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Abstract— In this paper the problem of multi-robot collabo-
rative topological map-building is addressed. In this framework,
a team of robots is supposed to move in an indoor office-like
environment. Each robot, after building a local map by using
infrared range-finders, achieves a topological representation of
the environment by extracting the most significant features
via the Hough transform and comparing them with a set
of predefined environmental patterns. The local view of each
robot which is significantly constrained by its limited sensing
capabilities is then strengthened by a collaborative aggregation
schema based on the Transferable Belief Model (TBM). In this
way, a better representation of the environment is achieved
by each robot with a minimal exchange of information. A
preliminary experimental validation carried out by exploiting
data collected from a self-made team of robots is proposed.

I. INTRODUCTION

Map-building addresses the problem of acquiring spatial

models of physical environments by mobile robots [1]. The

map-building problem is generally considered as one of the

most important problems in the pursuit of building truly

autonomous mobile robots. Two different approaches for

modeling an indoor environment have been proposed: the

metric approach and the topological approach [2]. Metric

maps capture the geometric properties of the environment,

whereas topological maps describe the connectivity of dif-

ferent places. These approaches exhibit orthogonal strengths

and weaknesses [3]. On the one hand, topological maps are

computationally efficient, easy to maintain even in large scale

environments while metric maps suffer from their enormous

space and time complexity. On the other hand, metric maps

provide a very detailed description of the environment while

topological maps offer a limited representation of the sur-

rounding world.

The majority of the approaches available in the litera-

ture deals with the simultaneous localization and mapping

problem (SLAM) consisting in both building the map of the

environment and localizing the robot that is moving within

it [4]. In [5] an approach to build a topological map based

on the concept of Voronoi random fields is introduced. The

idea is to extract a Voronoi graph from an occupancy grid

map generated with a laser range-finder, and then represent

each point on the Voronoi graph as a node of a conditional

random field. The resulting Voronoi random field estimates
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the label of each node, integrating features from both the

map and the Voronoi topology. Several works have been

proposed for the SLAM problem in a multi-robot scenario

as well. In [6] a platoon of four robots performs on-line

the map building with a particle filter algorithm. In [7] an

alternative approach for less effective sensors, e.g., sonar

range-finders, is proposed. The idea is to build a grid-map

representation of the environment modeling uncertainty by

means of the fuzzy theory. In [8], an improvement of this

work is presented. In particular, the grid-maps are exploited

to extract a knowledge of the surrounding environment

along which the robot travels. The uncertainties are managed

through the Possibility Theory [9].

In this work a collaborative topological map-building

approach for a team of robots moving in an indoor office-like

environment is proposed. Each robot, after building a local

map by infrared range-finders, builds a set of hypotheses

about the topological nature of the surrounding environment

by comparing the features extracted using the Hough trans-

form with a set of predefined environmental patterns. The

local view of each robot which is significantly constrained

by its limited sensing capabilities is then strengthened by a

collaborative aggregation schema based on the Transferable

Belief Model. In this way, a better representation of the

environment is achieved by each robot by means of a

minimal exchange of information.

The rest of the paper is organized as follows. In Section II

the problem setting is described. In Section III the robotic

hardware platform SAETTA developed at the Robotics Lab

of the University of “Roma Tre” is detailed. In Section IV the

topological multi-robot map-building process is explained. In

Section V an experimental validation of the proposed collab-

orative map-building technique by exploiting the SAETTA

multi-robot system is proposed. In Section VI conclusions

are drawn and future work is discussed.

II. PROBLEM SETTING

In the proposed framework, a team of robots which

explores an unknown office-like environment is considered.

Robots are equipped with a sensorial system composed of an

array of infrared range-finders along with an analog compass

which allows the team to share a common heading direction.

Therefore, a wireless channel is available for communication

purposes.

The team of robots is assumed to move in a rigid forma-

tion. Indeed, this can be achieved by exploiting one of the

several control laws available in literature, e.g., [10], [11].

In addition, robots are assumed to be aware of the sensing
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occlusions due to the other robots. Note that, this is not a

strong limitation as robots are assumed to move in a rigid

formation. In particular, for each couple of robots an angular

section with respect to their line of sight is considered as

occluded.This information can be taken into account when

building the set of hypotheses to describe the surrounding

environment. Figure 1 depicts the adopted geometrical model

of occlusion for a team of three robots.

Fig. 1. Geometric model of occlusion for the multi-robot system.

The office-like environment in which the team of robots

moves is approximated by the union of a set of environmen-

tal patterns detailed in Subsection IV-A. In particular, the

following patterns are taken into account in this framework:

L-turn, corridor, dead-end, T-junction, and crossing.

The objective of this work is to develop a collaborative

technique to let the team of robots achieve a proper topo-

logical description of the surrounding environment. The key

idea is to provide an effective collaborative framework to

make up for the limited sensorial capabilities of each single

robot.

III. THE SAETTA ROBOT DESIGN

The SAETTA robotic hardware platform developed at the

Robotics Lab of the University of “Roma TRE” is a low-cost

robot. It features a complete sensorial system, a very accurate

traction in indoor environment, and a ZigBee transceiver for

multi-robot applications. The platform has been reproduced

into 12 units.

The SAETTA architecture can be conceptually decom-

posed into a two-tiers architecture. The first tier is constituted

by the interaction between low level components, such as

traction and sensorial system, while the other is in charge of

executing high level tasks. This conceptual division has an

immediate correspondence in the hardware realization: each

tier is realized on an electronic board and equipped by a CPU

unit. The low level is managed by a Programmable Interface

Controller (PIC) while the high level is a Linux embedded

board (FOX) from Acme Systems. The first board, which

manages strictly time constrained tasks, has a control cycle

(25ms) shorter than the other one (200ms) that is supported,

on the other hand, by a more powerful CPU to implement

higher level tasks. The inter-board communication is realized

Fig. 2. Corner detection. Robot R1 detects a convex corner while robot
R2 detects a concave one.

by exploiting a RS232 channel. At the moment, a gyroscope,

a magnetometer, an accelerometer and 5 infrared (IR) sensors

are present.

Regarding the traction system, a very convenient choice

has been the use of stepper motors instead of the more

common d.c. motors. They offer several advantages, first

of all the absence of tachometers or encoders and, as a

consequence, of the circuitry associated with the transducer.

Moreover, a stepper motor requires low supply voltages as

it has a very low back EMF. Further details can be found in

[12].

IV. TOPOLOGICAL MULTI-ROBOT MAP-BUILDING

In the following the collaborative topological multi-robot

map-building technique is described. First, the patterns

adopted to represent the environment are described in Sub-

section IV-A. Then, the feature extraction process to build an

actual view of the surrounding environment is explained in

Subsection IV-B. Successively, the topological map building

is explained in Subsection IV-C. Finally, the collaborative

approach based on the TBM conjunctive rule to improve the

local view of each robot is described in Subsection IV-D.

A. Environmental Patterns

In order to have a meaningful representation of an office-

like area, environmental patterns are introduced. Indeed,

these models constitute, in our context, a valid approximation

into which classify more complex environments. In the

proposed scenario, maps are composed of a combination of

the following elements: L-turn (L), corridor (O), dead-end

(D), T-junction (T ), crossing (X).
In order to derive a mathematical description of these

patterns some preliminary concepts must be introduced.

Let us first introduce the set A = {a1, . . . , ak} of

atomic elements as the set of basic features that a robot

can detect. In this work, walls (W) and corners (C) are

considered. An atomic element ai is described by means

of a simple parametrization with respect to the reference

frame of the detecting robot. In detail, a wall is described

by the angular coefficient θ of the detected segment, while
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a corner is represented by the angular coefficient θ1 and

θ2 of the oriented segments connecting the two end-points

to the vertex. Note that, two different kinds of corners are

considered: convex and concave. According to the situation

shown in Figure 2, a corner is said to be convex if the

robot r belongs to the third quadrant of the reference frame

Ô(v̂1, v̂2) attached to the vertex v, concave otherwise.

Let us now introduce the concept of relational features. A

relational feature fi is a couple of atomic elements for which

a set of geometric relationships hold. From a mathematical

perspective, a relational feature fi can be defined as follows:

fi = {aj, ak} : R(aj , ak) = true

where R(·) : F × F → {false, true} is a boolean map

describing a given set of geometric relationships. Note that,

among all the possible relationships also the identity map,

i.e., R(ai, ai) = true, is considered. Indeed, this allows to

define a relational feature even if only a single atomic

element is recognized. The idea of relational feature turns

out to be very useful as it allows to provide a graph-like

representation of an environmental pattern and therefore a

simple decomposition of it.

It is now possible to provide a formal characterization

of the set P = {p1, . . . pn} of environmental patterns.

In particular, an environmental pattern pq can be described

by a set Fq = {f1, . . . , fh} of relational features. Note that,

in order to be a valid representation, the set Fq must satisfy

the following property:

Fq * Fk ∧ Fq + Fk, ∀ pk ∈ P\{pq}, (1)

which guarantees the pattern pq to be fully described.

This formalization leads, as previously mentioned, to

an intuitive graph-like representation of an environmental

pattern where links represent the geometric relationships

existing among each couples of atomic elements. Therefore,

according to this alternative representation, an environmental

pattern can be also thought as a fully connected graph of

atomic features. Figure 3 gives a graphical overview of such

a representation for the set of environmental patterns adopted

in this paper. In particular, a corridor can be viewed like a

two wall-nodes graph connected by an edge for which the

relationship of equal orientation holds. A T-junction graph is

instead represented by two concave-corner-nodes and a wall-

node. The corner-nodes share a common bearing for a couple

of segments while the other one has a phase displacement

of π. In addition, each of them shares a common bearing with

wall-node. Note that, in order to avoid a wrong association

between atomic elements, the relationship of parallelism is

constrained by a minimal distance between the considered

segments. A similar description can be easily derived for the

remaining patterns.

B. Local Topological Features Extraction

Each robot while moving builds a local map of the sur-

rounding environment by exploiting infrared range-finders.

The expressiveness of the obtained map is highly constrained
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Fig. 3. Graph-based representation of an environmental pattern. Nodes
represent atomic elements linked to each other by relational edges. Dashed
squares are convex corners, solid squares are concave corners and solid
circles are walls. a) corridor b) T-junction c) L-turn d) dead-end e) crossing.

by the limited amount of data which can be collected at

each time, i.e., only an array of 5 infrared sensors arranged

over the 180◦ with respect to the heading direction of the

robot is available. Figure 4 depicts an example of local map

built exploiting the raw data collected by the robot while

rotating over 360◦. In particular, it can be noticed the effect

of the noise affecting the measurements due to the intrinsic

characteristics of the sensor. The local map is used to extract

some features of interest by means of a Hough transform

[13].

C. Local Topological Map Building

In order to achieve the topological description of the

environment, the framework of the “Theory of Evidence”

introduced by Shafer in [14] is exploited. It gives an effective

mathematical model for the representation of uncertainty.
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Fig. 4. Example of local map built by letting the robot rotate over 360
◦.

Hence, it turns out to be very suitable in a robotics context

when dealing with noisy measurements coming from low-

cost sensors. In this framework, an environmental pattern

represents the proposition of a set Ω called frame of discern-

ment, while the set of all propositions of interest corresponds

to the elements of the power-set Γ. In addition, it can

be defined a function m : Γ → 1 called Basic Belief

Assignment (BBA) which associates to each element γ ∈ Γ
a belief mass. This mass m(γ) describes the proportion of

all relevant and available evidence that supports the claim

that the actual “state” belongs to γ but to no particular

subset of it. This framework suits very well the multi-robot

topological mapping problem. In fact, elements of the power-

set can be used to model the subset of patterns which fits

the limited set of features that can be extracted from the

partial view of a single robot. For example, if a corner is

detected by a robot during the feature extraction process the

set given by the union of all the environmental patterns which

contain a corner is considered. Note that, due to the limited

sensing capability, the whole surrounding environment will

be hardly recognized by a single robot. For this reason an

aggregation among the knowledge acquired by the team must

be introduced. In this ways, ambiguities can be reduced and

the set of plausible patterns can be restricted. Conditions

under which the correct pattern can be detected will be

discussed in Theorem 1.

As far as the construction of the set of masses

M = {m(γ1), . . . , m(γ|Γ|)} is concerned, let us assume

each robot can extract from its local map a set of relational

features s = {f1, . . . , fd} every T seconds. In addition, let

us define αi = pi ∩ s, with α ∈ [0, 1], as the “similarity”

between the set of features s and an environmental pattern

pi. At this point, the set of masses, which must sum to one

by definition, is computed as follows:

• a fraction η, is assigned to the union A of all patterns

compatible with the features acquired that is:

m(A) = η, A =
⋃

pi∩s6=∅

pi (2)

• the remaining 1− η of the mass is assigned proportion-

ally (w.r.t. to the similarity) to each subset Bj having

cardinality minus one respect to A, except for the atomic

patterns:

m(Bj) = (1 − η) · χj, (3)

∀ B =
⋃

pi∩s6=∅

pi s.t. |B| = |A| − 1 > 1

with

χj =

∑

pk∈Bj
αk

∑

Bj ∈ A
|Bj| = |A| − 1

∑

pk∈Bj
αk

.

Note that, the condition |A| ≥ 2 is required in order to

have an assignment to be self-consistent, i.e., a combination

of a set M with itself should not introduce contradiction.

D. Topological Maps Aggregation

The Transferable Belief Model (TBM) introduced by

Smets [15] is exploited for the aggregation of the topological

description of the environment built by each robot. TBM

allows to combine evidence from different sources and arrive

at a degree of belief that takes into account all the available

evidences.

For a couple or robots (i, j), the TBM conjunction rule

can be defined as follows:

(mi ⊗ mj)(γa) =
∑

γb, γc

γb ∩ γc = γa

mi(γb)mj(γc). (4)

From a computational perspective, the aggregation can be

performed in two different ways. A simple approach is to

let robots broadcast the acquired topological description and

then each robot performs locally the aggregation. A more

refined approach is to devise a local interaction rule which

provides the same result as the previous one avoiding the

overhead of the broadcast [16]. The first approach is simpler

and reasonable for a team of few robots, while the second

approach is more suitable for a large team of robots.

Note that the proposed framework turns out to be exact in

the ideal case of measurements without noise. The following

theorem provides a mathematical characterization of this

correctness.

Theorem 1: Let us consider an environmental pattern

pq ∈ P described by a set Fq = {f1, . . . , fh} of relational

features. Let us assume each robot to build a set of masses

according to the rules given in eq. (2) and eq. (3). Finally, let

us assume the set of masses to be aggregated according to

the combination rule given in eq. (4). A sufficient condition

for the recognition of the environmental pattern pq is that :

N
⋃

i

si = Fq,

where N is the number of robots and si is the set of relational

features computed by the i-th robot.

Proof: In order to prove the theorem, let us consider

without any lack of generality a partition over Fq such that

every subset of Fq is correctly identified by one robot. Let

Ai be the union of all the patterns compatible with the

observed subset of features related to the i-th robot. Now, let
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us consider two robots j and k performing an aggregation of

their masses Mj and Mk according to eq. (4). The elements

m(γ) of the resulting set Mj,k are obtained as follows:

m(γ) =











mj(Aj) · mk(Ak) if γ = Aj ∩ Ak

≥ 0 if γ ∩ (Aj ∩ Ak) 6= ∅

0 if otherwise

Therefore, only the elements {γl} of the power-set Γ repre-

senting the subset of environmental patterns supported by

the intersection of the two sets of relational features Aj

and Ak are assigned with a mass greater than 0, while

the remaining content of information accumulates in the

mass of the element γ = ∅ emphasizing the contradiction

between sources. At this point, by iterating this aggregation

process, the obtained set of masses Mj,k will be necessarily

aggregated with the set Mr provided by one of the other

robots. Now, by recalling from eq. (1) that an environmental

pattern is fully described by the union of its own relational

features and by assuming measurements to be perfect, the

following holds:
N
⋂

i

Ai = pq.

Therefore, after all the set of masses are aggregated, only the

element γ = pq will have a mass greater than 0. Hence, the

correct environmental pattern can be identified. Furthermore,

the mass associated to γ = ∅ can be thought as the amount

of contradiction due to the initial occlusions experienced by

each robot.

Although a proper mathematical characterization has been

derived under the assumption of ideal measurements avail-

ability, in the real world data coming from sensors is always

affected by noise. For this reason a simple but effective

workaround to deal with the eventuality that a robot might

perform an incorrect feature extraction is proposed. The idea

is to assign a fraction ζ to the universe set, e.g. m(P) = ζ.

This trick allows to partially recover from a bad feature

extraction process. In this way also non common hypotheses

can survive. A viable solution, making the assumption that a

sort of index measuring the quality of the feature extraction is

available, is to assign ζ proportionally to the goodness of the

feature extraction process. Finally, the remaining part after

assigning η and ζ could be assigned as explained before.

E. Computational Complexity and Implementation Details

From a computational perspective the proposed collab-

orative technique for topological map building cannot be

implemented as it is. Indeed, a few tricks are required to

let the technique be computationally affordable for a team

of low-cost robots.

Strictly speaking, the major bottleneck is related to the

construction of the power-set Γ. Indeed, given a frame of

discernment Ω with cardinality |Ω| the related power-set will

have a cardinality equals to 2|Ω|, letting the formalization

become intractable very quickly. In order to overcome this

limitation, the problem formulation has been equivalently

split in two parts. In detail, while the original formalization

considers a frame of discernment where profiles are oriented,

in the algorithmic solution profiles are not oriented and

the discrimination is made in two steps: first the profiles

which are plausible according to the set of information

coming from the team are discriminated, successively the

correct one is identified by means of an agreement over

the orientation. Indeed, this two-steps procedure allows to

significantly reduce the cardinality of the set Ω and therefore

to keep the overall complexity of the proposed technique

affordable.

V. EXPERIMENTAL RESULTS

In this section, an experimental validation of the proposed

topological map-building technique is proposed. Experiments

have been carried out by exploiting two robots SAETTA

having a complementary 180◦ field of view (see Figure 5 ).

The experiments encompass all the environmental patterns

described in Section IV-A. In particular, three different

scenarios have been considered.

The motion of a robot is regulated by a very simple rule:

if an obstacle is sensed on the heading direction, or if a

large discontinuity is detected by the lateral sensors, a 360◦

rotation is performed by each robot. Note that, the rotation

maneuver is required only to make up for the limited sensing

resolution of the array of infrared range-finders. Indeed, this

could be avoided if a sensor with a more granular resolution

were available, e.g., a laser range-finder.

140 cm

140 cm

t1

t2

t3 t4

a)

b)

390 cm

Fig. 5. First scenario. a) scenario of the first experiment: the environment
can be partitioned into a sequence constituted by a corridor (upper part), a
T-junction, another corridor and a dead end b) the environment reconstructed
by IR sensors is visible in the background. Triangles represents robot poses
over time, while semi circles show the parts to be monitored by each robot
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Fig. 6. Estimation process over time for the first experiment: solid (green)
line represents the ground-truth, cross-dashed (red) line represents the output
of the sensor fusion using the TBM conjunctive rule, dashed (blu) line
represents the output of the algorithm using feature orientation information

The first scenario, with the related robots paths, is depicted

in Figure 5. The sequence of mass aggregation performed

by the two robots is shown in Figure 6. In particular, the

solid (green) line represents the ground-truth, while the

cross-dashed (red) line represents the output of the coarse

aggregation involving a set of non oriented environmental

patterns, and the dashed (blu) line describes the resulting

(oriented) patterns obtained after the two-step aggregation

procedure is performed.

From the beginning until time t1, each robot detects a

wall and, therefore the element of the power-set supporting

both a corridor and a T-junction will be set with a mass

greater than 0. Now, since the algorithmic solution described

in Subsection IV-E is considered, the aggregation (first-step)

cannot solve the ambiguous situation, due to the lack of

knowledge about the orientation. However, by performing

the second step a conflict regarding the orientation of the

T-junction arises and therefore the corridor is taken as the

correct pattern. Successively, at time t2 the formation moves

into a T-junction. In this case both robots detect a corner

along with a wall, and therefore no doubt concerning the

correct pattern remains after the masses aggregation (first-

step) is performed. Furthermore, as a large discontinuity is

detected, the two robots perform a full rotation as explained

above. After that, till time t3 the two robots remain within

a corridor performing the same aggregation as discussed for

the first time interval. Note that, due to the noise affecting

the measurements, a couple of times a convex corner is

erroneously detected by one of the two robots, making the

two observations contradictory. As a result, a high value

for the m(∅) is obtained by the two robots. After time t3,

the two robots approach a dead-end and also in this case

a full rotation is performed. Apart from a few erroneous

features extraction both robots detect a convex corner which

supports both the L-turn and the dead-end. As for the

corridor, the lack of information about the orientation does

not allow to disambiguate the proper profile after the first

step. Nevertheless, the dead-end is properly recognized after

the second step is performed.

The second scenario, which considers two intersecting

corridors, is shown in Figure 7. After a correct initial estima-

tion of the corridor, the couple of robots repeatedly fails to

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

O

T

O+T

L

X

X+T

;

Fig. 7. Estimation process over time for the second experiment: solid
(green) line represents the ground-truth, cross-dashed (red) line represents
the output of the sensor fusion using the TBM, dashed (blu) line represents
the output of the algorithm using feature orientation information

a) b)

Fig. 8. Feature extraction. a) a robot correctly detect a double angle b) a
robot fails to recognize the double angle estimating a meaningless dashed
line

estimate the crossing. Indeed, this is due to the wrong feature

extraction performed by one of the two robots. In particular,

three erroneous detections are performed. On the first case,

one of the two robots correctly identifies two corners while

the other one simply recognizes a segment. This leads to the

wrong (but plausible according to the data) detection of a

T-junction. On the second case as shown in Figure 8, one

of the two robots correctly identifies two corners while the

other one recognizes two roughly parallel segments which

do not respect the minimum distance constraint discussed in

Subsection IV-A. Now, since no feature is available for the

faulty robot the entire mass is assigned to the union of all

the hypotheses, i.e., m(P) = 1. As a result, the two profiles

crossing and T-junction, supported by the detection of the

other robot, cannot be disambiguated. Finally, on the third

case an L-turn is detected. This can be explained by the fact

that one of the two robots erroneously recognizes a convex

corner instead of a concave one. As a consequence, by

combining the patterns supported by the correct detection of

a concave corner (by one robot), with the patterns supported

by the wrong detection of a convex corner (by the other

robot), the only plausible pattern turns out to be the L-turn

(Figure 10). Differently, the crossing is properly recognized

when both robots recognize a couple of concave corners

each. Note that, this situation could be partially recovered

by assigning a mass m(P) > 0 to the element representing
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a) b)

Fig. 9. Corner identification. a) the robot correctly identify a concave
corner b) the robot correctly identify a convex corner

L+D
0

0.5

1

L+T X+T X+L X+L+T
0

0.5

1

L
0

0.5

1

;

Fig. 10. Mass aggregation for a couple of robots under the assumption of
perfect measures. a) mass assignment for the first robot b) mass assignment
for the second robot c) result
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Fig. 11. Mass aggregation for a couple of robots under the assumption
of noisy measurements. a) mass assignment for the first robot b) mass
assignment for the second robot c) result

the whole set of environmental patterns. In addition, if an

index of quality about the feature extraction process were

available, the value of m(P) could even be accurately tuned.

Obviously, the higher the observation reliability is the lower

the value of the mass would be. For sake of clarity, let us

now consider a numerical example describing this situation.

Figure 10 shows the result of the aggregation in the case

of ideal measurements, while Figure 11 shows the result

of the aggregation if the suggested workaround is taken

into account. In the first case, the result of the aggregation

does not allow to detect the correct pattern even if further

aggregations are considered, while in the second case this

would be possible as the correct pattern is still considered

plausible.

The last experiment involves the detection of the L-turn.

Also in this case the orientation of the relational feature

allows to properly estimate the surrounding environment as

can be seen in Figure 9 with no contradiction.

VI. CONCLUSIONS

In this paper the collaborative topological map-building

problem for multi-robot systems has been addressed. In

the proposed framework, a team of robots is supposed to

move in an indoor office-like environment. Each robot, after

building a local map by infrared range-finders, compares

the surrounding area to a set of (pre-defined) environmen-

tal patterns to achieve a local topological description of

the environment. The local view of each robot, which is

highly constrained by the low sensorial and computational

capability of the robotic platform, is then strengthened by a

collaborative aggregation schema based on the Transferable

Belief Model. Several interesting challenges still remain for

future work. From a theoretical standpoint, a more detailed

mathematical investigation of the graph-like modeling to

describe the environmental patterns might be of interest.

From an experimental point of view, a validation of the

proposed technique with more complex environments along

with an investigation of the effectiveness with respect to

different sensorial systems might be of interest.
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