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Abstract— In this paper a framework for representing tactile
information in robots is discussed. Control models exploiting
tactile sensing are fundamental in social Human-Robot in-
teraction tasks. Difficulties arising in rendering the sense of
touch in robots are at different levels: both representation and
computational issues must be considered. A layered system is
proposed, which is inspired from tactile sensing in humans for
building artificial somatosensory maps in robots. Experiments
in simulation are used to validate the approach.

I. INTRODUCTION

Robots exploiting tactile information are expected to ex-

hibit advanced capabilities in physical and social Human-

Robot Interaction (HRI in short). The sense of touch is a

fundamental feature for control models based on physical

interaction cues. Appropriate social and physical stimuli are

needed to enhance the quality of the interaction in terms of

robot behaviour and responsiveness.

To date, studies in HRI have been largely devoted to inves-

tigate suitable models for modulating interaction behaviours

at the social level [17]. Aspects related to physical interaction

received considerable attention mostly with respect to tactile

sensing, and specifically to transduction technologies [5].

Although the need arises to integrate information from both

physically and socially oriented models of interaction, the

direct use of tactile data in designing control strategies

enforcing social interaction rules did not receive considerable

attention in literature.

One possibility is to design appropriate representation

structures to mimic somatosensory mapping in humans.

From one side, these structure must guarantee an unique

mapping between the tactile elements on the robot surface

and their representation; from the other side, they must be

accessible from high level behaviours implementing social

models of interaction. During the past few years, a number

of approaches have partially addressed these key issues. A

model aimed at translating contact phenomena into language

like symbols has been presented in [23], where the focus is

more on the relationship between numerical and symbolic

data rather than in the use of such information at the control

level. The work presented in [15] faces the problem of

the emergent behaviour through sensory-motor interaction

between an agent capable of full body movements and the

surrounding environment. A somatosensory map is obtained
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by correlating signals from tactile sensors distributed over

the agent surface. A similar approach, based on Informa-

tion Theory, has been proposed in [20], where sensoritopic

maps of groups of sensors are created using self-organizing

processes. Feedback from groups of tactile sensors has been

used in [19] to determine sensoritopic connections between

correlated taxels: a mostly manual learning process is used to

activate groups of nearby taxels, which are then considered

topographically close to each other.

Both representation and computational issues must be

considered when designing artificial somatosensory maps:

• Designing internal models for representing tactile in-

formation is a novel research attempt. Differently from

vision images, tactile images can not be easily flattened

on a 2D metric space, since they originate from elements

that are located on curved surfaces. Such concepts as

proximity, feature extraction or data filtering can not

be easily applied. Furthermore, cameras provide infor-

mation from a well-defined location in space, whereas

taxels are distributed over large parts of the robot

surface, which are subject to kinematics constraints. A

natural representation preserving skin topology must be

available.

• Data structures must guarantee an easy access to a

semantically well-defined tactile information. Tactile

data at different resolution must be accessible according

to the task at hand: high resolution tactile images are

needed for fine contact dynamics, whereas reactive be-

haviours can be attained by manipulating low resolution

information with an associated negligible computational

load. The characteristics of the contact must be acces-

sible from the representation.

Approaches in the literature do not maintain the map-

ping between the location of taxels in 3D space and their

representation in the artificial somatosensory maps. This is

fundamental to use tactile data in practice, e.g., when reacting

to sudden contacts. The main contribution of this work is

a model of somatosensory maps addressing representation

issues, which is loosely inspired by tactile rendering in

humans. However, it also paves the way for further develop-

ments on the computational side, which are outside the scope

of the present discussion. Inspired by the beautiful images

of [24], a hierarchical architecture for tactile rendering is

proposed that exploits Surface Parameterization techniques

to model somatosensory maps.

The paper is organized as follows. Section II describes the

actual tactile information processing architecture in humans.
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Fig. 1. Somatosensory pathways from sensory neurons to brain maps.

The description is neither exhaustive nor detailed: on the

contrary, the aim is to survey few concepts leading to practi-

cal design principles for a tactile representation framework.

Next, Section III introduces a possible approach to im-

plement artificial somatosensory maps taking representation

issues into account. Examples validating the approach are

discussed in Section IV. Conclusions follow.

II. TACTILE INFORMATION PROCESSING IN HUMANS

Nowadays, it is common to discuss sensory systems refer-

ring to internal models related to the physical arrangement

of somatosensory neural pathways at the cortical level [13],

[5]. From a general overview of such an architecture it is

possible to devise important guidelines to design frameworks

for representing tactile data in robots.

In very abstract terms, a sensory system results from the

aggregation of functional modules, which are organized in

layers (see Figure 1):

• A number of mechanoreceptors distributed throughout

the body, which are responsible for transducing physical

stimuli into neural signals for afferent sensory neurons.

• Neural pathways conveying signals from sensory to

higher level populations of neurons: early processed sig-

nals are directly related to stimuli information, whereas

later processing stages are progressively more abstract.

• A number of functionally organized brain areas (i.e.,

different maps) responsible for processing in a highly

distributed way the information transmitted through

neural pathways.

A direct link can be established between a number of

mechanoreceptors in the skin and well-defined areas in the

brain. The location of a stimulus is the set of active neural

pathways leading to specific brain areas (i.e., maps) encoding

neural information originating from mechanical transduction.

Since for each stimulus modality (such as high and slow

frequency contact or temperature) a corresponding set of

brain maps exists, the location of a stimulus can be defined

also as the set of active map areas in the brain that are

innervated by active neural pathways.

Topographic relationships between mechanoreceptors and

brain maps are mediated by receptive fields of sensory

neurons: a number of neural pathways is activated as a conse-

quence of a stimulus possibly detected by many mechanore-

ceptors. From a morphological perspective, a receptive field

is a small region of the skin that is innervated by a number of

mechanoreceptors: it covers exactly the area of the skin that,

if stimulated, is responsible for activating a number of neural

pathways. Depending on the number of mechanoreceptors

innervating sensory neurons, receptive fields can have varied

amplitude. In particular, the density of mechanoreceptors

throughout the skin is not uniform: the higher the density,

the smaller the receptive field. This is motivated by cognitive

processes related to use, required dexterity and evolution. For

instance, fine grained tactile resolution is needed primarily in

hands for manipulating objects, whereas the torso does not

require the same resolution, since - usually - knowing that a

contact occurred in the torso (without precise localization

of the contact point) is enough to take immediate motor

decisions. The density of mechanoreceptors determines the

quality attained in resolving the details of stimuli in the

corresponding skin areas. Differences in mechanoreceptors

resolution are reflected in the central nervous systems, be-

cause of the mapping between mechanoreceptors, receptive

fields, neural pathways and higher level maps, which are

created by the topographic arrangement of afferent neural

pathways. Specifically, larger portions of brain topographic

maps correspond to skin areas with higher density, whereas

smaller portions of topographic maps are related to skin areas

with low density of tactile elements.

Because of the morphology associated with receptive

fields, adjacent skin areas (i.e., skin patches) may overlap,

because of the multiple way in which mechanoreceptors

innervate sensory neurons. This is implicitly aimed at in-

creasing robustness and fault-tolerance, and in general to

obtain information suitable to detect specific patterns in

sensory data. As a matter of fact, skin patches are especially

arranged to perform certain operations, such as detecting

spatial contrast during contact, and in particular edges (a

computational model able to simulate a similar mechanism

in the field of vision has been introduced in [26]).

From this short discussion, it emerges that, in order to

design a comprehensive architecture for large-scale tactile

data representation in robots, issues related to taxels location,

mutual displacement, functional maps between taxels and

their cognitive representation, density, varying resolution as

well as functional processing abstraction must be seriously
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taken into account.

III. TOWARDS AN ARTIFICIAL SOMATOSENSORY MAP

This Section describes the main ideas underlying the

proposed model for representing artificial somatosensory

maps. Assuming that patches of robot skin have been fixed

over robot surfaces, obtaining a somatosensory map involves

a two-step process: (i) taxels spatial calibration and (ii)

functional mapping. In the following paragraphs, the actual

representation infrastructure is discussed in its many facets.

A. Calibrating the Spatial Arrangement of Skin Taxels

The problem of robot skin calibration has been defined

in [2] as the automated process of determining the location

of taxels with respect to a known reference frame, after

the taxels have been actually fixed on a robot body link.

Skin calibration can be modelled as a maximum-likelihood

mapping problem [25], [1], which determines taxel poses

minimizing a properly defined functional. The robot skin is

modelled as a discrete 3D surface S, a mesh made up of a

number of s triangles TS,1, ...,TS,s [21]. Specifically, vertices

represent taxel poses expressed with respect to a common

reference frame, whereas edges encode information about

the relative displacement of two nearby taxels: both vertices

and edges are estimated by the calibration process. Referring

to the terminology introduced in [10]:

• t is a vector (t1, ..., tt)
T representing the estimated poses

ti of the t = s+2 taxels to calibrate, i.e., a configuration.

• δ ji describes a measured displacement between poses ti

and t j. In particular, it refers to an actual observation

of taxel j with respect to taxel i.

• Ω ji is the information matrix modelling the likelihood

associated with the measurement δ ji.

• h ji(t) is the measurement model that computes an ideal

observation of δ ji w.r.t. the current estimate of t.

The goal of skin calibration is to find the configuration

t∗ maximizing the likelihood of observations δ ji, properly

weighted by the corresponding Ω ji, which corresponds to

minimizing the error associated with each observed displace-

ment:

e ji = h ji(t)−δ ji.

Assuming that observations are characterized by Gaussian

error, the negative log-likelihood of an observation h ji is

given by:

H ji(t) =
1

2
[h ji(t)−δ ji]

T Ω ji [h ji(t)−δ ji]

∝ e ji(t)
T Ω jie ji(t).

If the observations are pairwise independent, the negative

log-likelihood of the configuration t is

H(t) =
1

2
∑

〈 j,i〉∈∆

e ji(t)
T Ω ji(t)e ji(t),

where ∆ is the set of coupled indexes for which an observa-

tion δ ji has been acquired. The goal configuration t∗ can be

Fig. 2. The red sphere is kept in contact during movement with an external

object: transducers fixed on the sphere are sequentially activated to obtain
taxels estimated poses and displacements.

found by minimizing H(t), i.e.,

t∗ = argmin
t

H(t) (1)

In literature, many algorithms exist to efficiently solve

this problem [1], retrieving either the exact solution [25]

or an approximation [9], even on-line [10]. However, the

need arises to obtain both estimated poses t and measured

displacements δ ji for elements in ∆. In [2], a technique for

robot skin calibration has been introduced that is able to

obtain a set of measurements δ ji by keeping the robot in

contact with an external object of known location thereby

generate the required tactile stimuli by taxels activation (see

Figure 2). These data are then used to solve Equation 1 by

means of an off-line algorithm very similar to what has been

presented in [9].

The outcome of the skin calibration process, namely a

discrete 3D surface S whose vertices ti, with i = 1, ..., t,

represent estimated taxel poses, is to be represented in

cognitive maps by means of a topographic arrangement.

B. Mapping Robot Skin to Artificial Brain Maps

This Section is aimed at describing the main ideas and the

formal framework adopted to obtain artificial somatosensory

maps from calibrated skin. The key idea is to use the theory

of Surface Parametrization to obtain a flat 2D representation

(i.e., an analogue to cognitive maps in the cortex) of the 3D

calibrated skin mesh [27], [21], [12]. The use of such a theory

is motivated since it allows to topographically preserve taxels

locations, displacements, density and proximity relationships

in cognitive structures.

In this work, a technique for obtaining Natural Intrinsic

Parameterizations is exploited to meet these requirements.

This family of algorithms [6] allows to obtain free bound-

ary parameterizations able to (sub)optimally preserve a lin-

ear combination of usually contradicting desired properties,

namely conformality (i.e., angles between curves in the

discrete 3D surface are preserved in the 2D mesh) and
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Fig. 3. Cognitive maps are discrete 2D surfaces isomorphic to robot skin.

Fig. 4. The skin is modelled as a discrete surface in 3D made up of
overlapping 1-rings.

authalicity (i.e., areas inscribed by edges in the original 3D

mesh are preserved).

More formally, given a discrete 3D surface S (i.e., cal-

ibrated skin, possibly with holes), the goal is to build a

piecewise linear mapping Ψ : S → M between S and an

isomorphic discrete 2D surface M (i.e., a cognitive map made

up of s triangles TM,1, ...,TM,s) best preserving the intrinsic

properties of S (see Figure 3). In other words, for each ti ∈ S

a corresponding mi ∈ M exists such that ti = Ψ−1(mi). Since

there is no general way of flattening a discrete 3D surface

onto a 2D plane, a number of distorsion measures E are

usually introduced, which are defined as

E : S ×S → R,

where S denotes the domain of generic discrete surfaces and

R is a real number. Given S1 and S2 ∈ S , it is evident that

a minimum value for the distorsion measure E(S1,S2) exists

when S1 and S2 coincide (i.e., no distorsion), and therefore

E can be treated as an energy functional. As a consequence,

the initial problem can be reformulated as determining an

isomorphic discrete 2D surface M such that a properly

defined energy functional E(S,M) is minimal. A discrete

3D surface S can be developed in a number of overlapping

1-rings, namely exagons made up of central taxels ti and

surrounding taxels t j (see Figure 4). For all the 1-rings in

S, for a given distorsion measure E, and for each boundary

taxel t j a priori associated with an element of known location

m j in M (i.e., the boundary of M is fixed), the condition for

the corresponding 1-ring in M to be optimal (i.e., minimally

distorted) is that

M = arg min
M∽S

E(S,M ), (2)

where M ∽ S denotes the set of all the parameterizations

isomorphic to S. Equation 2 is satisfied by imposing that,

for each mi ∈ M, the energy value of the distorsion measure

is at its minimum:
∂E

∂mi

= 0. (3)

Valid energy functionals must be characterized by: (i)

invariance to both rotation and translation of surfaces; (ii)

conditional continuity as the discrete 3D surface approx-

imates a continuous one; (iii) additivity with respect to

discrete surfaces. In order to meet these requirements, it has

been demonstrated that energy functionals must assume a

well-defined form, i.e., they must be represented as linear

combinations of Minkovsky functionals [22], as follows:

E = λ1Ea +λ2Eχ +λ3E p
. (4)

In Equation 4, Ea represents functionals able to preserve

angles, thereby leading to conformal mappings (imposing

λ2 = λ3 = 0), Eχ stands for functionals suitable to pre-

serve areas, i.e., the authalic component (with λ1 = λ3 =
0), whereas E p is related to boundary conditions, i.e., the

perimeter for discrete 3D surfaces. Minimizing E as defined

in Equation 4 is expected to produce a cognitive map M

that optimally represents in terms of angles and areas dis-

torsion the robot skin surface S, thereby meeting functional

requirements envisaged in Section II.

Traditionally, Ea has been associated with a specific func-

tional, namely the Dirichlet energy of the map Ψ, defined in

the continuous case1 as

ED(Ψ) =
1

2

∫
M
|∇Ψ|2.

In [21] a derivation for discrete surfaces is reported, which

models the Dirichlet energy as the sum of all the piecewise

linear energies related to corresponding triangles in S and

M. Given two triangles Ts ∈ S and Tm ∈ M such that Ts =
Ψ−1

sm (Tm), then the Dirichlet energy of Ψsm is given by,

ED(Ψsm) =
1

4
∑

〈 j,i〉∈∆Ts

cotαi j|mi −m j|
2
,

where Ψsm is the mapping between triangles Ts and Tm, ∆Ts

contains three elements, namely the three edges δ ji defining

Ts, αi j are the angle opposed to the links δ ji connecting

taxels ti and t j, whereas mi and m j are elements in M of

unknown location corresponding to taxels ti and t j in S (see

Figure 4). As a consequence, the term Ea for the single 1-

ring r can be computed as the sum of the Dirichlet energy

1The use of Ψ and M for, respectively, the mapping and the parameteri-
zation is unappropriate, since they refer to discrete surfaces.
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over all the involved triangles, decreased by energy terms for

overlapping edges:

Ea = ∑
〈 j,i〉∈∆r

cotαi j|mi −m j|
2
. (5)

Equation 5 holds for any 1-ring r the discrete surface S

is made up of. According to Equation 3, discrete conformal

maps for 1-rings can be obtained by computing the minimum

of the Dirichlet energy as defined in Equation 5, w.r.t. the

median parameter mi:

∂Ea

∂mi

= ∑
j:〈 j,i〉∈∆r

(cotαi j + cotβi j)(mi −m j) = 0, (6)

where αi j and βi j are the angles opposed to δ ji on both

sides. It is then straightforward to obtain the global energy

associated with conformal maps of the surface S summing

up all the contributions from related 1-rings2. However,

it is worth noticing that, since coefficients in Equation 6

depend only on angles between edges of S, minimizing this

functional leads to angle-preserving maps. Furthermore, as

described in [11], since Ea is related to the determinant of

the first fundamental form, it is indeed an implicit measure

of how much an area is distorted.

On the other hand, Eχ has be associated with the Euler

characteristic, which is strictly related to the determinant

of the second fundamental form [6]. Again, in case of 1-

rings, Eχ can be expressed as function of taxels locations,

corresponding parameterizations and proper angles of S (see

Figure 4):

Eχ = ∑
j:〈 j,i〉∈∆r

cotαi j + cotβi j

|ti − t j|2
(mi −m j)

2
. (7)

Equation 7 holds for any 1-ring r belonging to surface S.

Combining Equations 3 and 7, discrete authalic maps can be

obtained by computing the minimum of the energy Eχ w.r.t.

the median parameter mi:

∂Eχ

∂mi

= ∑
j:〈 j,i〉∈∆r

cotαi j + cotβi j

|ti − t j|2
(mi −m j) = 0. (8)

As in the previous case, the global energy associated with

authalic maps can be computed summing up all the contri-

butions from 1-rings. In this case, coefficients in Equation 8

only depend on local areas of the orginal 3D surface: as a

consequence, minimizing Eχ leads to area-preserving maps,

which is not surprising given the tight relationships with the

second fundamental form.

Finally, it is worth noticing that energy functionals related

to E p are still subject of open research issues. Recently, few

papers appeared in literature aiming at relaxing the fixed

boundary condition assumed to define Equation 2 exploiting

the linearity associated to Minkovsky functionals [14], [12]:

practice suggests that allowing free boundaries leads to maps

whose overall distorsion metric is more homogeneous and

qualitatively acceptable. Although exploited in the current

2This is outside the scope of the paper. The reader is referred to [21].

Fig. 5. The skin discrete 3D surface associated with the bottom part of
the calibrated sphere Se.

implementation, this issue is not further investigated in the

paper.

If a discrete 3D surface S representing calibrated robot skin

is parameterized using a cognitive map M obtained as the

minimization of an energy functional defined as in Equation

4, it is expected that elements mi ∈M represent a topographic

arrangement of taxels ti preserving density, displacements

and proximity relationships.

IV. EXPERIMENTAL VALIDATION

As described in Section III-A, the proposed framework

has been validated in a simulated scenario. A spherical

body Se is fixed on the end effector of an anthropomorphic

arm. Taxels ti are mounted over Se (see the red sphere in

Figure 2), and are activated in sequence by the physical

interaction between Se and another small black sphere Sb

whose pose is known with respect to an external reference

frame. The physical contact is maintained using a compliance

motion control law described in [2]. As long as Se is

moved around Sb, initial estimates for both taxel poses ti

and their mutual displacements δ ji are recovered. Then, the

minimization process required to solve Equation 1 is carried

out, thereby obtaining a maximum-likelihood estimate of

taxels configuration.

The simulation environment exploits the well-known

Robotics Toolbox under MATLAB / Simulink [4]. Se is

a sphere of radius 0.1m whose material is elastic and

deformable. In the bottom part of the sphere around 500

taxels are located, with a mean distance between them of

around 5mm. According to the design proposed in [18], taxels

are arranged in triangular patterns, and are modelled as ideal

capacitive transducers of 2mm radius that can measure the

exact exerted force. Differently from the sphere mounted on

the robot’s end effector, Sb is not deformable and its radius

is sensibly shorter, i.e., 0.01m.

Assuming to calibrate the sphere Se, Figure 5 shows

the result of the minimization process associated with the

solution of Equation 1, if measurements are perturbed by

N(0m,1mm2). In particular, vertices of the triangular struc-

ture correspond to taxel poses ti, whereas edges represent

estimated distances δ ji between taxels. As a matter of fact,

Se is a discrete 3D surface that can be represented using a

flat 2D map.
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Fig. 6. The isomorphic discrete 2D surface Me representing Se.

The corresponding somatosensory map Me is obtained

using the technique described in Section III-B, assuming an

intrinsic parameterization with free boundaries (see Figure

6). As it can be noticed, a certain level of distorsion is

introduced, especially at the border. However, corners asso-

ciated with the original surface Me are clearly visible also in

the corresponding Se. The configuration of taxels originating

from the calibration process is preserved in its general shape

by elements mi (in terms of areas and angles) as well as in

proximity relationships and mutual displacements.

V. CONCLUSIONS

This paper introduces a framework for representing tactile

information that is inspired by similar mechanisms in hu-

mans. After having fixed taxels over the robot surface, their

spatial arrangement is first retrieved through a calibration

process, and then mapped to a 2D surface preserving at best

in the sense of Equation 3 the mutual displacement between

taxels. The exploited mathematical framework allows to es-

tablish an isomorphic mapping between a taxel in the tactile

map and the corresponding position in 3D space, which is a

desirable property for controlled contact tasks. Issues related

to computational requirements for an effective use of tactile

maps by high level cognitive tasks is not explicitly addressed

in this paper. However, inspired by the work presented in

[8], [3], [7] a hierarchical tactile representation framework

is subject of on-going investigation.
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