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Abstract—We present a framework for detecting, identi-
fying, and recovering within stride from faults and other
leg contact disturbances encountered by a walking hexapedal
robot. Detection is achieved by means of a software contact-
event sensor with no additional sensing hardware beyond
the commercial actuators’ standard shaft encoders. A simple
finite state machine identifies disturbances as due either to an
expected ground contact, a missing ground contact indicating
leg fault, or an unexpected “wall” contact. Recovery proceeds
as necessary by means of a recently developed topological
gait transition coordinator. We demonstrate the efficacy of this
system by presenting preliminary data arising from two reactive
behaviors — wall avoidance and leg-break recovery. We believe
that extensions of this framework will enable reactive behaviors
allowing the robot to function with guarded autonomy under
widely varying terrain and self-health conditions.

I. INTRODUCTION

This paper describes a software contact-event sensor de-

signed to trigger a legged gait recovery transition on EduBot

[1] (see Fig. 1), a relative of the RHex hexapedal robot [2].

There are two principal contributions: first, we adapt the

traditional control theoretic framework of deterministic dy-

namical fault detection and recovery [3] to identify the need

for a transition; second, we apply topologically informed gait

control policies to achieve a smooth transition to desired

gait timings that produce stable locomotion. In doing so,

we take a small but important, novel step toward developing

an operational framework for guarded autonomous legged

locomotion in general terrain.

The most compelling case for legged locomotion arises

from the promise of robust adaptation and graceful degrada-

tion of mobility performance in mechanically complex and

highly varied environments and under conditions of changing

or compromised self-health. To date most of the locomotion

literature has addressed operation in the extremes: either

fixed, consistent terrain wherein a specific gait can be tuned

over repeated trials and accumulating experience [2, 4–8]

or wildly varied footing conditions [9–12] wherein it is not

at all clear that the notion of a gait is even appropriate.

We are aware of only two investigations of adaptive legged

locomotion in the presumably far more common middle-

ground setting of challenging but “modestly” varying terrain:

on-line deterministic gait parameter feedback [13]; and tuned

robustness against stochastic perturbation of an open loop

stride-map as an alternative to deterministic gaits [14]. In

Fig. 1: EduBot, a RHex-style hexapedal robot containing

only a single actuator per leg and minimal sensor config-

urations.

contrast, although the promise of redundancy against indi-

vidual joint or limb failure ought to be one of the major

advantages of legged mobility, with few exceptions [15–17]

there is little legged robotics literature on gait adaptation in

the face of compromised self-health.

Inevitably, the question of how to respond to various

alterations in the condition of the environment and state of

self-repair hinges upon the issue of what sort of sensing is

available. One way to detect the changed circumstances that

may require an altered locomotion strategy is to instrument

the legs with contact, force, strain, or other sensors that

measure directly what is happening to them or their envi-

ronment. However, instrumenting a leg may not be easy and

will always have a cost both in terms of money and design

constraints. In this paper, we further pursue the long-standing

theme of sensor-minimal robotics [18, 19] applied to reactive

locomotion in [20] and continued in [13]. Specifically, we

introduce and study empirically an algorithm that can acquire

the relevant information using an estimator driven only by a

motor mounted encoder that would typically be included in

any actuator package.

The paper is organized as follows. This introduction

concludes with a more detailed look at the motivation for

and prior literature most relevant to our software contact

detector. Section II details its algorithmic constituents, briefly
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describes the problem of legged gait transitions, and lays

out the manner in which the contact detector is integrated

into an existing transition planner to trigger the desired

adaptation. Section III documents the operation of this leg-

contact triggered gait transition mechanism in achieving two

illustrative behaviors: wall avoidance and leg fault recovery.

The paper concludes with a brief summary and assessment

of next steps in Section IV.

A. Disturbance Detection

At its core, this paper documents the value of adding

into a leg contact detector an internal state model patterned

on the decades-long tradition of industrial on-line fault

detection [3] (translated more recently into the setting of

robot execution monitoring [21] and hybrid systems diag-

nosis [22]), suggesting the architecture depicted in Figure

2. As we will detail in Section II, the measured output

(leg position) is compared with estimates generated by an

independent dynamical observer to form a “residual” (error

signal) containing clues about how the physical plant’s

behavior departs from modeled expectations to be processed

by downstream diagnostics. These estimates could also have

been generated via a dynamic bayes network (as in [23]),

or a particle filter method (as in [24]), or other estimation

technique. However the targeted application domain presents

very starkly and characteristically distinctive dynamics that

seem well captured by the simple, deterministic models

and well classified by the modest, deterministic finite state

automaton we introduce. Very likely, in settings requiring the

classification of many different terrains the more complex

stochastic methods will justify their significantly greater

calibration effort (e.g., selection of priors) and lengthier

transients. Such an inquiry lies considerably beyond the

scope of the present study.

In contrast, heretofore, we have relied upon memory-

less contact detectors, for example, examining directly the

discrepancy between commanded and actual motor shaft

output [13, 20] and the difficulty in getting these schemes to

function robustly serves as a strong motivation for the present

work. We document in Section II the comparative benefit

of this internal model approach to diagnostics relative to

the memoryless alternatives. Such difficulties had previously

motivated our group to undertake the significant effort of

instrumenting a direct physical contact sensor [25], but this

is a particularly challenging exercise on the continually

circulating legs of RHex-style machines1.

With non-recirculating legs the more modest cost and

complexity of leg contact hardware can be justified by the

documented benefits — e.g., in climbing unknown vertical

substrates [5] or highly irregular level ground surfaces [26]

(albeit, note these authors described the physical touchdown

1Bringing the sensor signals across the unconstrained rotating legs
necessitates some non-contact communications channel. We reported on a
wireless scheme in [25] but this has proven very challenging to maintain
in robust operating form. We have also experimented with infra-red and
even slip-ring communications bridges between body and legs. All of these
hardware approaches can be coaxed into functional operating form, but —
as long argued in the “sensor-minimal robotics” literature [18, 19] — each
incurs its own additional fragilities and operational complexity.
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Fig. 2: Overview of fault detection, identification, and recov-

ery architecture for a single state system. See [3]

sensors as not “adequate”). Even in these settings, running

a model based observer will provide a good reference for

accurately determining what is an expected disturbance and

what is an unexpected disturbance. We believe that the

broader virtues proposed in the industrial fault detection

literature [3] for “analytical redundancy” will make the state-

based software contact sensor we explore here a useful

adjunct to such hardware solutions, but these considerations

also lie beyond the scope of the present paper.

B. Disturbance Identification and Recovery

In concert with the overall framework of [3] (echoed

in [21]), our detector’s residual signal is passed through a

decision logic block for purposes of disturbance identifica-

tion. In this paper the decision block takes the form of a

hand-designed and hand-coded finite state machine depicted

in Fig. 6. In the longer term, as the range of possible

environments broadens and the diversity of potential fault

sources increases, we suspect that automated methods of [27]

will be required for the reliable and robust generation of such

decision blocks, and, as mentioned above, it seems likely that

a stochastic formulation may be required [23, 24].

The problem of fault recovery represents a vast, important

domain in its own right that is still relatively unexplored

in robotics. Bongard et al [16] compare the sensor-motor

signatures of their robot with a physics simulation based

upon generated self-models, for purpose of detecting the

design configuration of the robot mechanism. While similar

in purpose to our methods, we are focused upon models in

which the implicit physics are simple, rather than making

use of accurate full-body simulation, a difficult undertaking

for dynamic legged robots. Other work on loss of limb [15]

and reduced limb functionality [17] shows interesting gait

strategies, but differs from our results as we make use of no

sensory information other than actuators, and employ a robot

with a minimal number of actuators for locomotion.

II. ALGORITHM

A key factor underlying the success of our observer-based

sensor is that the dynamical properties of an EduBot leg in

flight are extremely simple to model: it is essentially a one

degree of freedom proportional-derivative reference tracking

loop, decoupled from all the other degrees of freedom. In

contrast, it is well understood that modeling contact is hard:

characterizing a leg’s interaction with complex substrates lies
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êp

êg

êd

ê
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Fig. 3: Block diagram of leg observer. The estimated angle θ̂ and angular velocity ω̂ are generated from the same reference

angle θd and velocity ωd as the actual leg using a simple model of the motor and controller.

at the cutting edge of contemporary applied physics research

[28], and, even on simple substrates, modeling the complex

Lagrangian mechanics characterizing a robot’s joints while

contacting a surface remains challenging. Thus, our problem

formulation establishes a leg’s swing phase as its nominal

operational state to be contrasted with “disturbances” caused

by either ground or obstacle collision, which the subsequent

fault logic can then readily classify as either expected,

unexpected, or missing contacts.

A. Disturbance Detection

The leg flight model in RHex-style machines takes the

particularly simple form of a single, decoupled, servo motor

with estimated state (shaft position, θ̂, and velocity, ω̂) driven

by a linear estimated error, ê,

ω̂ =
Km

s+Am

ê (1)

θ̂ =
1

s
ω̂ (2)

arising from a proportional-derivative (PD) tracker, 2

ê = êp + êd (3)

êp = Kp · (θd − θ̂) (4)

êd = Kd · (ωd − ω̂) (5)

excited by the desired reference position, θd, and velocity,

ωd, signals issued from the “Buehler clock” that defines a

RHex gait [2]. In addition, as our legs operate in the vertical

plane, they are affected by gravity which we model (instead

of trying to cancel actively) by adjoining a third known

“reference error” term, êg , to the tracking controller’s input.

Equation 3 is thus replaced by:

ê = êp + êd + êg (6)

êg = Kg · sin(θ̂ + θg) (7)

2Note that since θd and θ̂ lie on the circle (S1), their difference in
Equation 4 is taken to be in the range (−π, π], and computed by a
standard modulus function. Also note that the physical interpretation of the
parameters is standard and not essential to the paper’s central contribution.
We discuss how to calibrate these parameters in the following paragraphs.

where Kg is the magnitude of the effect and θg is the

angular offset. Finally, there is a time delay Tdel at the end

to synchronize the observer with the physical plant3. Figure

3 depicts the model just described.

The unknown parameters (Km, Am, Kg , θg, Kd, and

Tdel) are calibrated via the Nelder-Mead algorithm [29] using

a hand-tuned starting simplex. The final parameter, Kp, is

taken to be the value used by the higher level controller4.

Furthermore, Tdel is taken to be constant across all legs. For

all experiments listed in this paper, these parameters were

trained on a dataset collected when the robot was allowed

to spin all legs freely and with a standard alternating tripod

gait. The speed of the gait was ramped up over time from

approximately 0.6 to 2.5 strides per second.

The outputs of this observer, θ̂ and ω̂, are compared

with the actual achieved angle θ and angular velocity ω, as

reported by the motor-mounted encoder, to form the observer

residual vector5:

[

rθ

rω

]

=

[

θ̂ − θ

ω̂ − ω

]

(8)

To test the accuracy of the observer, we collected a second

dataset at a moderate speed of one stride per second for 15

seconds. This yielded a median position residual of rθ =
0.0271 radians (1.59 degrees) and a median velocity residual

of rω = 0.4267 rad/s (4.075 rpm) over all six legs. The

maximum residuals were rθ = 0.1038 radians (5.95 degrees)

and rω = 3.8857 (37.11 rpm). A section of this raw data

from the first leg is shown in Figure 4 for the robot in the

air and Figure 5 for the robot making ground contact. In both

figures parts (a) and (c) we plot rθ and rω , respectively. For

comparison, errors calculated from the position and velocity

tracking (θd− θ and ωd−ω) are plotted in parts (b) and (d),

respectively. The green shaded portion indicates the nominal

stance phase of the gait.

3The EduBot’s distributed control architecture and bus structure incurs a
time delay from motherboard (where θd and ωd are generated) through the
network to the local hip controller and then back up to the motherboard
where the residuals are calculated. Since our system is time invariant, we
can combine these delays into an overall delay of twice the average one
way network transport time. Our observer outputs are thus held in a buffer
for a total of Tdel.

4Due to the implementation of the derivative feedback in our controller,
Kd had to be calculated

5As with Equation 4, the value θ̂−θ is taken to lie in the range (−π, π].
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Fig. 4: Observer residual contrasted with controller tracking

error in both position and velocity under conditions of free

leg swing (no “disturbance” from any ground contact). The

abscissas display time in seconds. Green shading indicates

the expected stance phase of the gait.

These plots suggest the significantly greater utility of

observer residuals relative to mere controller tracking errors

in assessing a leg’s relationship to the ground. Whereas the

simple tracking errors exhibit sizable and varying excursions

even when the leg has no load, the observer residuals

account for the predictable causes of such variation, and only

exhibit excursions when contact conditions change. More

specifically, during normal operation, due to the nature of the

proportional-derivative controller, velocity tracking cannot

account for abrupt changes in reference velocity (which the

motor cannot perfectly follow), and position tracking must

lag as a function of the commanded and actual speeds. These

structural features of the PD error signals are particularly

onerous because they are strongest just at the moments of

the putative ground interaction of true interest. The change

in gait phase to slow the leg down for stance by definition

should happen around the same time as the touchdown event

we are trying to detect. In contrast, these expected dynamical

variations in the normal tracking error are accounted for in

the observer, as is evidenced by the low level of error for

both rθ and rω in Figure 4a and 4c. While both estimated

states, θ̂ and ω̂, provide useful information, we have found

that using only θ̂ is sufficient for disturbance identification.

B. Disturbance Identification

Given an informative disturbance signal, rθ, we introduce

a simple output logic stage to classify the conditions of
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Fig. 5: Observer residual contrasted with controller tracking

error in both position and velocity under conditions of cyclic

ground contact (one of the disturbances of interest). The

abscissas display time in seconds. Green shading indicates

the expected stance phase of the gait.

interest with respect to an intuitively developed partition of

the signal space as follows. The circle, S
1, of leg phase

angles is partitioned into four intervals labeled “ground”

(G) — leg angles that the Buehler clock associates with

ground contact by commanding lower ωd — and “air” (A)

— leg angles that the clock associates with free flight by

commanding higher ωd — together with two intermediating

phase angles labeled “takeoff” (T) — an interval over which

the transition from low to high ωd is expected to occur — and

“landing” (L) — an interval over which the transition from

high to low ωd is expected to occur. Similarly, the circle,

S
1, of residual position angle errors is partitioned into three

intervals labeled “high” (H) — large residual values that

experience suggests should be expected only in conjunction

with stance — “low” (L) — small residuals associated

with typical free flight conditions — and “medium” (M)

— a pair of disconnected intervals that separate the “low”

and “high” intervals. We use these symbols to trigger the

transition of a simple hand-designed FSM with four normal

states — stance, possible takeoff, flight, or possible landing.

The FSM includes two additional error states — unexpected

disturbance and missing ground. An unexpected disturbance

occurs when rθ increases but the leg is not in a phase of the

gait where it could hit the ground. Missing ground is when

rθ does not increase but the leg is in a phase of the gait

where it should have contacted the ground. There is also a
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Fig. 6: State transition diagram for fault identification

minimum lingering time in each state of the FSM to avoid

quick transitions due to noise spikes. The state transition

diagram is depicted in Figure 6.

The possible takeoff and possible landing states were

added to improve accuracy over a wider range of gait speeds.

For instance the leg may be in a state with θ ∈ T and rθ ∈ M

but it should not be construed as having taken off unless at

some point in the near future rθ continues to decrease. In

contrast, if rθ goes back up then we should treat the leg as

if it is still on the ground. The possible landing state allows

our ground detector to trigger at the medium error level but

not declare a confirmed ground contact unless rθ continues

to rise up to the high level.

As mentioned in I-A, the ad hoc construction of this diag-

nostic state machine could surely be improved by recourse

to the more formal methods of supervisory control [27].

However, for this application, we believe the details of its

cell structure and transition logic are less important than the

broader design insight that a sound decision about the nature

of the current disturbance must be based on the available

information: θ, ω, rθ, rω , and their evolution in time.

C. Disturbance Recovery

Reacting to and recovering from disturbances or damage

to limbs during locomotion should be a strength of multi-

legged platforms, given the intuitive understanding that a

multitude of legs confers redundancy. Re-coordination of the

limbs of a within-stride walking machine while attempting to

guarantee gait stability, however, is not entirely straightfor-

ward. Particularly with RHex-style machines such as EduBot,

equipped with a single actuator per leg, the coordination of

phase during active locomotion while avoiding a fall can

be challenging. In planning and executing the gait recovery

mechanism that we report here, we build upon prior work in

topological gait classification, analysis, and control [30]. For

this application, we signal a gait recovery transition for the

scenario where the robot accidentally breaks a leg, resulting

in an asymmetric five-legged gait for a hexapedal machine.

Our gait classification formalism [30] adapts Young

Tabloids [31], representations of the partitions of a set of

unique integers, 1 . . . n, to represent the unique gait timings

of multi-legged systems. For an individual tabloid, elements

within a row correspond to legs in phase, while consecutive

rows dictate the out of phase cyclic recirculation order of

legs. An example is the alternating tripod, a commonplace

gait for hexapedal systems in which two sets of three legs

are grouped into individual tripods of support. Represented

as a Young Tabloid, this gait is:

1 3 5
2 4 6

(9)

Our previous work in this problem domain associates

Young Tabloids with gait cycles on a high dimensional torus

— the phase space of multi-legged gaits — and uses a simple

control policy to place global attractors at desired gait cycles

[30]. While that prior work deals with the use of tabloids

in correspondence with an algebra over which to plan gait

transitions, we are now faced with the scenario of changing

dimensionality, by which losing a leg forces us to consider

gaits on a 5-dimensional torus rather than six.

A total of 1082 unique gait orderings exist for a hexapedal

robot [30], of which the alternating tripod is both uniquely

fast and stable. Upon loss of a leg, however, we have a five-

legged system, for which only 150 unique timings exist, and

the now “5-legged” tripod gait no longer maintains stability.

Depending upon which leg has been lost, we transition to

a crawl gait that maximizes static stability for the walking

machine6. In the case of loss of the robot’s sixth leg, the

back right actuator, we transition to a crawl gait with leg

recirculation ordering,

3
1
5
2
4

(10)

The transition is executed when the FSM indicates missing

ground by a given leg. As EduBot and RHex only contain a

single actuator per leg, we speed up and slow down legs

in recirculation to achieve the phase relationships of our

new desired gait [30]. Our control policies change the gait

immediately, and converge fully to the desired crawl gait

within a few strides, as witnessed by an example of this

transition shown in the following section.

III. REACTIVE BEHAVIORS

A. Wall Avoidance

The first behavior that we have implemented using this

software contact detector and disturbance classifier is a

simple wall avoidance algorithm. Instead of whiskers or

antennae [32], the robot must touch the wall with its leg

and, upon unexpected disturbance (see Section II-B), back

up to turn away. While not necessarily an efficient solution

to any sort of maze problem, this simple, useful behavior il-

lustrates the reliability of our contact detector for disturbance

detection and identification.

In this case disturbance recovery is quite simple. Once

the robot knows there is an obstacle in front of it, it must

immediately move backwards, turn, and continue on its

6Our current recovery strategy uses specifically chosen crawl gaits. Future
versions of this work will take into account the stability margins of all 150
potential gaits in order to automatically select suitable gaits.

5351



−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.6

−0.4

−0.2

0

0.2

0.4

1

2

3

10

12

46

8

9

7
5

11

Fig. 7: Overhead plot, in meters, of the center of mass of an

EduBot running a wall avoidance behavior inside a closed

rectangular region, using the described method as the only

sensing strategy. The twelve contact points are labeled.

way. For simplicity of solution, here the robot always turns

right. An overhead plot of this behavior within an enclosed

rectangle seen in Fig. 7, recorded using a Vicon motion

capture system [33]. A second experiment with an available

exit is shown in the attached video.

B. Leg Fault Recovery

To test the effectiveness of our detection of and recovery

from disturbances, we now exhibit behavioral strategies on

the EduBot machine in which the robot must quickly adapt

to dramatically changed locomotion capabilities.

The robot was rigged with purposefully weakened legs

designed to fracture and fall off after only a few steps.

Without disturbance detection, the now five-legged machine

naı̈vely continues to make use of the alternating tripod gait,

but does so with dramatically reduced stability. As shown

in Fig. 8a, the machine impacts the ground (chattering

in vertical acceleration) during each stride due to loss of

stability, greatly decreasing its locomotive quality.

Upon execution of a transition to a five-legged crawl gait

triggered by a missing ground event using strategies outlined

in Sections II-B and II-C, the robot is still handicapped with

just five legs, seen in Fig. 8b at steady-state behavior, but

maintains stability and does not impact the ground. A plot

of a transition is shown in Fig. 9, in which a gait transition

smoothly switches gaits upon noticing a locomotive failure

of the sixth leg. An example of both the reactive and non-

reactive cases is included in the attached video.

IV. CONCLUSION

We have introduced and documented empirically the per-

formance of a software contact-event driven disturbance

identification and recovery system, based upon the estab-

lished fault detection and isolation methods of industrial

control [3], operating on a hexapedal walking machine.

Initial results demonstrate that our ground contact estimates

successfully cue appropriate behavioral transitions, including
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(b) Five-legged Crawl Gait

Fig. 8: Gait comparison using inertial measurements of a

robot walking with a missing sixth leg. For the bottom plot

of each, black regions indicate stance. On five legs, the

tripod gait loses stability and impacts the ground, seen by

strong impacts in the vertical acceleration. The crawl gaits

retains stability, reduces roll, and induces only small pitching

moments.

effective reaction to the sudden and unexpected loss of a limb

during locomotion followed by smooth, safe transition to a

new, more stable gait.

Of course, a great variety of errors may be encountered

during robot locomotion, ranging from the most simple, such

as unexpected obstacles in a robot’s path, to more complex

self-failures due to a variety of causes (potentially including,

e.g., motors overheating, electrical shorts, seized gearboxes,

broken legs, etc.) and it is important that a legged robot

respond to and recover from each disturbance appropriately.

While readily available and effective sensors exist for a

variety of applications, our method relies solely upon a

robot’s actuators and offers robust, model-based results for

both minimalism and redundancy during operation.

For future studies, we are interested in incorporating addi-

tional actuator information, such as measured motor current,

into our model, and we also believe that use of rω , in addition

to rθ, can provide further information regarding system state.

The detector will benefit from additional learning techniques,

both on- and off-line, to remove hand-tuned elements as well

as fit performance characteristics during operation. Whereas

our current methods only estimate discrete leg contact, we
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Fig. 9: Sequence of leg recirculation events for each leg

during a transition from a hexapedal alternating tripod gait

to a five-legged crawl, black regions corresponding to leg

stance. Around t = 30.5 the robot loses its sixth leg and

compensates via the gait transition.

are looking into estimation for the magnitudes of ground

reaction forces as well [34]. In the longer term, we plan

to adapt our estimation techniques to terrain classification,

incorporating, for example, IMU data and frequency analysis

as in [35]. This will allow the robot to adapt gaits based

upon terrain, such as when suddenly encountering a sandy

rather than than expected hard surface [28]. Finally, this

paper has focused on robots with single actuators per leg, but

we are now contemplating the introduction of such simple

diagnostics on other legged robots for which additional

actuator feedback may be useful for more robust behaviors.
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