposal for non-coherent Ξ. There,

some experiments of Ξ are skipped, but all detuned models

are involved. The ratio of skipped over not skipped trials is

determined by LazyThreshold. The normalization by
∑ rP

can be seen in step 14.

If Ξ is coherent, alg. 1 does not hold: Because coherent

experiments are solved iteratively, it is not possible to skip

some of the intermediate experiments. Hence, we propose to

implement “lazy” computation in this case by skipping some
r
θ. In this way, the coherent sequence of all Ξ in Ξ is solved

completely, but some r
θ are dropped. This variant is shown

in alg. 2.

Both, algs. 1 and 2, have the same effect on the computa-

tional effort of D̃a-priori. Algorithm 1 preserves the property

that an individual
∑

σ̃
2[l] for each Ξ[l] is calculated, while

alg. 2 obeys the coherency in Ξ.

IV. Numerical Example

The equations presented above are applied to a servo-

hydraulic positioning system, which actuates a Stewart-

Gough-Platform. The following model is chosen:

ẋ =





q̇

q̈

ṗA

ṗB





=





q̇
1

mq
· (AA · pA − AB · pB − τ f )

EOil

VA(q)

(

−q̇ · AA + QA + QL,A

)

EOil

VB(q)

(

q̇ · AB + QB + QL,B

)





(23a)

y =
[

q q̇pA pB

]T
(23b)

τ f = aτ · sgn(q̇) + bτ · q̇ (23c)

QA = xvcd

√

2

ρ

√

∆pA (23d)

= xv cd

√

2

ρ
︸ ︷︷ ︸

Bv

√

(ps − pA) H(xv) + (pA − pt) H(−xv)

QB = −xvcd

√

2

ρ

√

∆pB (23e)

= −xv cd

√

2

ρ
︸ ︷︷ ︸

Bv

√

(ps − pB) H(−xv) + (pB − pt) H(xv)

QL,A = cL ·
(√

ps − pA −
√

pA − pt

)

(23f)

QL,B = cL ·
(√

ps − pB −
√

pB − pt

)

(23g)

VA(q) = AA · (q − qmin) + V0,A (23h)

VB(q) = AB · (qmax − q) + V0,B (23i)

q : Cylinder Position

pA, pB : Pressures inside Chambers

xv : Valve Spool Position

VA, VB : Chamber Volume

QA, QB: Oil Flow into Chambers

H(·) : Heaviside Function

τ f : Friction Force

m : Mass attached to Cylinder

AA, AB : Piston Areas

EOil : Oil Modulus

cd,cL, ρ: Valve Coeff., Leakage Coeff., Oil Density

The a-priori parameter vector has been chosen as

θ̃ =





EOil

pt

Bv

cL

V0,A

V0,B

aτ

bτ





T

=





960 · 10 6 N
mm2

0.3 · 10 6 N
mm2

6.0816 · 10−7 m4
√

Ns

1 · 10−8 m4
√

Ns

1.0254 · 10−4 m3

1.5281 · 10−4 m3

2 · 10 3 N

1 · 10 3 Ns
m





T

. (24)

The sequence shown in fig. 1 serves as a numerical

example here. It contains 3000 equidistant samples within

0.6 s experiment duration. The input signal consists of a step

from 10 % to 0 % of the full range of values. The samples

are considered as a coherent sequence.

Table I shows numerical results of D under the assumption

σ
2

θ̃
= diag(0.12 · θ̃2) The comparison of D̃a-priori(Lazyness =

1) versus D̃a-priori(Lazyness = 0.5) shows that lazy cal-

culation yields an approximation with small errors. If the

LazynessThreshold is decreased further, the approximation

error becomes considerable, compare D̃a-priori

∣
∣
∣
Lazyness=1

ver-

sus D̃a-priori(Lazyness = 0.05). This validates the law of large

numbers for this application.
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Fig. 1. Coherent experiment sequence (black: measurement, grey: simula-
tion using θ̃).

The validity of the approximation in eq. (21) can be

evaluated upon the relative error e of D̃a-priori and D(Ŷ, θ̃). e

is calculated element-wise:

ei, j(D̃a-priori, D(Ŷ, θ̃)) =
(D̃a-priori)i, j − (D(Ŷ, θ̃))i, j

(D(Ŷ, θ̃))i, j

. (25)

Table I shows that e(D̃a-priori, D(Ŷ, θ̃)) is not neglectable.

Three reasons for this deviation are stated: At first, the

detuned models are different to the nominal model only in

their parameters, not in their structure. Structural insufficien-

cies can hence not be represented adequately. Secondly, the

assumption of σ2

θ̃
as a diagonal matrix is a poor choice. How-

ever, it is the most promising choice at this stage which yields

a comparably simple implementation of D̃a-priori. Third, it

must be kept in mind that D(Ŷ, θ̃) is a sample covariance of

D, where considerable deviations may be present.

The results obtained for D form the basis for the Fisher

matrix. Based on table I the a-priori Fisher matrix and the

a-posteriori Fisher matrix of the sequence depicted in fig. 1

were calculated. Both Fisher matrices and their relative errors

are shown in table II. It can be seen that e(F̃a-priori, Fa-posteriori)

is not neglectable. The following conclusion is derived from

this insight: Even though there is considerable prediction

error in F̃a-priori the differences across the elements Fi, j are

by far higher. Hence, the information content of the Fisher

matrix is of much more influence than the prediction error.

This stresses the hypothesis that F̃a-priori provides useful

information about the parameter uncertainties, at least up to

a certain level. Later, when F̃a-priori is used for experiment

optimization, the prediction error must be considered when

formulating the abort criterion of the optimization procedure.

Since Fa-posteriori is approximated by F̃a-priori, it is sufficient

TABLE I

D̃a-priori for coherent sequence showed in fig. 1

D̃a-priori, Lazyness=1:

1.06 · 10−05 1.72 · 10−05 −1.96 · 10+02 −4.99 · 10+02

1.72 · 10−05 1.03 · 10−04 −5.77 · 10+02 −1.74 · 10+03

−1.96 · 10+02 −5.77 · 10+02 3.80 · 10+10 5.88 · 10+10

−4.99 · 10+02 −1.74 · 10+03 5.88 · 10+10 1.39 · 10+11

D̃a-priori, Lazyness=0.5:

1.21 · 10−05 1.96 · 10−05 −2.31 · 10+02 −5.86 · 10+02

1.96 · 10−05 1.19 · 10−04 −6.59 · 10+02 −2.00 · 10+03

−2.31 · 10+02 −6.59 · 10+02 4.48 · 10+10 7.08 · 10+10

−5.86 · 10+02 −2.00 · 10+03 7.08 · 10+10 1.67 · 10+11

D̃a-priori, Lazyness=0.05:

2.90 · 10−05 4.67 · 10−05 −4.21 · 10+02 −1.41 · 10+03

4.67 · 10−05 2.49 · 10−04 −1.12 · 10+03 −5.01 · 10+03

−4.21 · 10+02 −1.12 · 10+03 9.03 · 10+10 1.79 · 10+11

−1.41 · 10+03 −5.01 · 10+03 1.79 · 10+11 4.50 · 10+11

D(Ŷ, θ̃):

3.35 · 10−05 4.65 · 10−05 −4.17 · 10+02 −2.87 · 10+03

4.65 · 10−05 3.83 · 10−04 −2.39 · 10+03 −6.15 · 10+03

−4.17 · 10+02 −2.39 · 10+03 7.42 · 10+10 9.51 · 10+10

−2.87 · 10+03 −6.15 · 10+03 9.51 · 10+10 3.38 · 10+11

Relative error e(D̃a-priori(Lazyness = 1.0), D(Ŷ, θ̃)):

6.83 · 10−01 6.29 · 10−01 5.29 · 10−01 8.26 · 10−01

6.29 · 10−01 7.32 · 10−01 7.59 · 10−01 7.18 · 10−01

5.29 · 10−01 7.59 · 10−01 4.89 · 10−01 3.81 · 10−01

8.26 · 10−01 7.18 · 10−01 3.81 · 10−01 5.88 · 10−01

Relative error e(D̃a-priori(Lazyness = 0.5), D(Ŷ, θ̃)):

6.39 · 10−01 5.78 · 10−01 4.46 · 10−01 7.96 · 10−01

5.78 · 10−01 6.89 · 10−01 7.25 · 10−01 6.75 · 10−01

4.46 · 10−01 7.25 · 10−01 3.97 · 10−01 2.55 · 10−01

7.96 · 10−01 6.75 · 10−01 2.55 · 10−01 5.07 · 10−01

Relative error e(D̃a-priori(Lazyness = 0.05), D(Ŷ, θ̃)):

1.34 · 10−01 −5.28 · 10−03 −1.09 · 10−02 5.08 · 10−01

−5.28 · 10−03 3.50 · 10−01 5.31 · 10−01 1.85 · 10−01

−1.09 · 10−02 5.31 · 10−01 −2.16 · 10−01 −8.84 · 10−01

5.08 · 10−01 1.85 · 10−01 −8.84 · 10−01 −3.33 · 10−01

for the criterion to enter a certain uncertainty region around

the optimum. Note, it is reasonable for experiment optimiza-

tion to balance the eigenvalues of F or of a normalized form

of F. As soon as the elements in F are balanced in the order

of magnitude of the prediction error, much improvement in

comparison to the actual situation will be achieved already.

V. Conclusions

This article adresses aspects of the a-priori computation

of the Fisher information matrix. The aim of the type

of Fisher matrix discussed is the experiment design for

parameter estimation of nonlinear state space models. A

definition of experiments is stated, which is convenient for

software implementation. Both, coherent and non-coherent

measurement samples may be stored in one data structure.

A method for the a-priori computation of the Fisher matrix

is proposed. The a-priori approximation of the covariance

matrix of the prediction error is elaborated. A method
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TABLE II

FisherMatrix for coherent sequence shown in fig. 1

F̃a-priori(Lazyness = 1):

2.54 · 10−14 2.63 · 10−14 −5.45 · 10+01 −2.42 · 10+02 −8.10 · 10−02 −1.78 · 10−03 1.84 · 10−09 5.42 · 10−10

2.63 · 10−14 1.42 · 10−11 −1.47 · 10+02 2.55 · 10+03 −8.97 · 10−02 −1.69 · 10−03 −2.49 · 10−08 −1.60 · 10−09

−5.45 · 10+01 −1.47 · 10+02 1.84 · 10+17 8.09 · 10+17 1.84 · 10+14 5.80 · 10+11 1.77 · 10+07 5.82 · 10+05

−2.42 · 10+02 2.55 · 10+03 8.09 · 10+17 4.36 · 10+18 8.23 · 10+14 −9.28 · 10+10 7.46 · 10+07 2.25 · 10+06

−8.10 · 10−02 −8.97 · 10−02 1.84 · 10+14 8.23 · 10+14 2.60 · 10+11 5.04 · 10+09 −2.56 · 10+03 −1.46 · 10+03

−1.78 · 10−03 −1.69 · 10−03 5.80 · 10+11 −9.28 · 10+10 5.04 · 10+09 3.50 · 10+08 −1.13 · 10+03 −1.17 · 10+02

1.84 · 10−09 −2.49 · 10−08 1.77 · 10+07 7.46 · 10+07 −2.56 · 10+03 −1.13 · 10+03 7.33 · 10−03 6.14 · 10−04

5.42 · 10−10 −1.60 · 10−09 5.82 · 10+05 2.25 · 10+06 −1.46 · 10+03 −1.17 · 10+02 6.14 · 10−04 5.85 · 10−05

F̃a-priori(Lazyness = 0.5):

1.79 · 10−14 1.74 · 10−14 −3.86 · 10+01 −1.72 · 10+02 −5.70 · 10−02 −1.22 · 10−03 1.23 · 10−09 3.76 · 10−10

1.74 · 10−14 4.53 · 10−12 −9.81 · 10+01 5.78 · 10+02 −6.22 · 10−02 3.16 · 10−04 −1.65 · 10−08 −1.06 · 10−09

−3.86 · 10+01 −9.81 · 10+01 1.31 · 10+17 5.74 · 10+17 1.30 · 10+14 4.00 · 10+11 1.27 · 10+07 4.21 · 10+05

−1.72 · 10+02 5.78 · 10+02 5.74 · 10+17 2.78 · 10+18 5.83 · 10+14 1.22 · 10+12 5.36 · 10+07 1.65 · 10+06

−5.70 · 10−02 −6.22 · 10−02 1.30 · 10+14 5.83 · 10+14 1.83 · 10+11 3.50 · 10+09 −1.58 · 10+03 −1.01 · 10+03

−1.22 · 10−03 3.16 · 10−04 4.00 · 10+11 1.22 · 10+12 3.50 · 10+09 2.11 · 10+08 −7.96 · 10+02 −8.24 · 10+01

1.23 · 10−09 −1.65 · 10−08 1.27 · 10+07 5.36 · 10+07 −1.58 · 10+03 −7.96 · 10+02 5.18 · 10−03 4.33 · 10−04

3.76 · 10−10 −1.06 · 10−09 4.21 · 10+05 1.65 · 10+06 −1.01 · 10+03 −8.24 · 10+01 4.33 · 10−04 4.11 · 10−05

Fa-posteriori:

9.79 · 10−15 1.45 · 10−14 −2.09 · 10+01 −8.95 · 10+010 −3.11 · 10−02 −7.53 · 10−04 6.88 · 10−10 2.07 · 10−10

1.45 · 10−14 1.92 · 10−11 −3.08 · 10+01 4.22 · 10+030 −4.05 · 10−02 −5.28 · 10−03 −1.37 · 10−08 −8.79 · 10−10

−2.09 · 10+01 −3.08 · 10+01 7.05 · 10+16 3.17 · 10+17 7.06 · 10+13 1.55 · 10+11 6.69 · 10+06 2.15 · 10+05

−8.95 · 10+01 4.22 · 10+03 3.17 · 10+17 2.53 · 10+18 3.12 · 10+14 −4.01 · 10+12 2.72 · 10+07 7.82 · 10+05

−3.11 · 10−02 −4.05 · 10−02 7.06 · 10+13 3.12 · 10+14 9.96 · 10+10 1.98 · 10+09 −9.38 · 10+02 −5.58 · 10+02

−7.53 · 10−04 −5.28 · 10−03 1.55 · 10+11 −4.01 · 10+12 1.98 · 10+09 2.26 · 10+08 −4.26 · 10+02 −4.49 · 10+01

6.88 · 10−10 −1.37 · 10−08 6.69 · 10+06 2.72 · 10+07 −9.38 · 10+02 −4.26 · 10+02 2.76 · 10−03 2.31 · 10−04

2.07 · 10−10 −8.79 · 10−10 2.15 · 10+05 7.82 · 10+05 −5.58 · 10+02 −4.49 · 10+01 2.31 · 10−04 2.21 · 10−05

e(F̃a-priori, Fa-posteriori(Lazyness = 1)):

−1.60 · 10+00 −8.12 · 10−01 −1.61 · 10+00 −1.71 · 10+00 −1.61 · 10+00 −1.37 · 10+00 −1.68 · 10+00 −1.62 · 10+00

−8.12 · 10−01 2.60 · 10−01 −3.76 · 10+00 3.96 · 10−01 −1.21 · 10+00 6.80 · 10−01 −8.14 · 10−01 −8.25 · 10−01

−1.61 · 10+00 −3.76 · 10+00 −1.61 · 10+00 −1.55 · 10+00 −1.61 · 10+00 −2.75 · 10+00 −1.65 · 10+00 −1.71 · 10+00

−1.71 · 10+00 3.96 · 10−01 −1.55 · 10+00 −7.21 · 10−01 −1.64 · 10+00 9.77 · 10−01 −1.74 · 10+00 −1.87 · 10+00

−1.61 · 10+00 −1.21 · 10+00 −1.61 · 10+00 −1.64 · 10+00 −1.61 · 10+00 −1.54 · 10+00 −1.73 · 10+00 −1.62 · 10+00

−1.37 · 10+00 6.80 · 10−01 −2.75 · 10+00 9.77 · 10−01 −1.54 · 10+00 −5.48 · 10−01 −1.65 · 10+00 −1.62 · 10+00

−1.68 · 10+00 −8.14 · 10−01 −1.65 · 10+00 −1.74 · 10+00 −1.73 · 10+00 −1.65 · 10+00 −1.65 · 10+00 −1.65 · 10+00

−1.62 · 10+00 −8.25 · 10−01 −1.71 · 10+00 −1.87 · 10+00 −1.62 · 10+00 −1.62 · 10+00 −1.65 · 10+00 −1.65 · 10+00

that relies on pseudo-data from detuned models is stated.

Lazy computation is proposed to increase efficiency while

accepting a small computational error. A numerical example

of a servo-hydraulic positioning system illustrates the ideas.

From this example it can be concluded that the Fisher

matrix may be approximated a-priori using the pseudo-

data method presented. Hence, the a-priori Fisher matrix is

recommendable as a criterion for experiment design.

References

[1] W. Bernzen, T. Wey, and B. Riege, “Nonlinear control of hydraulic
differential cylinders actuating a flexible robot,” in Proc. IEEE Conf.

on Decision and Control, vol. 2, 1997, pp. 1333–1334.
[2] P. Chatzakos and E. Papadopoulus, “On Model-Based Control of

Hydraulic Actuators,” in RAAD 2003 : Int. Workshop on Robotics

in Alpe-Adria-Danube Region Cassino,, M. Ceccarelli, Ed., 2003.
[3] D. Hisseine, “Robust tracking control for a hydraulic actuation sys-

tem,” in IEEE Conf. on Control Applications, 2005, pp. 422–427.
[4] G. A. Sohl and J. E. Bobrow, “Experiments and Simulations of the

Nonlinear Control of a Hydraulic Servosystem,” IEEE Transactions

on Control System Technology, vol. 7, no. 2, pp. 238–247, 1999.

[5] F. Bu and B. Yao, “Nonlinear adaptive robust control of hydraulic
actuators regulated by proportional directional control valves with
deadband and nonlinearflow gains,” in Proc. of the American Control

Conference, ASME, Ed., vol. 6, 2000, pp. 4129–4133.
[6] M. K. A. Jelali, Hydraulic servo-systems: Modelling, identification and

control. London: Springer, 2003.
[7] G. C. Goodwin and R. L. Payne, Dynamic system identification:

Experiment design and data analysis, ser. Mathematics in science and
engineering. New York, NY: Academic Press, 1977, vol. 136.

[8] L. Ljung, System identification: Theory for the user, 2nd ed., ser.
Prentice Hall information and system sciences series. Upper Saddle
River, NJ: Prentice Hall PTR, 2007.

[9] Y. Chu and J. Hahn, “Integrating parameter selection with experimen-
tal design under uncertainty for nonlinear dynamic systems,” AIChE

J., vol. 54, no. 9, pp. 2310–2320, 2008.
[10] F. Galvanin, M. Barolo, and F. Bezzo, “Online model-based redesign

of experiments for parameter estimation in dynamic systems,” Ind.

Eng. Chem. Res., vol. 48, no. 9, pp. 4415–4427, 2009.
[11] E. Walter and L. Pronzato, Identification of parametric models from

experimental data, ser. Communications and control engineering se-
ries. London: Springer, 1997.

[12] J. Bernoulli and O. Sheynin, On the law of large numbers: Part four

of Ars Conjectandi. Berlin: NG Verlag, 2005.

6186




