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Abstract— In this work we present a new approach for the
detection of moving objects observed by a mobile camera, which
is a critical issue related to autonomous robot navigation as
well as driver/pilot assistance systems. In order to separate
individual object motions from the self-motion of the observing
camera, we implement a linear method to recover the full set of
3D motion parameters undergone by the camera. Based on the
recovered camera motion and reconstructed depth information
of the detected scene points, a criterion has been derived to
determine how well individual scene points agree with the
estimated camera motion. The classification of scene points is
achieved by statistical analysis of the probability distribution
function of the points’ motion characteristics. After the initial
classification, the identified dynamic scene points are further
clustered into different objects by taking into account the
underlying geometric distribution in the image. The approach is
unique in that it can detect moving objects using a single pair
of images and is completely automated. Several experiments
have been carried out in challenging environments using two
different hardware setups. A comparative study shows that
the proposed classification method generates fewer false alarms
compared to a standard one.

I. INTRODUCTION

If an imaging sensor is moving in an environment consist-

ing of rigid objects, the observed image displacements are

the result of two different kinds of motion: camera egomotion

and independent object motion. While the motions of static

scene points are caused entirely by camera motion, the

observed 2D motions of dynamic scene points are generated

by the joint effect of both kinds of motion. The goal of

moving object detection is to know whether there exist any

object motions and eventually to separate them from the

camera-induced motion. In other words, we need to classify

the scene points into different categories based on their 2D

motion patterns appearing in the image sequence.

Potential application areas of such visual motion detection

include robot navigation, pilot or driver assistance, tracking

and surveillance, etc. Particularly for an autonomous robot

navigating in the real world, it is essential to know whether

there are any dynamic objects maneuvering in its visual field

which could lead to possible collisions. In order to avoid

them, it is critical that they could be detected at a large

distance so that there is substantial time left for conducting

the necessary avoidance strategy in the control loop.

Like [1], most of the availabe approaches deal with single-

frame motion segmentation. Among those using multiple

frames, a major difference lies in the parametric modeling of
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the underlying constraint used for motion detection. Under

the assumption of constant camera motion, the authors of [2]

have derived a simple constraint extracted from three frames

to detect scene points whose 2D motion changes between

frames. In [3] and [4], 2D homography has been used for

establishing a constraint between a pair of viewed images.

However, the success of such an approach depends on the

existence of a dominant plane (e.g. the ground plane) in the

viewed scene.

Another possibility is to use geometric constraints among

multiple views. The approach proposed by [5] uses the tri-

linear constraint over three views. Scene points are clustered

into different groups, where each group agrees with a differ-

ent trilinear constraint. A manual threshold is set to decide

the support of each group. A multibody trifocal tensor based

on three views is applied in [6], where the EM (Expectation

and Maximization) algorithm is used to refine the constraints

as well as their support iteratively. Correspondences among

the three views, however, are selected manually, with equal

distribution between the static and dynamic scene points. An

inherent problem shared by such approaches is their inability

to deal with dynamic objects that are either small or moving

at a distance. Under such circumstances it would be difficult

to estimate the parametric model of object motion, since

not enough scene points may be detected from the dynamic

objects.

A further possibility is to recover the 3D motion parame-

ters undergone by the camera and to find scene points whose

motion is incompatible with the camera egomotion. In the

work of [7], it is assumed that both the camera and the

object are just translating. Hence the recovered egomotion

parameters contain only the translational part. The authors

of [8] proposed a method based on the recovery of the focus

of expansion. In [9], although both translation and rotation

parameters are recovered from 2D image displacements, the

constraint used for the detection of moving objects is only

based on the translational part. In [10], it is assumed that

both the egomotion and location of the camera are known.

In this paper, we present a new approach for automatic de-

tection of independent motion under challenging real–world

situations. It does not make any restriction on the motion of

camera or objects. Using a calibrated camera mounted on a

mobile platform, we are able to recover the 5-DOF (degree of

freedom) egomotion parameters based on image pairs taken

by the mobile camera. A single motion constraint is derived

from the estimated egomotion parameters. Unlike the cited

approaches, our constraint takes full advantage of both the

translation and the rotation parts of the egomotion parameters

and no extra knowledge about camera location is required.
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The remainder of the paper is organized as follows. We

outline in section 2 the theoretical basics of 3D motion and

structure estimation. In section 3, we present our approach on

statistical motion analysis. Experimental evaluation is shown

in section 4. Section 5 summarizes the whole paper.

II. MOTION AND STRUCTURE ESTIMATION

Suppose that the 2D image displacement v = [u, v]
T

of a

point p(x, y) is caused solely by a 3D rigid motion between

the observing camera and the scene and let’s denote the

motion parameter with a rotation vector r = [rx, ry, rz]
T

and a translation vector t = [tx, ty, tz]
T

, the following two

equations hold for a camera with unit focal length [11]:

u =
tx − xtz

Z
+ [−rxxy + ry(x2 + 1) − rzy] , (1)

v =
ty − ytz

Z
+ [−rx(y2 + 1) + ryxy + rzx] . (2)

The scalar Z is the depth of the 2D image point p. Without

the knowledge of the exact scene depth, it is only possible

to recover the direction of t . For this reason, the recovered

motion parameters have five degrees of freedom.

Like many problems in computer and robot vision, re-

covery of camera motion parameters from 2D image dis-

placement is an ill–posed problem. For linear/nonlinear ap-

proximation of the solution, several approaches exist [12].

Our approach for independent motion separation is based

on a linear algorithm proposed by [13]. Here we give a brief

summary of the theory. For details please refer to the original

paper.

Let m denote a vector with unit length starting from the

optical center of the camera and pointing at the image point

p, and ṁ denote the image displacement vector projected

from the image plane onto the unit sphere centered at the

camera optical center, we may then define a vector ṁ∗ as

ṁ∗ = m × ṁ , (3)

where × represents the cross product. Using some algebraic

manipulation, it is found that the solution for t is equal to

the least eigenvector of a matrix A = (Aij) where i, j = 1
to 3 and

Aij = Lij −
3∑

k,l,m,n=1

MiklN
−1

klmnMjmn , (4)

Lij =

∫
Ω

ṁ∗

i ṁ
∗

jdΩ , (5)

Mijk =

∫
Ω

ṁ∗

i mjmkdΩ , (6)

Nijkl =

∫
Ω

m imjmkm ldΩ , (7)

and L = (Lij), M = (Mijk), N = (Nijkl) are tensors.

Once t is recovered, the solution for r is given as

r =
1

2
[Tr(K ) + 3tTKt ]t − 2Kt , (8)

where Tr is the trace of a matrix and matrix K = (Kij) is

defined as

Kij = −

3∑
k,l,m=1

N−1

ijklMmklt . (9)

If (t , r) is a solution, then (−t , r) is also a solution. The

correct one can be chosen based on the cheirality constraint,

by assuring positive scene depth calculated as

Z(m) =
1 − (mTt)2

mT(r × t) − ṁTt
. (10)

III. STATISTICAL MOTION ANALYSIS

Once the 3D motion and structure parameters have been

estimated, they can be used as a motion constraint for iden-

tifying those scene points whose motion deviates from the

estimated one. By projecting the 3D motion of scene points

onto the image plane, an algebraic distance measure can be

calculated. Under a given 3D motion with parameter (t , r),
the motion of a static scene point with depth Z(m) leads

to the observation of a projected 2D image displacement

represented as

u = −r ×m −
(I −mmT)t

Z(m)
. (11)

Sine the measured image displacement is v , a criterion

can be defined based on the distance between the projected

and measured image displacement as

J(m) = ‖u − v‖ . (12)

A. Statistical Classification

The smaller the distance J(m) is, the more likely is

the point a static one. Now the problem becomes finding

a threshold k so that points with J(m) < k can be regarded

as static points.

A threshold can be found by analyzing the probability

distribution of the distance measurements. We first quantize

the distance set {J(m)}, calculated from all available scene

points, into L+1 levels, ranging form 0 to L units. Following

that, a distance histogram h(j), j ∈ [0, L] can be calculated.

If h(j) is a multimodal histogram with at least two peaks, a

threshold k can be found with 0 < k < L.

Suppose that the static scene points belong to class Ω0

and that the dynamic points as well as outliers belong to Ω1,

a probability distribution of the distance measurements can

be computed as

ρi =
hi

N
, (13)

where N is the total number of available points to be clas-

sified. Since points belonging to the same class have similar

distribution, the threshold k can be computed automatically

by maximizing the inter–class difference, which can be done

by going through the following steps:
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1) Calculate the probability of Ω0 and Ω1

ρ(Ω0) =
k∑

i=0

ρi (14)

ρ(Ω1) =

L∑
i=k+1

ρi (15)

2) Estimate the mean value of Ω0 and Ω1

µ(Ω0) =
k∑

i=0

iρi

ρ(Ω0)
(16)

µ(Ω1) =

L∑
i=k+1

iρi

ρ(Ω1)
(17)

3) Compute the mean of the whole data set

µ =
L∑

i=0

iρi (18)

4) Set the inter–class difference function as

dk = ρ(Ω0)(µ(Ω0)−µ)2 + ρ(Ω1)(µ(Ω1)−µ)2 (19)

5) Threshold is found as

κ = argmax
k

{dk} . (20)

With a simple linear search, the threshold κ can be found

which maximizes dk. If κ is equal to 0 or L, this indicates

that the histogram h(j) has a unimodal distribution. In this

case, there exist no moving objects in the environment.

B. Motion Clustering

With the automatically calculated threshold, the set of

candidate dynamic points can be determined. The remaining

problem is to remove outliers and know how many moving

objects exist. Our method is to first cluster the points into

as many subsets as possible. Since the number of moving

objects is unknown, we use a modified k–means algorithm

for point clustering. Similar to [14], the idea is to first

cluster the points into several subsets based on the geometric

location of these points in the input image. This splitting

process continues until each subset can be fit by a unimodal

distribution. After the splitting process, outliers, which have

a relative large distance to their nearest subsets, can hence be

identified. In order to overcome possible over–segmentation,

a merging process is carried out. The merging of two subsets

is based on the distance between their geometric centers.

Through the above split–and–merge process, moving objects

can be segmented and outliers are filtered out automatically.

IV. EXPERIMENTS

For the purpose of evaluation, we have carried out ex-

periments in both indoor and outdoor environments, where

the illumination changes constantly. Tests are done using

two different kinds of setup. Video frames are captured by

a perspective camera mounted either on a ground vehicle

or a micro UAV (unmanned air vehicle). Fig. 1 shows the

Fig. 1. Experimental setups: A ground vehicle with a USB camera and an
AR–100 UAV with onboard camera.

two setups. In both cases, images taken by the cameras are

transmitted online to the laptop on which our algorithm

is running. The intrinsic parameters of the two cameras

have been calibrated separately in advance. The locations

and orientations of the cameras, i.e. the extrinsic camera

parameters, can be changed online after camera calibration.

For each pair of images (f t, f t+1) captured, we first apply

the pyramidal Lucas–Kanade algorithm [15] and obtain an

initial image displacement set {v i} together with a set of

corresponding points (pi, q i). Due to changes in illumination

conditions as well as noise in the image formation process,

some of the initially calculated vectors may not be correct.

In order to filter out the incorrect ones, we use the point

set q i to calculate a backward image displacement between

frame f t+1 and f t, resulting in another vector set {v̂ i}. A

correctly calculated displacement should satisfy

ei = ‖v i + v̂ i‖ = 0 . (21)

We keep only those points with ei < 0.1 pixel. The

advantage of using this criterion is that it holds regardless of

the magnitude of the motion vector v . From the remaining

points, we use RANSAC together with the linear method

introduced in section 2 to recover the 3D motion parameters

undergone by the camera. Considering the fact that moving

objects usually come from a distance and hence occupy only

relatively small areas compared with the static background,

the use of RANSAC is justified. With the motion and

structure parameters estimated, scene points can be classified

into two classes: Ω0 with points whose motion parameters

agree with the estimated camera motion parameters and

Ω1 with points whose motion parameters are incompatible

with the camera motion. Points belonging to Ω1 are further

clustered into different moving objects or outliers.

In Fig. 2 two examples are shown. In column (a) of Fig. 2

we show the image f t together with the set of detected image

displacement vectors. After having estimated the 3D motion

parameters, those points whose motion parameters do not

agree with the camera motion are identified and clustered

into several subsets, as is shown in Fig. 2 column (b). At

the same time, outliers are detected, which are visualized

as green vectors. In Fig. 2 column (c) we show the final

segmentation results with the subsets correctly merged and

outliers removed. Shown in Fig. 3 are the two distance his-

tograms h(j), calculated respectively from the two examples.

It is evident that they are multimodal histograms having more

than one peak.
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(a) (b) (c)

Fig. 2. Examples of automatic detection of moving objects. Images on the top and bottom rows are captured by the aerial and ground vehicles, respectively.

Fig. 3. Example histograms h(j) for the images appearing in Fig. 2.

As demonstrated by the above examples, the algorithm is

capable of detecting both fast and slowly moving objects.

The distance between the objects and the camera can be

either small or large. In the first example (top row of Fig. 2),

both the person and the camera are moving to the left. The

detection is successful despite the fact that the person moves

slowly and far away.

For the purpose of evaluation, a comparative study has

been carried out. In particular, we compare our automatic

thresholding algorithm against the minimum error threshold-

ing method proposed in [16]. The results are shown in Fig. 4.

On the left column we show the original image together with

the finally detected image displacement vectors. From these

vectors, one can perceive the movement of the camera and

objects. Shown in the second column are the detection results

using our approach as described above. The third column

shows the results of replacing our optimal thresholding with

the minimum error thresholding method (called reference

approach in the following). In the rightmost column we show

the ground truth obtained by manual segmentation.

As can be seen from Fig. 4 (a), our approach works

better than the reference approach, since a larger part of the

moving person has been detected. In the next two examples,

images are captured in an indoor environment. While the

camera is moving forward, the object has side movement in

Fig. 4 (b) and parallel movement (approaching the camera)

in Fig. 4 (c). Both methods work fine for the example shown

in Fig. 4 (b). For the example shown in Fig. 4 (c), the

reference approach generates two false alarms. Due to the

shadow of the object, our approach has generated a slightly

bigger boundary of the moving object.

In the example shown in Fig. 4 (d), both the camera and

the object are moving in parallel in the same direction. This is

a particularly difficult situation. While the reference approach

fails to detect the object at all, two parts of the object have

been segmented using our approach.

Another example in Fig. 4 (e) shows three objects moving

while the camera is moving toward them. Each of the two

persons on the left is pushing an object toward the camera,

while the third person is shifting an object to the right. Using

our approach, all the moving objects have been identified,

with the object on the right be split into two objects. Errors

due to false alarms can be observed using the reference

approach. While the first moving object has been ignored

totally by the reference approach, a part of it (the moving

arm) has been identified using our approach.

A similar example with three objects moving in front of

a forward moving camera is shown in Fig. 4 (f). Using our

algorithm, two of the three objects have been detected. The

reference approach is able to detect all of them. However, a
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 4. A comparative study with six examples.
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Fig. 5. The histogram h(j) and the two different curves of dk.

false alarm has occurred.

In the last example shown in Fig. 4 (f), the moving object

on the left is missed due to its relatively insignificant motion.

The moving object on the right is detected entirely. The

partial detection of the moving object in the middle indicates

that some error might have occurred in the motion separation

process.

In order to know the source of the error, we have plotted

the distribution of the distance histogram h(j) as well as the

corresponding inter–class difference function dk in Fig. 5.

As can be seen, the optimal threshold has been set by our

algorithm at histogram bin 37. However, we can observe

that the value of dk increases quickly before reaching bin 7.

It then increases only slightly or even stagnates before the

maximal value is achieved at bin 37. For comparison, we

show on the right of Fig. 5 another dk function obtained with

the data shown in the second example of Fig. 2. This curve is

totally different (without flat part). The flat part on the curve

dk shown in the middle of Fig. 5 is relatively big. This as

well as the sparse density in the histogram h(j) between bin

8 and bin 37 suggests the need of further thresholding of

the histogram in case of a flat dk function. Regarding the

distance distribution h(j) between the bins 0 to 37, a further

threshold can be calculated using our approach, resulting in

a new threshold at bin 12. If we use this new threshold, all

three moving objects can be identified and further outliers

can be removed.

V. CONCLUSION

We have presented in this paper a statistical approach for

motion analysis. The goal is to detect objects maneuvering

in the visual field of a moving observer. Our method is based

on a motion constraint established by recovering the full 3D

motion parameters undergone by the camera. The detection

of dynamic scene points is done by statistical analysis of

the probability distribution of their motion characteristics.

Further segmentation of individual moving objects is done

via geometry-based split–and–merge process. Experimental

evaluation has shown that the approach works well in most

cases. While estimation of the egomotion parameters and

detection of independent motion can be achieved in real-time,

the computation complexity of the geometrical segmentation

of individual moving objects remains a bottleneck for video-

rate implementation. For further performance improvement,

the detection of 2D image displacements and the estimation

of 3D motion and structure parameters can be enhanced

by increasing the density of point correspondences and

enlarging the field–of–view of the camera. Based on our

earlier work [17], we are currently carrying out research

using omni-directional cameras with enlarged field-of-view

for better estimation of the camera egomotion. In addition

to comparative study with similar approaches, we also plan

to integrate our approach within a SLAM framework for

camera–based mapping in dynamic environments.
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