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Abstract— Autonomous exploration under uncertain robot
position requires the robot to plan a suitable motion policy in
order to visit unknown areas while minimizing the uncertainty
on its pose. The corresponding problem, namely active SLAM
(Simultaneous Localization and Mapping) and exploration has
received a large attention from the robotic community for
its relevance in mobile robotics applications. In this work we
tackle the problem of active SLAM and exploration with Rao-
Blackwellized Particle Filters. We propose an application of
Kullback-Leibler divergence for the purpose of evaluating the
particle-based SLAM posterior approximation. This metric is
then applied in the definition of the expected gain from a
policy, which allows the robot to autonomously decide between
exploration and place revisiting actions (i.e., loop closing). The
technique is shown to enhance robot awareness in detecting
loop closing occasions, which are often missed when using
other state-of-the-art approaches. Results of extensive tests are
reported to support our claims.

I. INTRODUCTION

Navigation capabilities represent a crucial prerequisite for
a mobile robot to perform tasks in unknown and potentially
unstructured environments. The increasing request of auton-
omy further stresses the importance of overcoming purely
reactive behaviors, in order to enhance the decision making
capability of a robot exploring the environment. When prior
knowledge of robot position is available, solutions which
work reasonably well for exploration do exist, and the
robot decision reduces to the choice of an exploration target
which maximizes the opportunity of visiting unknown areas.
However, when the more general problem of exploration
under uncertain robot position is tackled, several challenges
arise. The corresponding problem, also referred to as active

SLAM and exploration, requires the robot to actively control
its movements in order to maximize the explored areas and
at the same time minimize the uncertainty in Simultaneous
Localization and Mapping. The former objective is clearly
accomplished by visiting unknown places, whereas the latter
requires the robot to perform loop closing actions, that is
to come back to already traveled areas. In order to properly
plan its policy, the robot needs reliable metrics for trading-off
between the two action typologies, evaluating the expected
gain of a motion policy.

When dealing with landmark-based representations, this
metric can be naturally found in the entropy of the multi
variate belief describing both map and robot pose. Although
the computation of the expected gain of an action can
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be computational demanding, effective and well founded
approaches exist, see for instance [1], [2], [3], and the refer-
ences therein. The problem of active SLAM and exploration
with metric representations, instead, is not fully understood
and the recent literature on the topic remarks several draw-
backs of naive entropy-based metrics [4]. In this last sce-
nario Rao-Blackwellized Particle Filters (RBPF) have been
demonstrated to be an effective solution for the estimation
of high resolution world models, in the form of occupancy
grid maps. The application of particle filters to SLAM is
based on Rao-Blackwell factorization: the particle filter is
applied to the problem of estimating potential trajectories
and a map hypothesis is associated to each sample. Although
it is possible to guarantee (almost sure) convergence of the
particle-based posterior toward the true one for a particle set
size going to infinite [5], a common processing unit is not
able to deal with a particle set larger than few hundreds of
samples. As a consequence, the less particles are available
the worse is the approximation of the true posterior, and
this issue becomes critical when the amount of uncertainty
in the filter increases. From this consideration it stems the
importance of loop closing in RBPF-SLAM: place revisiting
actions lead to a reduction of uncertainty and hence improve
filter capability in modeling the true posterior.

In this work we investigate the problem of active SLAM
and exploration with Rao-Blackwellized Particle Filters. We
first derive a measure of RBPF uncertainty by using the
Kullback-Leibler divergence [6] for trajectory belief evalua-
tion. The divergence allows to obtain an upper bound on the
error when approximating the true posterior with a particle-
based belief representation. Then this metric is successfully
employed in the definition of the expected information from

a policy. It is worth noticing that the term “expected” is used
in the last sentence in the probabilistic sense and not only to
resemble the predictive nature of the metric. The probabilistic
interpretation of the information gain we propose is then
validated by comparing it with three metrics of information
gain, namely a naive gain, an entropy-based gain [7], and
the expected map information [4]. We further validate our
approach by considering the case of a robot deployed in an
unknown environment, which has to perform autonomous
exploration exploiting the information gain computed with
our technique.

The paper is organized as follows. Related works on active
SLAM and exploration are reviewed in Section II. Kullback-
Leibler divergence is applied for SLAM posterior evaluation
in Section III-A, then its application to information gain-
based exploration is presented in Section III-B. Numerical
experiments are reported in Section IV, while conclusions
are drawn in Section V.
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II. RELATED WORK

In this section we discuss the state-of-the-art of robotic
exploration using occupancy grid map representation [8].
The literature on robotic exploration can be classified in
two wide research lines: exploration with perfect position
knowledge and exploration under uncertain localization. In
the former scenario, accurate prior knowledge of robot
position is available and the robot decision making reduces
to the choice of the exploration target that maximizes the
opportunity of visiting unknown areas. Early contribution to
this framework can be found in [9], in which frontiers, that
is cells on the boundary between known areas and unex-
plored space, are selected and used as potential targets for
exploration. In such approaches the robot simply chooses the
nearest target, regardless complex decision making strategies.
Similar approaches can be found in recent contributions, see
for instance [10]. Also in the case of perfect knowledge of
robot pose, the onboard sensors are affected by uncertainty,
hence suitable metrics are required for evaluating the so
called information gain that is expected when choosing a
target for exploration. In order to model the uncertainty of
the occupancy grid map representation of the environment,
Bourgault et al. [1] and Moorehead et al. [11] proposed
the use of the entropy of the cells in the grid. In such a
case the gain, computed from the entropy, quantifies the
expected amount of information that can be acquired by
taking a sensor reading in a certain area of the map. In
[12] an entropy-based gain is employed for target selection,
but it is computed on an augmented representation of the
environment, referred to as coverage map.

The approaches mentioned so far do not take into account
the pose uncertainty when selecting the next vantage point.
When dealing with the general problem of exploration under
uncertain robot position, several challenges arise. Stachniss
et al. addressed the problem of active SLAM and explo-
ration using Rao-Blackwellized Particle Filters, improving
exploration performances via active loop closing, through
a heuristic method for re-traverse loops [13]. A decision-
theoretic approach is proposed in [7], in which active loop
closing is achieved by monitoring the uncertainty in RBPF.
Many drawbacks of such method are analyzed in [4], where
the authors also proposed a novel measurement of RBPF-
SLAM uncertainty. The importance of uncertainty metrics
stems from the fact that they allow to discern possible
loop closing actions when performing exploration. Details
on related techniques are further discussed in Section IV-A.

III. ACTIVE SLAM AND EXPLORATION

A. Rao-Blackwellization and Map Consistency

The high dimensionality of state space in grid-based
SLAM makes challenging the application of sample-based
representations of the posterior of robot pose and occu-
pancy grid map. An elegant solution to reduce dimension-
ality of the sampling space can be obtained through Rao-
Blackwellization [14]. Since the map probability can be
computed analytically given the robot path, it is possible to
factorize the joint probability as follows:

p(x1:t,m | z1:t, u0:t−1) = p(m | x1:t, z1:t)

·p(x1:t | z1:t, u0:t−1) (1)

In (1) the state includes the robot trajectory x1:t =
{x1, x2, . . . , xt} and the map m, both estimated from the
measurements z1:t = {z1, z2, . . . , zt} and the commands
u0:t−1 = {u0, u1, . . . , ut−1}. Eteroceptive measurements
and odometry are often included in the data vector d1:t =
{z1:t, u0:t−1}. Equation (1) provides the basis for Rao-
Blackwellized Particle Filters SLAM: the particle filter is
applied to the problem of estimating potential trajectories
and a map hypothesis is associated to each sample. Due to
memory constrains, the filter risks to become inconsistent
when the uncertainty about pose estimation grows so much
that it cannot be properly modeled by the particle-based be-
lief. Therefore the loop closing becomes crucial, since place
revisiting actions lead to a reduction of uncertainty and hence
improve filter capability in modeling the true posterior. Simi-
lar observations were formalized by Fox [15] using Kullback-
Leibler divergence, with application to Monte Carlo Local-
ization. Kullback-Leibler divergence is a common measure of
fit between two probability distributions, in our case the true
posterior and the point mass approximation. Starting from
the assumption that the true posterior is a discrete piecewise
constant distribution, with support on finite patches (later
referred to as bins), Fox derived the number of particles
needed to achieve a desired approximation error with a given
probability.

Conversely we now consider a fixed particle set size n
and we evaluate the error between the true posterior p(xt |
d1:t), describing robot pose at time t, and its point mass
approximation p̂(xt | d1:t). Starting from [15], with simple
computation, we can derive the following upper bound on the
divergence between the true and approximated pose belief:

ξ(p̂(xt | d1:t), p(xt | d1:t)) < ξ̄,

ξ̄ = kt−1
2n

[

1− 2
9(kt−1) +

√

2
9(kt−1)z1−δt

]3

,

(2)

which holds with probability 1− δt. In (2) kt is the number
of bins, being support of the true discrete distribution, in
which at least one particle falls, and z1−δt is the upper 1− δt
quantile of the standard normal distribution.

We now provide an application of the methodology pro-
posed by Fox for on-line evaluation of SLAM posterior
approximation. It is worth underlining that, while in local-
ization the posterior approximation influences robot pose
estimation performance, in Simultaneous Localization and
Mapping an inadequate filter approximation can compro-
mise the whole mapping process, leading the robot to fail
in accomplishing consistent mapping. According to Black-
wellization the probability p(m | x1:t, z1:t) can be com-
puted analytically given the trajectory, hence treats to filter
consistency have to be found in the estimation of robot
poses. For sake of simplicity, in the following we write the
divergence as ξ(p(xt | d1:t)), omitting the dependence on
the two compared distributions. According to (2), for each
pose xi, i = 1, 2, ..., t we can define an upper bound ξ̄i on
the approximation error with a given probability 1 − δ. Let
the error of approximation of trajectory posterior be defined
as:

ξ(p(x1:t, d1:t)) = ξ(p(x∗
t , d1:t)), (3)

x∗
t = argmax

i∈[1:t],1−δi=1−δ

(ξ̄i)
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that is we assign to ξ(p(x1:t, d1:t)) the error of the pose
which is expected to provide the worst approximation.
Equation (3) formalizes the observation that the trajectory
estimation, thus the map quality, can be compromised if also
a single pose is affected by large errors. The relevance of
pose description in SLAM posterior estimation is remarked
in [16], where similar conclusions are applied for the purpose
of benchmarking different SLAM approaches. According to
equation (3), and since ξ̄i is monotonically increasing in the
number of non-empty bins, we can derive the probability of
having a trajectory error less than ξ̄ as:

p(ξ(p(x1:t, d1:t)) < ξ̄) = p(ξ(p(x∗
t , d1:t)) < ξ̄) = (4)

= F











√

9(k∗ − 1)

2
−





3

√

2nξ̄

k∗ − 1
+

2

9(k∗ − 1)
− 1















,

where k∗ = max{ki, i ∈ [1 : t]} and F(·) is the cumulative
distribution function of a standard Gaussian distribution. In
the rest of this section we discuss how to properly select
the parameters of the proposed model so that the probability
p(ξ(p̂(x1:t, d1:t)) < ξ̄) actually reflects the probability of
estimating a consistent map. With a given particle set size,
equation (4) depends on the number of non-empty bins,
kt, and the error bound ξ̄. The former is connected with
the bin size we select for state space discretization. In our
previous work [17] we extensively tested different bin sizes
and we provided a simple procedure to properly choose this
parameter. Roughly speaking the variable kt ranges from
one to n (number of particles) and the bin size has to be
designed to obtain an outcome of the model as informative
as possible: extremely small grid sizes, lead to fast saturation
of kt (particles cover all possible bins in few iterations of the
filter), whereas large grid sizes do not give a fine granularity
in uncertainty evaluation (particles always cover few bins,
hence only small values of kt occur). Our investigation leads
us to use bin sizes comparable with the dimension of the cells
in the occupancy grid map for the robot position, whereas
the orientation is discretized with resolution of 5o.

The error bound ξ̄, instead, relates the number of non-
empty bins with the probability of satisfying the inequality
between the trajectory approximation error and its upper
bound. For Rao-Blackwell factorization inconsistencies in
trajectory estimation are unavoidably reflected in incorrect
map estimation. As a consequence we can just select ξ̄,
so that the probability (4) corresponds the probability of
estimating a consistent map. Although in grid-based SLAM
visual inspection is a common approach for evaluating map
quality, we preferred to give quantitative evidence of the es-
timated map quality by comparing it with the corresponding
ground truth (available in simulation). For this purpose we
used the metric proposed by Carpin in [18] and reported in
the following definition.

Definition 1: Let M1 and M2 be two grid maps. The
agreement between M1 and M2 (indicated as agr(M1,M2))
is the number of cells in M1 and M2 that are both free
or both occupied. The disagreement between M1 and M2

(indicated as dis(M1,M2)) is the number of cells such that
M1 is free and M2 is occupied or vice-versa. The acceptance

index between them is defined as:

ω(M1,M2) =

{ 0 if agr(M1,M2) = 0

agr(M1 ,M2)

agr(M1 ,M2)+dis(M1,M2)
if agr(M1,M2) 6= 0

The acceptance index, ranging between 0 and 1, gives in-
formation on map similarity, once a suitable roto-translation
is applied. We performed extensive tests on RBPF-SLAM
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Fig. 1. Histogram represents the frequency of successful experiments for
each maximum observed value of kt. Tests were performed with a particle
set size n = 100.

and for each run we recorded the maximum kt and the
corresponding acceptance index. If the latter is higher than
a threshold the map is classified as consistent (successful
experiment), otherwise the map building process failed (in
our tests the threshold was fixed to 0.85 although the
classification showed low sensitivity on this parameter). The
histogram in Figure 1 describes the outcome of our tests: for
each maximum observed kt, we associate the frequency of
successful experiments, that is the ratio between the number
of experiments in which a consistent map is estimated and
the total number of experiments in which the same maximum
kt is observed. Therefore we can simply compute ξ̄ so
that the probability obtained from (4) corresponds to the
experimental data contained in the histogram. In our imple-
mentation we used a least-squares fitting and we obtained
a value ξ̄ = 0.42 (the corresponding curve is shown in
red in Figure 1). Notice that, if a more conservative metric
is needed, the ξ̄ can be selected so that the red curve is
always below the histogram of the experimental data. As
discussed in Section IV, this parameter provides a degree
of freedom in controlling the robot behavior, hence being
useful for tailoring the exploration strategy on the particular
robotic application. If a lower value of ξ̄ is selected the robot
will choose vantage points that minimize the risk of loosing
information (or, equivalently, to minimize the uncertainty in
the filter), otherwise, with a higher value of this parameter, it
will prefer to maximize the possibility of visiting new places.
In such a way ξ̄ is crucial in defining a suitable tradeoff
between active SLAM and exploration.

B. The Expected Information from a Policy

The previous section highlighted a relevant aspect of map
building using Rao-Blackwellized Particle Filter. For the na-
ture of the approximation of SLAM posterior the filter is able
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to assure consistent mapping only under correct trajectory
approximation. As a consequence the concept of expected

information gain has to be revisited: classic information gain
metrics quantify the amount of information introduced in
the filter, but do not take into account the possibility of
information loss due to inconsistency in the filter. The robot,
while exploring new areas, gains information, but at the same
time it risks an information loss since the filter approximation
worsens. In Section III-A we computed a probability that
quantifies the risk of incorrect trajectory approximation,
hence we can formulate the expected information gain as
follows.

Definition 2: Let I(mt) = I (p(m|x1:t, d1:t)) be the cur-
rent map information, available to the robot at time t. Assume
that a reasonable prediction of the amount of information,
which can be acquired when applying the motion policy πi

for reaching the exploration target i, can be computed. If
we call I(mt+T (πi)) = I

(

p(m|x1:t+T (πi), d1:t+T (πi))
)

the
predicted information after the target is reached, the expected

information from the policy πi is defined as:

E[I(πi)] = p(t, πi)[I(mt+T (πi))− I(mt)] +

+(1− p(t, πi))[−I(mt)] (5)

where p(t, πi) = p(ξ(p(x1:t+T (πi), d1:t+T (πi)) < ξ̄).
The previous quantity is simply the expected value over

the possible results of policy application: with probability
p(t, πi) the estimated map is consistent, hence the robot has
the possibility to gain the information [I(mt+T (π))−I(mt)],
whereas with probability 1 − p(t, πi) the filter becomes
inconsistent and the robot can no longer model SLAM
posterior in a proper way, loosing the information acquired
before time t. When the robot is confident on its SLAM
approximation (p(t, πi) ≈ 1), equation (5) is dominated by
the first summand, hence the robot will prefer to maximize
the gain I(mt+T (πi)) selecting exploration actions (move
towards unknown areas). When the probability p(t, πi) drops,
that is the robot has traveled in unknown areas and the
uncertainty in its approximation is getting worse, its policy
will tradeoff between loop closing actions (which contribute
to E[I(πi)] with an increase of p(t, πi)) and exploration
actions (which contribute to E[I(πi)] with an increase of
I(mt+T (πi))). Of course the expected gain in some targets
can result in a negative number, truly mirroring the risk
of information loss. It is worth noticing that we provide
no specification on how compute the information I , in
order to maintain the generality of the approach. Common
entropy-based information metrics can be used whereas in
the following section we consider an even simpler measure,
which still preserves the desirable characteristics of our
approach.

IV. EXPERIMENTS

In this section, we present the results of the implementa-
tion of our method and compare it with the performances of
other related techniques, namely an entropy-based gain [7],
the expected map information gain [19], [4] and a simpler
metric (naive gain). The tests were designed in MobileSim
and the robotic platform used was an ActivMedia Pioneer P3-

DX equipped with a laser range sensor and odometry pose

estimation. In our RBPF-SLAM implementation, we incor-
porate two important aspects such as the adaptive resampling

technique [20] to reduce the problem of particle depletion,
and the laser-stabilized odometry [21] for improving the
prediction phase of the filter.

A. Compared Techniques

The first metric we consider is an entropy-based gain,
G[H ], computed from the joint entropy of robot poses and
occupancy grid map. It is defined as the expected joint
entropy reduction when the robot execute an action:

Gi[H ] = H (p(x1:t, m | d1:t)) +
− H

(

p(x1:t+T (πi), m | d1:t+T (πi))
) (6)

where the first term is the joint entropy of the particle filter,
computed at time t, and the second term is the predicted joint
entropy after the target i is reached (following the policy πi).
According to Stachniss et al. [7] the computation of the joint

entropy of a RBPF can be approximated as:

H (p(x1:t,m | d1:t)) ≈ H (p(x1:t | d1:t)) +

+
∑n

j=1 w
[j]
t H

(

p(m[j] | x
[j]
1:t, d1:t)

)

(7)

where w
[j]
t is the weight of the j-th particle at time step t,

x
[j]
1:t and m[j] are the trajectory and the map associated with

the j-th particle. The first term of (7) represents the entropy
of trajectory posterior, whereas the second one corresponds
to a weighted average of individual map entropies. Entropy
of trajectory posterior can be approximated as the entropy of
the Gaussian distribution (in R

3×t) fitting particle poses or
using other approximations. Roy et al. [22] and subsequently
Stachniss et al. [7] used the following simplification for
reducing the computational effort:

H (p(x1:t | d1:t)) ≈
1

t

t
∑

τ=1

H (p(xτ | d1:τ )) (8)

where p(xτ | d1:τ ) is a Gaussian approximation (in R
3) of

pose posterior at time τ .
The second information gain is based on the computation

of the Expected Map Information (EMI). The Expected Map
(EM) is a grid map in which the occupancy of each cell
p(EMxy | d1:t) considers the contribution of all the particles
that compound the set:

p(EMxy | d1:t) ≈

n
∑

j=1

w
[j]
t p(m[j]

xy | x
[j]
1:t, d1:t) (9)

Therefore the information of the expected map
I (p(EM | d1:t)) can be computed as:

I (p(EM | d1:t)) =
∑

∀x,y I(p(EMxy | d1:t))

I (p(EMxy | d1:t)) = 1 − H(p(EMxy | d1:t)),
(10)

where H (p(EMxy | d1:t)) is the entropy of a grid cell in the
expected map. Therefore, we calculate the Expected Map

Information gain G[EMI] as the difference between the
predicted information in the EM when the robot applies
the policy πi towards the exploration target i and the EMI
computed at time t:

Gi[EMI ] = I
(

p(EM | d1:t+T (πi))
)

− I (p(EM | d1:t)) (11)
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The third metric that is taken into account is based on the
number of cells in the occupancy grid map of the best sample
(particle with highest weight) that can be visited when
performing a policy. It is called naive since it neglects both
the uncertain description of robot poses and the probabilistic
interpretation of sensor measurements. We consider a cell
as observed when its occupancy likelihood is different from
0.5. Starting from this consideration, we define the Naive

expected gain G[N ] as the difference between the predicted
number of cells observed when the target i is reached and
the number of cells observed in the current pose of the robot
at time t:

Gi[N ] = Nt+T (πi) − Nt (12)

Finally we computed our metric using the number of ob-
served cells Nt as information measure I(mt). In this case,
with simple computation from (5), our expected information

from the policy πi reduces to:

Gi[EI] = p(t, πi)Nt+T (πi) −Nt (13)

We remark that, when computing the information gains for
each target, according to (6), (11), (12) and (13), the terms
referred to the current information (at time t) constitute an
offset which is equal for all targets, hence we neglect them
in the following.

B. Results and Discussion

We first consider some relevant case studies in which the
robot is called to evaluate the information gain at some
possible target points. In a further experiment the G[EI]
is actually used in a simple experiment of autonomous
exploration.

As reported in [4] and [7] the predicted laser measure-
ments (from the current position to the target) are obtained
with a ray-casting operation on the map of the best particle.
The same map is used to plan the path to reach the target.
In our implementation path planning is performed using the
A∗ algorithm. Using the estimated sensor observation the
robot can run a simulation of the particle filter, for the
purpose of computing the expected gain in each target. In
our experiments unknown areas are supposed to be obstacle
free although different assumption can be considered when
prior knowledge on the environment is available.

1) Case studies: We first consider a scenario in which the
robot starts to navigate in the environment and encounters
a crossroad, as shown in Figure 2. In such a case the
robot has four potential targets: target 4 corresponds to
a place revisiting action whereas the others lead robot to
explore new areas. The four subplots in the figure show
the simulation of the particle filter behavior for each target.
Figure 2 also reports the value of the information gains for
each of the techniques introduced so far. In this example
all the techniques lead to the same decision: at the instant of
decision making the robot does not see both walls of the side
corridors, hence it expects an higher gain (higher information
or, dually, smaller entropy) in moving towards targets 1 and
3. This result resembles human behavior in that it leads the
explorer to gain more information by taking a look at both
corridors, instead of blindly proceeding straight on.

The second case study reports a loop closing scenario,
similar to the one tested in [4] and [13]. The test environment

(a) (b)

(c) (d)

Fig. 2. Case study 1: Crossroad. Robot is shown as a red dot (traveled
trajectory is shown in red too). For each target we report an identification
number (ID), the computed information gains and the estimated path length
to reach the target. (a), (b), (c), and (d) show the predicted behavior of the
particle filter for each target.

is shown in Figure 3 whereas the estimated gains for each
target are reported in Figure 4 (for targets 4 and 9 no path
was found by the A∗ algorithm since they are too close to
an obstacle). As a result we notice that the gain computed
from the number of visited cells (G[N ]) would lead the
robot towards target 5, preferring an exploration action. This
behavior was expected since G[N ] does not take into account
robot uncertainty. Also for G[H ] the target of choice is 5,
since it minimizes the expected entropy of the filter. A deeper
analysis reveals that this result is common for G[H ] for two
main reasons: (i) path entropy contribution is negligible with
respect to map entropy, which has a commanding influence
on G[H ]; (ii) sample map entropies, with respect to (7),
are almost equal, hence the following simplifications are
suggested from experimental evidence:

∑n

j=1 w
[j]
t H

(

p(m[j] | x
[j]
1:t, d1:t)

)

≈

H
(

p(m[i] | x
[i]
1:t, d1:t)

)

∑n
j=1 w

[j]
t =

H
(

p(m[i] | x
[i]
1:t, d1:t)

)

= f(Nt)
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Fig. 3. Case study 2: Loop closing. Robot is shown as a red dot (traveled
trajectory is shown in red too).

Fig. 4. Bar plot of the information gains for each of the targets in Figure
3. No gain is reported for targets 4 and 9 for which no path was found.
Hence the target of choice using G[H], will be the one with the minimum
entropy value (lower bar), whereas the other techniques will suggest targets
with higher value of the information (higher bar).

where i is the best sample and f(·) is a monotonically
decreasing function. Further drawbacks are reported in our
previous work [17]. The G[EMI] shows the same unde-
sirable behavior (5 is the target with the highest expected
information) and also in this case the metric suggests the
robot not to close the loop. In several experiments the gain
computed from the expected map information showed no
remarkable difference with respect to the one based on
joint entropy. Experimental evidence suggests that, although
G[EMI] models inconsistency among map hypotheses, it
does not provide a reliable tradeoff for robot decision
making. Loop closing actions and exploration actions are
rewarded by the metric, but in many cases the uncertainty
in the particle filter has a minor influence on the expected
gain.

Our technique, however, suggests the robot to close the
loop, moving towards target 1. Apart from a mere compari-
son on the numeric outcome of the experiment, we can point
out some relevant considerations. On one hand the results
enlightens some drawbacks of common frontier-based target
selection: reaching the frontier 3 is not sufficient to reduce
the amount of uncertainty in the filter. In such a case target
1 is preferred by the robot since the uncertainty decreases
only after traveling for a certain time in known areas. The

latter is a well known phenomenon, see [7] for instance,
and our metric correctly describes it. Moreover, the expected

information from a policy provides an intuitive way to control
robot behavior: if the robot has to be more conservative in
exploration we can simply set a lower value of ξ̄ in (4).
This corresponds to impose a stricter constraint on SLAM
uncertainty, hence forcing the robot to prefer loop closing
actions instead of visiting unknown areas. If one wants to
take the risk of map inconsistency, the upper bound ξ̄ is
relaxed and the tradeoff will lead towards exploration actions.
When ξ̄ is further increased, the probability p(t, πi) remains
to 1, hence reducing our approach to the naive gain (12).

2) Autonomous exploration: Here we report a simple
experiment in which our expected gain from the policy is
used for active SLAM and exploration. It is worth noticing
that the motion strategy of the robot has to consider both
the expected gain from a target and the cost required for
reaching it (usually the path length, li, to be traveled for
reaching the i-th target). Several approaches considered a
linear combination of expected gain and cost for the purpose
of computing the utility of moving towards a target. Although
this definition of utility is well founded and widespread in
robotic literature (see [1] and [13]), it requires a careful
setting of the coefficient of the linear combination, that has
to be done experimentally and can be scenario-dependant. In
our implementation we overcome these difficulties by using
a specific (normalized) information gain from the policy:

ρi[EI] =
Gi[EI]

li
(14)

In the previous expression the expected gain is simply
normalized by the distance to be traveled (estimated from
A∗-based path planner). Therefore the specific information
assumes the meaning of a gain for each meter traveled, and
intrinsically takes into account the disadvantage of reaching
targets which are far away.

The estimated map in the autonomous exploration exper-
iment is shown in Figure 5. The trajectory followed by the

Fig. 5. Autonomous exploration experiment. Motion strategy is computed
using the specific information ρi[EI], and targets chosen by the robot as
best candidate for next motion are displayed. (target 1 is the starting point
whereas target 16 is the last position reached).
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robot is shown in red, whereas the dots correspond to the
targets chosen by the robot as best candidate for the next
motion. When a target is reached the robot computes the
ρi[EI] for all the targets in the map and move towards the
target with the highest specific information.

V. CONCLUSION

In this work we investigated the problem of active SLAM
and exploration with Rao-Blackwellized Particle Filters. We
proposed an application of Kullback-Leibler divergence for
the purpose of evaluating the particle-based SLAM posterior
approximation. This metric is then employed in the definition
of an expected gain from a policy, which allows the robot to
autonomously decide the best motion strategy to explore the
environment and reduce the uncertainty in SLAM posterior
estimation. The probabilistic interpretation of the information
gain we propose, is then validated by comparing it with three
metrics of information gain, namely a naive gain, an entropy-

based gain, and the expected map information. The expected

gain from a policy is shown to enhance robot awareness
in detecting loop closing occasions, which are often missed
when using the compared approaches. Current research effort
is devoted to test the proposed technique in challenging
indoor scenarios and to extend the approach to the multi
robot case [23]. Finally, we are studying the possibility
of generalizing the theoretical formulation proposed in this
paper, in order to cope with the observation that it can be
too pessimistic to assume that filter inconsistency causes the
loss of all the information acquired by the robot.
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