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Abstract— The problem of autonomously exploring an envi-
ronment with a team of robots received considerable attention
in the past. However, there are relatively few approaches to
coordinate teams of robots that are able to deploy and retrieve
other robots. Efficiently coordinating the exploration with such
marsupial robots requires advanced planning mechanisms that
are able to consider symbolic deployment and retrieval actions.
In this paper, we propose a novel approach for coordinating
the exploration with marsupial robot teams. Our method
integrates a temporal symbolic planner that explicitly considers
deployment and retrieval actions with a traditional cost-based
assignment procedure. Our approach has been implemented
and evaluated in several simulated environments and with
varying team sizes. The results demonstrate that our proposed
method is able to coordinate marsupial teams of robots to
efficiently explore unknown environments.

I. INTRODUCTION

The problem of autonomously exploring an environment

is one of the fundamental problems for autonomous mobile

robots. There are several applications in which robots have

been designed to explore their environment such as planetary

exploration or in disaster missions. Using a coordinated team

of robots instead of a single robot offers advantages such as

fault tolerance or performance gains. The problem of multi-

robot exploration with homogeneous robots is relatively well

understood. Popular approaches to coordinate such teams

estimate the cost and the expected information gain of

exploring a target location to find optimal assignments of

robots to targets [2, 20, 24].

In several exploration scenarios, however, one needs to

consider heterogeneous teams of robots with different ca-

pabilities. For a task such as the autonomous exploration

of lunar craters [6], one can imagine robots that approach

the crater and then deploy a specialized robot which de-

scents into the crater. Robots that are able to deploy and

retrieve other robots have also been referred to as marsupial

robots [17]. Such heterogeneous robots typically require

to carefully plan deployment and retrieval actions and to

properly take into account the different properties of the

robots such as their sensor setup, their size and payload,

their maximum traveling speed, or the type of terrain they

are able to traverse.

This paper addresses the problem of coordinating a team

of marsupial robots that explore an unknown environment.
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Fig. 1. An exploring robot (white circle) has to choose between three
possible actions: explore target t1, explore target t3, or deploy a smaller
robot at m1 to let it explore t2 in the red (dark) area.

In this scenario, a team of robots carries and deploys a

number of smaller robots. These smaller robots are able to

explore parts of the environment that the bigger robots cannot

enter. From a conceptual point of view, the ability to deploy

and retrieve robots using other autonomous robots introduces

corresponding symbolic actions. To reveal the full potential

of such a heterogeneous system, these actions need to be

considered during coordination (see Fig. 1 for an illustration).

Unfortunately, it is not straightforward to map such actions

to cost or utility measures such as those used by the popular

target assignment approaches [2, 16, 19, 24].

The problem of planning and executing actions such as

deployment and retrieval in an exploration scenario has

previously been approached using manually designed strate-

gies [3, 17, 18]. Such hand-crafted strategies, however, are

specific to a certain type of environment and it is unclear

whether they are able to efficiently coordinate large teams of

robots. The contribution of this paper is a novel coordination

approach for multi-robot exploration that assigns robots to

exploration targets and additionally plans symbolic actions

such as deployment and retrieval actions. To achieve this, we

integrate a temporal symbolic planner and a traditional path

planner for coordinated exploration. In this way, we obtain

a more general robot coordination approach that is able to

efficiently solve the exploration task.

II. RELATED WORK

Several previous approaches consider the task of coor-

dinating the actions of a team of equally equipped (ho-

mogeneous) robots exploring an unknown environment. In

this setting, the coordination task is often formulated as

an assignment problem where the robots are assigned to

exploration targets according to a cost measure. Different

methods have been presented to determine such an assign-

ment. Burgard et al. [2] present an iterative assignment
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method based on the estimated cost of reaching a target and

visibility constraints of robots in the team. Ko et al. [16] and

Stachniss [19] present approaches that uses the Hungarian

method to compute the assignments of frontier cells [23]

to robots. Zlot and colleagues [24] propose an architecture

in which the exploration is guided by a market economy.

They consider sequences of potential target locations for each

robot and trade tasks between the robots using single-item

first-price sealed-bid auctions. Such auction-based techniques

have also been applied by Berhault et al. [1] to assign robots

to bundles of targets so that synergy effects between targets

are taken into account. In a previous work, we present an

approach that uses a segmentation of the environment [22].

By assigning robots to unexplored segments instead of fron-

tier targets, a more balanced distribution of the robots over

the environment is achieved and the overall exploration time

is reduced.

An approach towards cooperation in heterogeneous robot

systems is presented by Singh and Fujimura [18]. If a robot

is too big to pass through a narrow passage, it informs

other robots about this task. Howard et al. [14] present an

incremental deployment approach that explicitly deals with

obstructions, i.e., situations in which the path of one robot

is blocked by another. A further heterogeneous system is

presented by Grabowski and Navarro-Serment [10]. In this

system, however, coordination is performed manually.

Whenever small robots with low traveling speeds or lim-

ited power resources are used in a heterogeneous robot team,

it is favorable to have larger robots, the marsupial robots,

transport the smaller ones to avoid a serious penalty in

exploration time or power consumption [17]. Denner and

Papanikolopoulos present a deployment method for such a

marsupial team that explicitly takes power constraints into

account [5]. Murphy et al. [17] present a physical imple-

mentation of a marsupial system and describe heuristics to

deploy the micro-rover. Kadioglu and Papanikolopoulos [15]

present a further physical implementation. In [3], a team of

legged robots is deployed by a carrier robot in a rescue sce-

nario. In all of the previously described exploration systems,

deployment and retrieval in marsupial teams is determined

by heuristics. In contrast to that, the approach presented in

this paper explicitly takes these actions into account when

coordinating the exploration.

Domain independent planning is a thoroughly investigated

sub-field in artificial intelligence. A classical planning prob-

lem consists of a set of state-variables with finite domains,

an initial state, a set of actions and a set of goal states. An

action is defined by a precondition and its effects, which

is a set of variable assignments. A solution for a classical

planning problem is then a finite sequence of actions from

the initial state to a goal state. There exist several efficient

planning systems for classical planning problems [12, 13].

When temporal constraints are specified by admitting

actions to have variable durations and to be executed con-

currently, one refers to that as temporal planning. Several

efficient approaches for temporal planning have been pre-

sented [7, 9]. The predominant approach of solving planning

actions

sensor

data

map

action

costs

PDDL

description

meeting pnts

map

targets, 

module

call

robot 

states

Fig. 2. System overview.

problems is forward search guided by a heuristic using A∗

or similar algorithms. Most approaches to temporal planning

allow the usage of numerical state variables. In contrast

to binary and multi-valued state variables, numeric state

variables have an infinite continuous value domain. While

numeric state variables lead to undecidability even when used

in a very limited form [11], they are considered to be of high

importance when modeling real world domains.

The work described in this paper uses the planner

TFD/M [4], a variant of the temporal fast downward planning

system [7]. TFD/M supports the use of external modules

that calculate the values of state variables during the plan-

ning process using sub-processes. By means of these sub-

processes, we combine temporal planning with path planners

traditionally used for multi-robot coordination.

III. COORDINATED EXPLORATION

WITH MARSUPIAL TEAMS

Throughout this paper, we assume global and unlimited

communication between the robots and employ a centralized

approach. Furthermore, all robots are assumed to have known

relative positions. To achieve this in our experiments, the

robots actually start from the same place in the environment.

A marsupial team consists of two types of robots that

explore the environment. We consider n carrier robots.

Each carrier initially carries m smaller robots called rovers

which can be deployed and retrieved by the carriers. The

key challenge is to generate exploration targets, to plan

trajectories for the carriers and rovers, and to schedule

deployment and retrieval actions at meeting points in the

environment. Especially for efficient retrieval, one needs to

consider the time the individual robots need to carry out their

actions. This together with the fact that the robots operate in

parallel makes the problem a temporal planning problem.

A. Overview of the Exploration Framework

The architecture of our exploration system is displayed

in Fig. 2. The robots provide the sensor data and states

of the platforms (such as their positions, whether they are

docked, etc.) to the centralized coordination system. We
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Fig. 3. Example of the costs that have to be considered. Dotted lines
illustrate the estimated path costs between the robot pose p and the different
target positions ti, the costs between meeting points mi and robot pose or
targets positions, and costs between target positions. For the sake of better
visibility we did not display all costs in this figure.

use the sensor measurements of the robots to build a grid

map distinguishing free, occupied, and unexplored areas.

Based on this map, we extract relevant locations in the

environment, for example frontier cells [23] or locations

for deployment. We then use this information to generate

a problem description in the Planning Domain Definition

Language (PDDL) [8], which serves as input for the temporal

planner. In conjunction with a regular path planner such as

A∗, the planner computes action sequences for the robots

that are send to the individual vehicles. The loop depicted

in Fig. 2 is constantly executed. Whenever new information

about the environment arrives, e.g., new sensor data is

perceived or the robots moved, we replan.

B. Target Locations and Travel Cost

In this work, we model the fact that different robots may

have different navigation capabilities and that certain areas

of the environment can only be explored by the rovers

and others only by carriers. We furthermore assume that

the robots are able to determine based on their sensor

observations which areas are traversable by which robot,

for example based on techniques developed in our previous

work [21].

To identify potential target locations, a set of exploration

targets T is generated from the partially explored grid map.

In addition to this, a set of meeting points M is determined.

These meeting points are situated between those parts of the

environment that can only be traversed by the rovers and

the parts that can only be traversed by the carriers. They are

used for deployment and retrieval of the rovers (see Fig. 3 for

an illustration). To determine the meeting points a frontier

extraction algorithm is used.

There are two basic types of actions a carrier can perform:

exploring a target or visiting a meeting point to deploy or

retrieve a rover (see Fig. 1). While deployment and retrieval

are assumed to have constant cost cdep , the cost of traveling

between two locations in the environment is defined as the

estimated path cost (i.e., travel time). This cost depends on

the path length as well as on the traversability constraints and

travel speed of the corresponding robot. Let type be a robot

type (here: carrier or rover), x a location in the environment

and t ∈ {T ∪ M} a target. We define the cost for reaching

t as:

Ctype(x, t) (1)

=







est. path cost(x, t) , if robots of type type

can reach t from x

∞ , otherwise.

Finally, the exploration task is assumed to be completed

as soon as the set of exploration targets T is empty.

C. Formulating the Exploration Problem as a Temporal

Planning Problem

A wide range of problem types can be modeled as a

general planning problem, ranging from transportation prob-

lems and single-player games to combinatorial problems.

In recent years, the Planning Problem Definition Language

(PDDL) [8] has been established as the prevalent planning

language. In this paper we use PDDL/M [4], an extension to

PDDL allowing for the definition of external modules.

The problem of multi-robot exploration with marsupial

robots is a temporal planning problem. The reasons for this

are mainly the facts that the actions of the individual robots

have an individual duration and that the problem is inherently

highly parallel. Especially for the efficient retrieval of rovers,

the time the individual robots need to carry out their actions

needs to be considered.

To generate a PDDL task description, we need to define

(i) the objects involved in the planning process, (ii) the

predicates that define the state of the planner, (iii) actions

that change the predicates, and (iv) start and goal states.

First, we define what type of objects are involved. In

the exploration scenario, possible objects are robots that

can be either rovers or carriers and locations that can be

meeting points or exploration targets. Fig. 4 (left) illustrates

the corresponding PDDL statements. Second, we specify the

predicates that define the internal states. The major predicates

we use to describe the exploration problem are

(at ?r - robot ?x - location)

which describes if the robot r is at position x.

(on ?e - rover ?c - carrier)

is used to determine if a rover e is docked to a carrier c. For

each target t ∈ T , we also define if it has been explored

(explored ?t - target).

Additionally, we use a numeric state variable

(num docked ?c - carrier)

that contains the number of rovers that are docked to a

carrier c.

Third, the actions that change the predicates have to be

provided. We need four actions in our setting, namely dock,

undock, move, and explore. The actions dock and undock

require that the carrier and the rover are at the same meeting

point (see at predicate). For docking, the number of docked

rovers has to be lower than the carrier’s capacity and the

action changes a rover’s state from being at a meeting point

to being on a carrier (see on predicate).
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The other two actions move and explore model the possible

motions of the robots. The move action moves a robot to a

meeting point for deployment or retrieval while the explore

action moves the robot to a target and explores it. For the

move and explore actions, we utilize the module interface [4]

of our planning approach to define the duration. Instead of

specifying a constant duration or a fixed formula, we call an

external module that determines the duration and the actual

cost for taking the action. In our setting, the external module

is realized by a traditional A∗ path planner that plans the

optimal trajectory of the robot to the given target location

based on the current occupancy grid map constructed by the

robots so far. Fig. 4 (middle) depicts the PDDL statements

that describe the action explore. The term [pathCost ?r

?s ?g] represents the call of the external module.

Finally, the initial state of the current planning procedure

and the goal state need to be specified. For the situation

depicted in Fig. 1, this is exemplified in Fig. 4 (right).

D. The TFD/M planning system

The PDDL description forms the input to the TFD/M

planner. Based on this description, the temporal planner

computes concurrent action sequences for the robots. TFD/M

is a domain-independent progression search planner built on

top of the planning system Fast Downward [12]. It extends

the original system to support durative actions, numeric and

object fluents, and external modules.

TFD/M solves a planning problem in three phases: First,

the PDDL planning task is translated from its binary encod-

ing into a more concise representation using finite-domain

variables. This enables the use of heuristics employing hier-

archical dependencies between state variables which leads

to an increased search performance. In the second step,

efficient internal data structures for the heuristic and the

search component are generated. The most important ones

are domain transition graphs for each variable that encode

how state variables can change their values and the causal

graph that represents the hierarchical dependencies between

different state variables. Finally, a best-first progression

search is performed, guided by a numeric temporal variant

of the context-enhanced additive heuristic.

In contrast to many other temporal planning systems,

TFD/M does not split the search in an action selection

and a scheduling phase but searches directly in the space

of time-stamped states. This typically leads to plans of

significantly higher quality [7]. Note, however, that due to

the inadmissibility of the heuristic evaluation function, the

first plan that is generated is not necessarily optimal.

TFD/M does not terminate after a solution was generated,

but is implemented as an anytime algorithm. By producing a

potentially non-optimal solution quickly, the search space can

be pruned to those time-stamped states which can potentially

be extended to solutions with a lower overall duration than

the best solution found so far. If all states in the resulting

state space are expanded, the produced solution is guaranteed

to be optimal.

TFD/M features semantic attachments that are a means

of evaluating components of the planning task externally.

TFD/M implements this as a module interface for predicates,

numerical effects, and durations. In our case, durations of

actions are specified as a module call in the planning task

description. When expanding actions in the search phase the

planner detects these module calls and executes the dynamic

library associated with the module call which in turn will

retrieve the real costs computed by the A* path planner. For

further details on TFD/M, we refer the reader to our previous

work [4, 7].

IV. EVALUATION

The approach described above has been implemented and

evaluated thoroughly using a multi-robot simulation system.

The experiments have been designed to show that explicitly

planning symbolic action sequences leads to a significantly

more efficient coordination approach than using a heuristic

extension of previous coordination approaches.

A. Simulation System

To quantitatively evaluate our coordination approach, we

developed a simulation system that is able to simulate large

teams of marsupial robots. In our current system, we also

simulate laser range sensors. Sensor and odometry noise are

not considered since we focus on the coordination aspects

of the problems. The environment is modeled by a grid map

with additional traversability information. The maximum

sensor range and traveling speed of carriers and rovers can

be specified.

B. Baseline Approach

The baseline approach that we compare our algorithm

against is a heuristic extension of a method that assigns

robots to target locations based on cost estimates [19]. The

carriers are assigned to exploration targets independent of

whether they are accessible to them or not. The selection

is solely based on the estimated travel cost. The rovers are

then deployed heuristically: Whenever a carrier is assigned

to a target that it cannot explore itself it will move to the

nearest connecting meeting point and deploy a rover there.

This rover will then explore the targets reachable from the

meeting point. As soon as it has finished exploring them, it

will return to the meeting point. As mentioned above, we

assume a limited number of rovers per carrier. As soon as a

carrier needs to deploy a rover but has none available, our

heuristic requires the carrier to first retrieve a rover.

C. Comparison of Baseline Solution With Our Approach

We evaluated robot teams of varying sizes and different

environments have been used in the simulation. In the

simulation, carrier robots are twice as fast as rovers and their

maximum sensor range is also twice as far.

Two of the environments we used to evaluate our approach

can be seen in Fig. 5. The office environment resembles

a typical office building with two corridors and a number

of rooms. Some of the rooms can only be explored by
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(:types

robot

carrier rover - robot

location

target meeting - location )

(:predicates

(at ?r - robot ?x - location)

(on ?e - rover ?c - carrier)

(explored ?t - target)

(can_explore ?r - robot ?t - target) )

(:durative-action explore

:parameters (?r - robot

?s - location ?g - target)

:duration (= ?duration

[pathCost ?r ?s ?g])

:condition (and (at start (at ?r ?s))

(at start (not (explored ?g)))

(at start (can_explore ?r ?g)) ... )

:effect

(and

(at start (not (at ?r ?s)))

(at end (at ?r ?g))

(at start (explored ?g))

... ))

(:init

(at robot0 p)

(on robot1 robot0)

(can_explore robot0 t1)

(can_explore robot1 t2)

(can_explore robot0 t3)

)

(:goal (and

(explored t1)

(explored t2)

(explored t3)

))

Fig. 4. Examples for PDDL definitions. Left: definition of the required types and predicates. Middle: definition of the explore action. Right: Example
that shows how to specify the current state of the world for the TFD/M planner (see scene shown in Fig. 1).

Fig. 5. Our simulated experiments: office (left) and maze (right). White
areas can only be traversed by carriers while red (dark) areas can only be
explored by rovers.
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Fig. 6. Exploration quality in the office environment over 30 runs using
two rovers per carrier. The higher the value, the better the coordination. The
error bars indicate the 95% confidence intervals. Note that similar results
were obtained for the maze environment.

rovers. The maze environment features a central area that

can only be explored by rovers but in contrast to the office

environment has multiple meeting points that can be used

for deployment.

In both environments, we simulated 30 exploration runs

using our approach and the baseline method with random

initial robot positions. Exploration targets were determined

using the frontiers approach and neighboring exploration

targets were clustered using visibility constraints similar to

the approach proposed by Burgard at al. [2].

An overview of the results obtained in these environments

is given in Fig. 7. It can be seen that our approach explores

the environment significantly faster than the baseline method

in all configurations. It can also be seen that using more

than three carriers improves the overall exploration time only

marginally. The number of rovers for which this effect occurs

clearly depends on the structure of the environment and the

number of areas that can be explored by rovers only.

As a further benchmark, we computed the exploration

quality according to [24] as

Q =
1

A

n
∑

i=1

di, (2)

where A is the total area of the environment and di denotes

the distance traveled by robot i. This measure can intuitively

be understood as the area each robot explores per movement.

The results in Fig. 6 show that our approach reaches

a significantly higher exploration quality. Especially larger

teams of robots are coordinated more efficiently, so that

unnecessary movement is avoided.

V. DISCUSSION

The experimental results demonstrate that our approach

can effectively coordinate large teams of robots and signif-

icantly outperforms a handcrafted strategy. In addition to

that, our planning framework adds a substantial degree of

flexibility to our system. For example, additional constraints

such as power constraints for individual robots can be spec-

ified by adding adequate predicates to the problem descrip-

tion. Furthermore, other temporal actions such as recharging

batteries or deploying sensor nodes can be integrated in a

straightforward way.

A. Limitations of the Approach

The planning system described in this paper generates

sequences of actions for the robots to explore the environ-

ment given the current knowledge about the world. While the

robots move, their state changes and new information about

the environment may be perceived. Therefore, we execute

the planning cycle (see Fig. 2) in a continuous loop and use

the solution the anytime planner reports. If more than one

solution is found we set the timeout to 30 s.

We analyzed our approach with up to 24 robots (6 carriers

plus 18 rovers). However, for significantly larger teams, the

planning problem becomes large so that the solution reported

by the anytime planner after 30 s may be sub-optimal.

VI. CONCLUSION

In this paper, we presented a novel approach to coordinate

autonomous exploration with marsupial robots. Our approach

combines traditional approaches for homogeneous teams

that coordinate rovers by solving an assignment problem

that maximizes a given evaluation function with a tempo-

ral planner that explicitly deals with the deployment and
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Fig. 7. Exploration time obtained with our approach compared to the heuristic in the maze environment (top) and in the office environment (bottom) for
varying team sizes (number of carriers and number of rovers per carrier). The error bars indicate the 95% confidence intervals.

retrieval of small rovers. Our approach has been imple-

mented and thoroughly tested in extensive simulation runs.

The experimental results demonstrate that our approach can

effectively coordinate large teams of robots and significantly

outperforms a handcrafted strategy.
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