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 Abstract – Biological creatures, some of them are very 

simple, seem to perform efficient search strategy. Recent 

researches show that noise in their internal mechanism may 

have an important role to manage this behavior. This paper 

focuses on realizing a simple, noise utilizing, mathematical 

framework that enables a mobile robot to perform random 

search adaptively and efficiently under changing target density. 

Our approach is to model and implement bacterial movement 

based on a recent perspective of noise utilizing mechanism in 

living beings: biological fluctuation. As a result, the robot will 

adaptively switch its random search pattern between Levy walk 

and Brownian walk to increase the search efficiency in a patchy 

environment where the target density naturally alternates.  

I.  INTRODUCTION 

 SEARCH is an essential function of mobile robots, with   

many potential applications like cleaning, harvesting, or 

search and rescue. The general aim is to maximize the 

chance of finding the targets under certain constraints, such 

as the time elapsed or travelled distance. Hence, the search 

efficiency can be observed by comparing number of targets 

found to those constraints. With apriori information like the 

targets distribution, it is possible to calculate certain optimal 

strategy [1][2]. Without it, the robot can only do random 

search. Furthermore, the environment can change, so the 

search must be adaptive. While there are some researches on 

random search by mobile robots [3][4], none seem to focus 

on how to properly adapt the statistical properties of the 

search. 

In nature, actually many predators do random search as 

they have to make foraging, searching for foods, decisions 

with little, if any, knowledge of present resource distribution 

and availability [5]. Interestingly, various creatures, some of 

them are very simple, seem to show efficient random search 

with proper statistical properties [5][9-10][12-14]. In 

relation with this, the question of what is the most efficient 

statistical strategy to optimize a random search has been 

addressed in [6]. It is shown that for  sparse  targets  (i.e  

low target density), the efficiency, defined as number of  

targets found divided by the traveled distance,  is maximized 

when the flight lengths follows power law distribution  with  

a  heavy  tail :  a  Levy  walk.  However,  Brownian  walk,  a 
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common random walk where the distribution of the flight 

lengths, the moving lengths between subsequent changes of 

direction, is not heavy tailed, is actually not a null model 

should be improved. While Levy walk is more efficient for a 

search with sparse, smaller and slower targets, the opposite 

conditions generally favor Brownian walk [7].  

Recently, it is found that animal random search strategies 

can be subject to noise in the form of a presumably 

internally generated variability in animal’s choice of 

movement. These phenomena are shown to exist in creatures 

as simple as zooplankton [9], or fruit-fly [10]. 

The aim of our research is to realize a simple 

mathematical framework that enables a mobile robot to 

perform random search adaptively and efficiently under 

changing target density. We are interested on the role of 

noise in biological creatures and focus on the simplest one: 

bacteria. Our approach is to model and implement bacterial 

movement to mobile robot, based on a recent perspective of 

noise-utilizing mechanism called the biological fluctuation 

[8][11]. The searching behavior is implemented in a patchy 

environment, where the target density naturally alternates. 

As a result, the robot will adaptively switch between Levy 

and Brownian walk pattern, able to increase the search 

efficiency compared to either one. 

The organization of the paper is as follow. First, we will 

explain the fundamentals about Levy and Brownian walk 

along with examples occur in biological creatures. Then, we 

will focus on bacteria. After that, we will explain biological 

fluctuation and how an adaptive random search can be 

realized based on it. Simulation experiments are performed 

to confirm the validity of our approach. We will explain the 

experiment setup and condition, before discussing the result. 

At the end, the conclusion and future work will be 

explained. 

II. RANDOM SEARCH IN BIOLOGICAL CREATURES 

A. Levy and Brownian Walk  

The term Levy flight is used to describe a specialized 

random walk in which the move steps are drawn from a 

probability distribution with a power-law tail [5][6]: 

 

with 1<µ<3, and l is the flight length. It means that rare but 

extremely long flight lengths can happen in the random walk 

trajectory. Without tail truncation, sums of those flight 

lengths converge to a Levy stable distribution. For µ≥3, 

there is no heavy tail in the distribution and the sums of the 

flight lengths converge to a Gaussian distribution due to the 

Central Limit Theorem, thus we recover Brownian walk. 

µ−≈ llp )(  (1) 
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The case of µ≤1 does not correspond to distributions that 

can be normalized. 

The trajectory of a Levy flight comprises of walk clusters’ 

of short flight lengths with longer reorientation jumps 

between them, repeated across all scales, with the resultant 

scale-invariant clusters creating trajectories with fractal 

patterns. To be exact, a technically correct term is actually 

Levy walk: essentially means Levy flight with time cost that 

depends on the flight lengths. Levy walk leads to anomalous 

diffusion, meaning that the mean squared displacement from 

the starting point increases faster than linearly with time t, 

while Brownian walk is a normal diffusion where the 

increase is linear. Mathematically, in order to create 

probability distribution whose tail follows (1), one can 

surely sample an approximation of Levy stable distribution 

[16]. However, it is not the only way. In [7], a 

transformation method is used to generate power law 

random variables from uniform distribution. In [17], it is 

shown that fractional Brownian motion, a generalized form 

of Brownian motion with correlation time, can also cause a 

similar distribution. 

In [10][12][13], it is shown that trajectory of animals like 

fruit files, marine predators, and spider monkeys fit a Levy 

walk pattern. More interestingly, zooplankton switches from 

Brownian to Levy walk trajectory as the resource 

availability becomes sparse [14]. The underlying mechanism 

on how a Levy walk trajectory is generated in those 

creatures is considered as an interesting topic. For example, 

in spider monkeys, memory about profitable target locations 

that keeps them to move forward for long periods seems to 

be the explanation [13].  

As will be explained further, we concentrate on Levy walk 

trajectory found in bacteria, whose key mechanism is long 

correlation time [15]. It means that the mechanism can be 

said as a family of fractional Brownian motion. However, 

here we do not differentiate the term based on the underlying 

process and focus on the trajectory. We simply use the term 

“Levy walk” to describe a trajectory pattern with heavy 

tailed power law distribution, and “Brownian walk” for 

trajectory pattern without such heavy tail. It must also be 

noticed that the trajectory are not generated by a Levy 

process. Therefore, like common assumption about the Levy 

walk trajectory found in animals, the flight length 

distribution has a large, but finite variance, or in essence, 

truncated [5]. It means after an extreme long period, the sum 

of the flight lengths will actually converge to a Gaussian 

distribution as well, causing the random search pattern to 

become a Brownian walk. 

B. Bacterial Levy Walk and The Role of Noise 

In bacteria, such as Escherichia coli, the motion can be 

characterized as a sequence of smooth - swimming runs, 

punctuated by intermittent tumbles that effectively 

randomize the direction of the next run [18]. The switching 

probability between the two modes is dictated by 

measurement   of   attractant    chemical   gradient   in   the 

environment, obtained from comparison of current and past 

concentration. When the bacterium perceives conditions to 

be worsening, the tendency  to tumble  is enhanced  and vice 

versa. As a result, when the bacterium runs up a gradient of 

attractant,   it  will  do  chemotaxis,  a  biased   random  walk   

  

 

 

 

 

 

 

 

 

 

 

 

 

toward the source. However, in the absence of this attractant, 

the bacterium will simply do random walk (Fig 1.b).  

Bacterial movement attracts a lot of attentions in mobile 

robot researches in the context of realizing chemotaxis 

behavior, a simple biased random walk mechanism for 

searching gradient sources [19][20]. However, here we focus 

on target density, and concentrate on the random walk part.  

In recent researches, unlike the conventional expectation 

that the swimming mode duration of Escherichia coli follows 

Poisson-like distribution in absence of gradient, a power law 

distribution is found [21]. A possible cause has been 

explained. It can be modeled that the switching probability 

between swimming and tumbling mode is an exponential 

function of conceptual energy barrier [22] (Fig. 1.c), whose 

level keeps changing due to Gaussian fluctuation of certain 

protein inside the bacteria. In [15], it is shown that power 

law switching between the swimming and tumbling mode, a 

Levy walk trajectory, can occur if this protein fluctuates with 

a long correlation time. 

III. ADAPTIVE SWITCHING BETWEEN LEVY AND BROWNIAN 

WALK BASED ON BIOLOGICAL FLUCTUATION 

A. The Principle 

Recent researches show that certain noise utilizing 

mechanism called “biological f2luctuation”, or “Yuragi” in 

Japanese language, plays important role in various stages 

from molecules to brains in life sciences [8]. The mechanism 

is also found in bacteria adaptation to environmental 

changes by altering their gene expression when they are lack 

of certain nutrient. Based on this behavior, in [11] a simple 

model to explain the biological fluctuation was built. Here, 

the gene expression is modelled to be controlled by a 

dynamical system with some attractors. The model is also 

called “the attractor selection model” and represented by 

Langevin equation as: 

 

 

where x(t) and f(x(t)) are the state and the dynamics of the 

model at time t, with f(x(t)) can be designed to have some 

attractors in potential U(x(t)). ε(t)  is the noise term. A(t) is a 

variable called “activity” which indicates the fitness of the 

state to the environment. From the equation, f(x(t))A(t) 

(2a) )()())(()( ttAtUt εxx +−∇=&  

(2b) )()())(( ttAt εxf +=  

Fig. 1 Bacterial movement: (a) the two basic modes (b) a biased random 

walk with attractant, and random walk without any (c) the energy barrier 

model of switching probability between the two modes without attractant 
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becomes dominant when the activity is large, and the state 

transition approaches deterministic. When the activity is 

small, ε(t) becomes dominant, and the state transition 

becomes more stochastic. The activity is therefore designed 

to be large when the state is suited to the environment and 

vice versa.  

While the framework offers many possible designs, in this 

paper we focus on seeing whether the robot can adaptively 

adjust its random search property based on simple findings 

from the environment. To be exact, we would like to see 

whether the robot can adaptively switch between Levy walk 

pattern, an efficient strategy for sparsely placed, low density 

targets, and Brownian walk pattern, expected to be a 

favorable strategy for higher target density inside the patch. 

The realized searching behavior is explained as follow.  

B. The Realized Searching Behavior 

In order to implement the “Yuragi” equation in (2) for 

realizing bacterial based searching behavior, the first step is 

to properly choose the state of the attractor selection model. 

As in bacteria the probability of switching between the two 

modes is an exponential function of energy barrier whose 

level keeps changing due to fluctuation of certain chemical 

protein [15], a natural choice for the state of attractor 

selection model explained in (2) is a variable representing 

this chemical fluctuation, here simply called z(t). 

Furthermore, to model the switching probability, one can 

draw a probabilistic state machine shown in Fig. 2 (center).  

Here, “P” is the tumbling probability (i.e. switching from 

swimming to tumbling mode). The swimming mode is 

defined as moving forward with a certain distance, while 

tumbling means changing direction randomly.  In the current 

paper, the swimming probability (i,e, switching from 

tumbling to swimming mode) is simply considered as 1. It is 

the simplest case which causes the robot to stop turning at 

the next time step. This suits our purpose, as in this paper we 

concentrate on the relationship between the search  

efficiency  and   the  flight  length  distribution.  For other 

focuses, for example to investigate the efficiency when it is 

assumed that it takes time to understand the environment 

[23], it may be necessary to change the consideration. 

However, such focus is outside the scope of this paper. In 

bacteria, the effect of the chemical fluctuation to the 

tumbling   probability  and   its  counterpart,   the  swimming   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bacterial motor [15]. As can be seen, for our purpose we 

concentrate on the fluctuation effect to the tumbling 

probability and how the flight length distribution can be 

controlled by changing the fluctuation correlation time. 

Furthermore, to investigate whether adaptive switching 

between Levy and Brownian walk pattern can emerge, we 

design the dynamic of z(t) following a simple unimodal 

potential function U(z(t)) shown below: 

 

  

causing the dynamics of z(t) shown in (4): 

 

 

 

 

 

while, modeled from real bacteria, P at time t is assumed as 

an exponential function of z(t): 

 

 

The first term in (4) represents slow adaptation toward a 

preferred value of h, which corresponds to the attractor. The 

noise term, ε(t)  is zero mean Gaussian white noise, 

represents the stochastic driving force of the Gaussian 

internal protein fluctuation in bacteria. The activity A(t) 

changes the shape of the potential U(z(t))  and  correlation 

time of state z(t), as the key mechanism of the approach. 

Following bacteria behavior, a Levy walk pattern in the 

robot trajectory supposes to happen when z(t) fluctuates with 

a long term correlation.  On the other hand, shorter 

correlation time supposes to realize a less correlated random 

walk, with the sum of those flight lengths converge to 

Gaussian distribution, i.e. a Brownian walk. 

From (4a), it can be seen that small value of A(t) will 

cause U(z(t))A(t), potential U(z(t)) multiplied by A(t), to be 

flat and variable z(t) supposes to fluctuate with long 

correlation time. Therefore, Levy walk pattern in the robot 

trajectory with certain power law exponent in (1): 1<µ<3, 

supposes to be realized. When the activity A(t) has a large 

value, the shape of U(z(t))A(t) supposes to be sharp and 

variable z(t) supposes to fluctuate with short correlation 

time. Therefore, Brownian walk pattern supposes to be 

realized, with the exponent µ equal or larger than 3. 

In realizing adaptive searching behavior, the activity is 

defined as a function of sensory input. When no targets are 

found, the activity should be low such that the shape of 

U(z(t))A(t) is adequately flat and Levy walk is performed as 

a default random search. However, once some targets are 

found, the activity should be high, and the shape of the 

U(z(t))A(t) should become sharp, supposedly reduces the 

correlation time, causing the Levy walk to switch to a 

Brownian walk pattern. Here, the activity function can be 

summarized in equation (6) to (8) with 0<C<1, while kF is a 

constant with a large value in comparison to Amin.. Anytime 

one or more targets are found at time t, F(t) will be triggered 

to 1. It can therefore be said that F(t) is a step function 

whose input is the finding of targets. The definition of 

(3) 
2

))(())(( htztzU −=  

(4a) )()(
))((

)( ttA
dz

tzdU
tz ε+−=&  

(4b) )()())((2 ttAhtz ε+−−=  

(5) ))(exp()( tztP −=
 

Fig.2 The principle of searching behavior based on biological 

fluctuation (“Yuragi”) model of bacterial movement. 
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finding the target will be explained in the next section. By 

employing such function, the correlation time will be 

reduced once a target is found and gradually increases to the 

original value, if no more targets are found.  The overall 

principle is shown in Fig.2. 

 

 

 

 

 

 

 

 

 

IV.  SIMULATION EXPERIMENTS 

A. Experiment Setup and Conditions 

In order to verify our assumption that adaptive behavior 

will occur, a simulation experiment was conducted. Here, 

the simulation settings and the experiment conditions will be 

explained.  

Fig.3 shows the screenshot of the simulation from two 

different scales. Fig. 3 (a) shows the screenshot of the whole 

area. The size of the area is 1000x1000 [units]. The targets 

inside the patch are not shown for clarity. The starting 

position of the robot is from the center of the screen. Here 

we use periodic boundary condition, a common approach 

used in observing random search performance [7], which  

means  once  the  robot  passes  the simulation  boundary,  it 

will reappear  from the other end. This will present an 

experiment result that is unaffected by different boundaries  

of the area, and, with long enough simulation time, where 

the robot starts the search. For the swimming mode, the 

length of moving forward is defined as 1 [unit], while the 

random turning angle in the tumbling mode is set to be 

uniformly distributed from 0 to 360 [deg]. The simulated 

time is 10000 [s]. To obtain a new value of P(t), (4) is 

discretized with time sampling  0.1  [s]. 

The position of the attractor is chosen as h=0.7, 

corresponds to P(t)≈0.5 according to (5). In order to let  P(t)  

 

 

 

 

 

 

 

 

 

 

 

 

adequately fluctuates  between 0 and 1 as a function  of  z(t), 

the value of  z(t)  is limited between 0 and 5, corresponds  to 

those values of P(t). The size of noise ε(t) in (4) is 0.5, 

defined by the standard deviation. 

Fig. 3 (b) shows the zoomed in condition when the robot 

approaches some targets, shown by the crosses. One or more 

targets are considered to be found, and disappear at the next 

time step, if their position is inside the robot sensing 

diameter, ds, representing a limited sensing capability of the 

robot. The Levy walk has been shown to be better when the 

targets are sparse, that is the target site has a low target 

density. In other word, the average distances among the 

targets are much larger than this diameter. However, 

Brownian walk is shown to be favorable when the target 

density is higher. If the sensing diameter is infinite, then the 

robot does not have to do any search as it will automatically 

find all of the targets regardless where the robot is. For 

further study about the comparison, one can refer to 

[5][6][7]. Our aim here is to investigate whether the robot 

can adaptively choose the more proper random search in a 

patchy target setting, i.e. the target density varies. 

In creating the patchy target setting, we make sure that the 

patches are sparsely placed while each patch has denser 

target density. One can easily see that if the patches are not 

sparsely placed then it cannot be called patchy environment 

as the overall target density will become high, in which 

Brownian walk is expected to be more favorable.  On the 

other hand, if each patch only contains a few targets then it 

cannot be called patchy environment either, as the overall 

target density will become low in which Levy walk is the 

better strategy [7]. Therefore, we deploy 10 circular shape 

patches with a small radius of 10 [units] in the 1000x1000 

[units] search area. To make sure that each patch is dense, 

100 targets are deployed inside each of them. The robot 

sensing diameter ds is 2 [units]. The simulation screenshot 

showing the patches, the targets inside them, and ds can be 

seen from Fig. 3. While investigating various kind of target 

distribution is a part of our future works, here we simply 

make sure that the target density is changing and set the 

targets inside the patches and the center of each patch in the 

whole area to be uniformly distributed. 

To measure the performance of the search, we observe the 

search efficiency, defined as the number of targets found 

divided by total distance travelled. Such criteria is related 

with the energy efficiency, as moving forward generally 

takes more energy than changing direction randomly, 

therefore also used widely in animal random search 

literatures [5][6][7].  

At first, we want to confirm whether at certain values of 

the activity, the robot will show Levy and Brownian walk 

pattern. Therefore, we choose a certain range of the activity 

value and observe the effect to the shape of U(z(t))A(t), to 

the correlation time of state z(t), and the realized random 

search pattern  performing  by  the  robot. 

As the second step, we want to investigate whether the 

robot can adaptively switch between Levy and Brownian 

walk pattern and whether it is beneficial. By choosing a 

certain minimum value of the activity Amin supposedly causes 

(7) )()1()( tFktCt F+−α=α  

=)(tF  

,1  

,0  

if one or more targets are 

found at time t 

if no targets are found  at 

time t 

(8) 

if 

(6) 

),(tα
 

,minA  

=)(tA  
min)( At ≤α  if 

min)( At >α  

Fig.3 The simulation screenshot: (a) from a usual scale, and (b) the 

zoomed-in condition when the robot enters a patch of targets 
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the robot to do a Levy walk, and implement the activity rule 

explained in (7) to (8), it is assumed that the adaptive 

behavior can be realized. The performance of the adaptive 

search is then compared with Levy and Brownian walk 

alone. 

 For every experiment, we perform 20 trials. We also   use 

the commonly known t-test if it is necessary to confirm a 

statistical significance of a data comparison.  

B. Experiment Results 

Based on the mentioned conditions, the experiment results 

can be explained as follow.  

1) Confirmation of Levy and Brownian walk pattern.  At 

first, we observe fluctuation of z(t), its correlation time and 

the resulting value of µ with a range of the activity A(t) 

values. To determine whether the realized searching 

behavior follows a Levy or Brownian walk pattern, the most 

common approach is to plot the log-log histogram of the 

flight’s frequency N(l) versus the lengths l. The frequency is 

normalized (i.e. divided by the histogram bin width and total 

frequency), while the bins are increased logarithmically. 

Because the minimum value of l is one, here we use bin 

breaks of 1,2,4, and so on. Power law statistic is indicated if 

a straight line fits the plotted data. This method is called 

“LBN” (logarithmic binning with normalization), 

recommended in [24], and actually the slope of the fitted 

line will be equal to minus of the power law exponent, µ,  in 

(1). However, in calculating this value of µ,  we use a more  

recent,  accurate,  method  based  on  maximum  likelihood 

explained in [25] shown in (9), where L is the whole data set 

of the flight lengths. The equation, derived by maximum 

likelihood method, can be used because the minimum value 

of the flight length is 1. A Levy walk trajectory will be 

shown if 1<µ<3. 

 

 

In order to observe the correlation time of state z(t), we 

plot the autocorrelation function, defined as R(z(t)), and 

calculate the correlation time, trz. We use the common 

definition of correlation time, that is the time when the 

autocorrelation value of the state is already at a factor of 1/e 

down from its maximum value at t=0 [26].   

Fig. 6 (a), (b) and  (c) show the examples of  the  realized  

shape  of  potential  U(z(t)) multiplied by  the  activity  A(t), 

the resulting example  of  fluctuation  of  z(t) along with the 

autocorrelation graph with shown position of trz in the first 

25 [s]. It can be seen that with small value of the activity, the 

potential U(z(t)).A(t) is flat and let z(t) fluctuate with large 

correlation  time  trz.   On  the  other hand, with  large enough 

A(t),  z(t) fluctuates around the position of attractor h=0.7  

with  a small  correlation time  trz. .  

Fig. 7 shows the corresponding trajectory for each value 

of the activity shown in Fig. 6, with the resulting exponent µ 

that indicates whether the robot performs Levy or Brownian 

walk. It can be observed that due to some long flight lengths 

in between the intensive searches, the Levy walk pattern 

explores a wider area compare to the Brownian walk. 
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Fig.6 (a) The shape of potential U(z(t)).A(t)  (b) the resulting fluctuation of z(t) 

around the attractor at h=0.7 (c) the autocorrelation function R(z(t)) with the 

correlation time trz I, II, III corresponds to A(t) = 10-4,10-2.5, 10-1 consecutively 
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Furthermore, Fig. 8 shows examples of the log-log graph 

of  flight  lengths  frequency N(l)  versus  the flight lengths  l  

lengths l and an approximated straight line that indicates 

power law statistic. 

Fig. 9 explains the behavior of the random search in a 

more thorough way. The figure shows the relationship 

between  log of  the activity A(t) versus  the  correlation time  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

trz. and exponent µ. The vertical bars show the standard 

deviation. It can be seen clearly that when the activity has a 

small value, causing a correlation time, the robot will do a 

Levy walk pattern. When the activity gets larger, the 

correlation time is reduced and the random search will have 

stronger tendency to a Brownian walk. When the activity 

equals to 1, the value of µ  already about equals to the 

condition if z(t) is simply kept constant at h.  

2) Confirmation of Adaptive Behavior and Its Benefit.  

The adaptive behavior means the change of the value of the 

activity will cause the robot to immediately switch to 

Brownian walk once one or more targets are found and 

gradually switch back to Levy walk when number of targets 

found decreases.   

To be exact, we implement the activity rule in (6) to (8) 

with Amin=10
-4

  whose properties indicated by the number I 

in Fig. 6 to 9. The constant kF is set to 10
-1

 such that when 

some targets are found and F(t) in (8) equals to1, the robot  

will immediately switch to a Brownian walk whose 

properties indicated by the number III in Fig. 6 to 9. When 

no more targets are found, the robot will gradually switch 

back to Levy walk with the activity A(t) equals to 10
-4

. The 

value of constant C in (7) is 0.9. 

The trajectory comparison between Levy, Brownian walk 

and the adaptive search is shown in Fig. 10. It can be seen 

that due  to  the  occasional   long  flight  lengths,  as   

variable  z(t) sometimes fluctuates near a high value as 

shown  in Fig. 6.b (top),  the Levy walk pattern  finds  more 

patches than the Brownian walk. This causes higher search 

efficiency even that the total traveled distance is also a little 

bit higher. However, it is interesting to notice that while 

Brownian walk finds less number of patches, the ratio 

between targets found and visited patches  are  actually  

higher, as  the search  is  more intensive when a patch is 

found. This indicates that switching between the two random 

search behaviors might be beneficial. It is confirmed in table 

I, which shows the mean and standard deviation of the 

efficiency, along with other criteria. It can be seen that 

performing the adaptive behavior is better than either Levy 

or Brownian walk alone. The statistical significance of this 

result has been confirmed by using t-test. 
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Fig.7 Trajectory examples for the activity values shown in Fig. 6 with the average calculated value of exponent µ  

   

(a) µ=2.20 ± 0.17 (I) (b) µ=2.53 ± 0.15 (II) (c) µ=3.03 ± 0.03 (III) 

Fig.8 Log-log histogram and the approximated fitted line of 

normalized flight lengths frequency N(l) versus the flight 

lengths l for each activity value shown in Fig. 6 
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Fig. 9 (a) correlation time trz and (b) exponent µ versus the 

activity A(t). For clarity, the activity is plotted in a log scale  
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From the trajectories in Fig. 10, it can be seen that, unlike 

the Levy walk which does not react when a target is found, 

in the adaptive search, the intensive searches are 

concentrated near the patches. This behavior can be 

explained by comparing the average activity value of Levy 

and the adaptive search shown in Table 2. It can be seen that 

for the adaptive search, the average activity inside the patch, 

in a log scale, corresponds to the exponent µ  for a Brownian 

walk pattern shown in Fig. 9, confirming the switching 

behavior. However, outside the patches, the value of the 

activity is also slightly higher as  it takes  sometimes for the 

robot to gradually switch back to Levy walk after it does not 

find any targets for certain period. As a result, the exponent 

µ outside the patch will have a slightly higher value, 

according to Fig. 9 (b). 

Parameter C in (7) decides how strong the tendency to 

switch to Brownian walk and how fast the robot switches 

back to Levy walk (see appendix). Too small value of C is 

meaningless, as it will not be able to increase the value of 

the activity large enough to make the robot adequately 

switch to Brownian walk inside the patches. On the other 

hand, too large value of C, may cause a longer time to 

switch back to the Levy walk pattern. For the used patchy 

environment, C=0.9 is shown to be the best value. 

It is also easy to imagine that under extreme conditions of 

a very high density (i.e. there are abundant numbers of 

patches)  or  a  very  low  density  (i.e. there  are  only  a few 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

targets  inside patches)  the  robot  would  do  Brownian  and 

Levy walk consecutively, the expected favorable strategy for 

those conditions. This is caused by the value of the activity 

that most of the time will likely be high for the first extreme 

condition, or never increase significantly for the second one. 

V. CONCLUSION AND FUTURE WORK 

In this paper, we have presented a simple, noise-utilizing, 

mathematical framework that models and implements 

bacterial movement to a mobile robot based on biological 

fluctuation. Based on the framework, we have shown that an 

adaptive random search behavior in a patchy environment 

can be realized by adaptively switching between Levy and 

Brownian walk pattern, shown to be able to increase the 

efficiency of the search as compared to do just either one. 

Indeed, biological creatures are inspirational resources to 

realize a mechanism not yet utilized in human engineered 

system. In principle, here we show that by exploiting some 

stochastic natures of the simplest creature, using a very 

simple model, adaptive and efficient searching behavior can 

emerge by simple interaction with relatively complex 

environment.  

For a future work, we plan to try the framework in a more 

complex environment, starting with a more complex target 

distribution. In relation with this, it is interesting to notice 

that the diffusion speed of a Brownian walk can be different 

although similarly linearly proportional to t [27]. As have 

been shown in this paper, using single attractor is enough to 

make adaptive switching between Levy and Brownian walk 

pattern. However, we have preliminary results showing that 

we can make the robot tend to choose a more suitable 

attractor, corresponds to a more suitable diffusion speed, 

inside patches with different sizes and target densities. We 

plan to further explore this behavior. It is also interesting to 

combine certain learning algorithm with the activity function.  

Searching behavior Search Efficiency Targets found Travelled distance Visited patches  

(out of 10) 

Levy Walk (I) 1.54 ± 0.73 (1.32 ± 0.65) x 102 (8.48 ± 0.26) x 104 5.25 ± 1.80 

Brownian Walk (III) 0.86 ± 0.82 (0.57 ± 0.55)  x 102 (6.67 ± 0.02)  x 104 1.45 ± 1.15 

Adaptive search 2.78 ± 1.10 (2.23 ± 0.83)  x 102 (8.08 ± 0.27)  x 104 4.75 ± 1.16 

Searching behavior Inside the patches Outside the patches 

Levy Walk (I) 10-4  10-4  

Brownian Walk (III) 10-1 10-1 

Adaptive search (1.14 ± 0. 27) x 10-1 (5.03 ± 1.35) x 10-4 

TABLE I. PERFORMANCE OF DIFFERENT SEARCHING BEHAVIORS 

TABLE II. AVERAGE ACTIVITY VALUE OF DIFFERENT 

SEARCHING BEHAVIORS  

Fig.10 Trajectory examples for Levy Walk (I), Brownian Walk (III) and the adaptive search with some patches 

  

(a) Levy Walk (I) (b) Brownian Walk (III) 

 

(c) Adaptive search 
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APPENDIX A: AVERAGE ACTIVITY VALUE OF THE ADAPTIVE 

SEARCH WITH DIFFERENT PARAMETERS 

APPENDIX B: PERFORMANCE OF THE ADAPTIVE SEARCH 

WITH DIFFERENT PARAMETERS 
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C Inside the patches Outside the patches 

0.99 (5.52 ± 1.30) x 10-1 (78.73 ± 32.31) x 10-4 

0.90 (1.14 ± 0. 27) x 10-1 (5.03 ± 1.35) x 10-4 

0.50 (0.50 ± 0.16) x 10-1 (1.17 ± 0.08) x 10-4 

C Search Efficiency Targets found 

0.99 2.33 ± 1.07 (1.81 ± 0.82)  x 102 

0.90 2.78 ± 1.10 (2.23 ± 0.83)  x 102 

0.50 1.69 ± 0.63 (1.41 ± 0.51)  x 102 

C Traveled distance Visited patches  

(out of 10) 

0.99 (7.81 ± 0.15)  x 104 4.05 ± 1.54 

0.90 (8.08 ± 0.27)  x 104 4.75 ± 1.16 

0.50 (8.42 ± 0.27)  x 104 4.90 ± 1.33 
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