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Abstract— The occupancy grid is a popular tool for proba-
bilistic robotics, used for a variety of applications. Such grids
are typically based on data from range sensors (e.g. laser,
ultrasound), and the computation process is well known [1].
The use of stereo-vision in this framework is less common, and
typically treats the stereo sensor as a distance sensor, or fails
to account for the uncertainties specific to vision. In this paper,
we propose a novel approach to compute occupancy grids from
stereo-vision, for the purpose of intelligent vehicles. Occupancy
is initially computed directly in the stereoscopic sensor’s dis-
parity space, using the sensor’s pixel-wise precision during the
computation process and allowing the handling of occlusions
in the observed area. It is also computationally efficient, since
it uses the u-disparity approach to avoid processing a large
point cloud. In a second stage, this disparity-space occupancy
is transformed into a Cartesian space occupancy grid to be
used by subsequent applications. In this paper, we present
the method and show results obtained with real road data,
comparing this approach with others.

I. INTRODUCTION

Creating (or having a priori) a model of the local environ-

ment has always been one of the requirements for successful

implementation of a mobile robot. One common approach

has been to build an occupancy grid. These grids are often

created based on data from one or more range sensors,

such as laser or ultrasound. Because of the imperfection

in such sensors, it is current practice to create the grid by

using a probabilistic approach [1][2]. While stereo camera

pairs have been widely used on mobile robots, their use

for the creation of occupancy grids has been somewhat less

common. In some cases, researchers have used the stereo

cameras purely as a distance sensor, and used the same

approach as with a laser sensor [3]. Others have used stereo-

specific methods, but have not completely considered the

nature of the stereoscopic data. In [4] or [5], the authors

only consider the first detected object for each column and

suppose that it occludes the field ahead.

This paper presents a novel approach for the construction of

occupancy grids using a stereo camera pair, specifically cre-

ated for the application of an on-road intelligent vehicle. As

such, the occupancy grid created will be a plane representing

the area in front of the vehicle. The idea is not to map the

environnement at a global scale, but rather to estimate the

free space in front of the vehicle. Also, processing time is

critical for this application, as the system will be required

to execute in real-time. Finally, it is important to see all
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obstacles, even those which may be behind another obstacle,

such as a pedestrian stepping from behind a car. For example,

if a car is parked on the curb, it may present no risk to the

ego-vehicle. But a person stepping out from behind the car

would present a risk - and by the time the person is no longer

occluded behind the car, it may be too late to safely stop the

vehicle. One of the critical advantages of cameras over 2-D

laser sensors for this application is precisely the ability to see

such obstacles. A 3D laser sensor has similar advantages, but

is much more expensive and slower than a vision sensor.

The method presented here provides a formal probabilistic

model to calculate the probability of occupancy based on the

disparity space of the stereoscopic sensor. The method also

formally considers the visibility of the different regions of

the image in the calculation, and thus can deal with partially-

occluded objects. Because of its use of the u-disparity space,

it is computationally efficient. Finally, the method formally

considers the reduction in accuracy of the disparity image

with distance from the sensor. The paper will detail the

methodology, and show results with data from real images

obtained on the road.

Section II provides a brief review of the use of the dispar-

ity space, with specifics related to the intelligent vehicle

application. Section III explains the overall methodology.

Section IV shows results, and compares the method with

other approaches. Finally, Section V discusses future work

and conclusions.

II. THE DATA IN THE DISPARITY SPACE

A. Geometrical considerations

In this paper the stereoscopic sensor is considered as

perfectly rectified. Cameras are supposed identical and clas-

sically represented by a pinhole model, (αu, αv, u0, v0)
being the intrinsic parameters. Pixel coordinates in left and

right cameras are respectively named (ul, v) and (ur, v). The

length of the stereo baseline is bs. It should be noted that

this application only calls for the visual sensor to create

an instantaneous occupancy grid of the area in front of the

vehicle.

A world coordinate system is denoted Rw. Each point P of

coordinates Xw = (xw , yw, zw) can be projected onto the left

and right image planes, respectively on positions (ul, v) and

(ur, v). Consequently, in the disparity space associated to the

stereoscopic sensor, the coordinates of P are U = (u, d, v),
with u = ul and d = ul − ur, namely the disparity value of

the pixel. The u, d and v axes define the disparity coordinate

system R∆. The transform U = F (Xw) is invertible, so the

coordinates in Rw can be retrieved from images coordinates

through a reconstruction function.
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For simplicity in notation, and without loss of generality, the

yaw, pitch and roll angles of the camera, relative to Rw, are

set to zero. Assuming that the center of the stereo baseline

is situated at position (xo, yo, zo), the transform from the

world coordinate system to disparity space is given by [6]:










u = u0 + αu
xw−xo

−bs/2
yw−yo

v = v0 + αv
zw−zo

yw−yo

d = αu
bs

yw−yo

(1)

B. The u-disparity approach

1) The idea: The u-disparity approach [7] is a

complement to the v-disparity originally described in

[8]. The idea is to project the pixels of the disparity map

along the columns, with accumulation. The resulting image

is similar to a bird’s eye view representation of the scene in

the disparity space, as illustrated on figure 1. On this image,

the lower lines correspond to close areas, while the upper

lines contain information about the long distances. Vertical

objects (i.e. with constant disparity, e.g. the pedestrians)

appear as portion of straight lines.

Fig. 1. Left image from a stereo pair (top), the associated disparity image

(mid) and u-disparity representation of the scene (bottom).

2) The detection plane: For occupancy grid computation,

we have to consider a detection plane PD, that is the

support for the grid. As shown on figure 2, PD is chosen

to be parallel to the plane defined by the baseline and the

optical axes. This constaint is possible, since the objective

is to build an occupancy grid in the vehicle’s frame.

A coordinate system RD(OD, ~xd, ~yd) is associated with the

detection plane. For a given point P of the space, xd = xw

and yd = yw. Arbitrarily, one can decide to set the detection

plane to zw = 0.

xd

zd

yd

bs

Od

Os

ys0

xs0

zs0

Detection plane

Left c
amera

Right cam
era

Fig. 2. Simplified geometrical configuration of the stereoscopic sensor, and

reference to the common coordinate system RD .

Considering equation 1, it appears that an orthogonal projec-

tion on PD is equivalent to an orthogonal projection in R∆

on any plane of constant v. Therefore, since computation

of u-disparity images is not costly, this approach directly

implements the vertical projection on PD of the observed

points from the scene. Moreover, it is equivalent to process

the data in the u-disparity plane or in PD. For the remainder

of this paper, we will call UD the coordinates of a point in

the u-disparity plan and XD its coordinates in the detection

plane. The transform between UD and XD is given by the

observation function GD:

GD : R
2 → R

2

UD 7→ XD
(2)

with:
{

x = xo
s + b

2 + b(u−uo)
d

y = yo
s + αubs

d

(3)

3) The alignment of rays: Another advantage of the u-

disparity approach for occupancy grid computation is that,

contrary to the cartesian representation, it lets appear as

parrallel the rays of light that go through the camera matrix.

Indeed, a set of vertically aligned rays is represented by a

column in the u-disparity image. In a similar way, the lines

of the v-disparity image correspond to sets of horizontally

aligned rays. This behavior is promising since it allows easy

estimation of occluded areas.

C. Road-obstacle separation

For the reminder of the paper, it is assumed that pixels

can be distinguished as being from the road surface or from

the obstacles. There are several methods to do this, such as

estimating the road surface and thresholding the height of

the pixels, as in [3]. We choose to use a double correlation

framework, which exploits different matching hypotheses

for vertical and horizontal objects, as described in [9] and

detailed in [6]. It provides immediate classification of the

pixels during the matching process. After this classification,

we obtain two disparity images Iobst
d and Iroad

d and two
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u-disparity images, Iobst
U and Iroad

U , respectively containing

pixels from the obstacles and from the road surface.

III. OCCUPANCY GRID COMPUTATION FROM THE

DISPARITY SPACE

A. The approach

The approach presented here is to compute an occupancy

grid directly in the u-disparity plane. This grid will later

be transformed into a cartesian grid, explicitly modeling

the uncertainty of the stereoscopic sensor. There are two

main advantages to this approach. First, this allows direct

consideration of visible and occluded portions of the

image. Second, this approach allows use of equally-spaced

measurement points to create the initial grid. By contrast,

moving to a Cartesian space first would give a varying

density of measurements.

B. Estimation of the occupancy of a cell

We seek to calculate P (OU ), the probability that a cell U
is occupied by an obstacle. This probability will depend on

the visibility, VU , and on the confidence on the observation

of an obstacle, CU . VU and CU are binary random variables

(i.e. P (VU = 1) measures the probability that the cell U
is visible, P (CU = 1) is the probability that an obstacle

has been observed in cell U ). Experience provides knowl-

edge about the shape of the probability density function

P (OU |VU , CU ), that is, the probability of a cell being

occupied, knowing VU and CU . Indeed, some boundary

conditions of P (OU |VU , CU ) are known. For example, if

the cell is not visible, nothing is known about its occupancy,

so:

P (OU |(VU = 0, CU = c) = 0.5, ∀c ∈ 0, 1 (4)

Similarly, if a cell is fully visible and there is full confidence

that an obstacle was observed, then:

P (OU |VU = 1, CU = 1) = 1 − PFP (5)

that is, the only way the cell is not occupied is in the event

of a false positive. Also:

P (OU |VU = 1, CU = 0) = PFN (6)

that is, a cell can only be occupied, when nothing is observed,

if there was a false negative. PFP and PFN are respectively

the probability that a false positive or a false negative can

occur during the matching process. These are assumed to be

constant and arbitrarily set according to the sensor’s features.

Finally, the laws of probability are used to obtain the full

decomposition of P (OU ):

P (OU ) =
∑

v,c P (VU = v) · P (CU = c) · P (OU |VU = v, CU = c)
(7)

VU and CU being boolean variables, this means:

P (OU ) = P (VU = 1) · P (CU = 1) · (1 − PFP )
+P (VU = 1) · (1 − P (CU = 1)) · PFN

+(1 − P (VU = 1)) · 0.5
(8)

So to compute the occupancy probability, it is necessary to

estimate the values P (VU = 1) and P (CU = 1) with respect

to the disparity data.

Let us define the maximum detection height h. For a given

cell U of the grid, we define the number of possible mea-

surement points as:

NP (U) = v0(d) − vh(d) (9)

v0(d) and vh(d) being respectively the v-coordinates of the

pixels situated on the ground (zw = 0) and at the maximum

detection height (zw = h) for the value d of the disparity.

Considering equation 1:

NP (U) =
αv

αu
·
h.d

bs
(10)

The number of observed obstacle pixels for the cell is the

number of possible pixels whose disparity value is d. It can

be directly measured in the obstacle u-disparity image:

NO(U) = Iobst
U (u, d) (11)

1) Estimation of the visibility of a cell: To estimate the

probability that a cell U is visible, we classify the pixels of

the obstacle disparity image whose coordinates are (u, v ∈
[vh, v0]) (i.e. possible pixels):

• if Iobst
d (u, v) > d, the point (u, d, v) is occluded,

• if Iobst
d (u, v) = 0, there is no observation for the ray

(u, v) (i.e. it is not visible),

• else the pixel (u, d, v) is said to be visible.

The number of visible pixels for any cell U is NV (U). The

probability of visibility is estimated to be the ratio between

visible pixels and possible pixels:

P (VU = 1) =
NV (U)

NP (U)
(12)

2) Estimation of the confidence of observation: We

choose to express the confidence on the observation of an

obstacle as a function of the ratio:

rO(U) =
NO(U)

NV (U)
(13)

This means that if more of the visible pixels are filled with

an observation, we are more confident we have observed

an obstacle. An exponential function is used to represent

the knowledge that the confidence should grow quickly with

respect to the number of observed pixels:

P (CU = 1) = 1 − e
−

rO(U)

τO (14)

where τO is a constant. Note that although CU is a binary

variable (either true or false), this probability density

function is continuous.

3) Resulting probability density function: Figure 3 il-

lustrates equation 8, the probability density function of

occupancy with respect to the visibility and to rO. For this

plot, parameters are set to: PFP = 0.01, PFN = 0.05 and

τO = 0.15. These parameters were set manually.
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Fig. 3. Probability density function P (OU ).

C. Resulting grid in the u-disparity plane

Knowing the probability density function P (OU |VU , CU ),
the computation of the occupancy grid in the u-disparity

image is straightforward. Figure 4 shows a detail of a scene

and the associated occupancy grid in the u-disparity plane.

Regions with obstacles appear in light color, while free space

appears in dark color. It is noticeable that regions situated in

front of obstacles are seen as free. Thanks to our approach

which formally considers the visibility, the pedestrian is

detected even if it is partially occluded by the box.

Fig. 4. Detail of a scene (a), associated disparity map (b) and occupancy

grid in u-disparity. The box and the pedestrian behind the box are both

apparent on the u-disparity occupancy grid. This would not have been

possible without considering the visibility.

D. Computation of the occupancy grid in Cartesian space

The cartesian occupancy grid requires the calculation of

which pixels from the occupancy grid in u-disparity have an

influence on a given cell of the cartesian grid. Let us define

the surface SU (U) of a pixel U = (u, d) as the region of the

u-disparity image delimited by the intervals [u−0.5, u+0.5[
and [d − 0.5, d + 0.5[. The area of influence of this pixel in

the detection plane is: SX(U) = G(SU (U)). To compute the

occupancy grid, the occupancy probability of a pixel U is

simply attributed to the area SX(U) of the detection plane.

For short distances, several pixels can have an influence on

the same cell of the metric grid. Therefore, it is necessary to

estimate the occupancy according to this set of data. For this

purpose, we choose to use a max estimator, which ensures

a conservative estimation of the probability of occupancy:

P (OX) = max(P (OU )/X ∈ SX(U)) (15)

IV. EXPERIMENTAL RESULTS

A. Experimental setup

The algorithm has been evaluated on sequences from the

French LOVe project [10], dealing with pedestrian detection.

The images are taken with a pair of SMAl CMOS cameras,

which provide images every 30 ms. They are reduced to

quarter VGA resolution (320*240 pixels) before the match-

ing process. The length of the stereo baseline is 43 cm.

The observed region is −7.5m < xd < 7.5m and 0m <
yd < 35m, maximum height is h = 2.0m, and the cell size

is 0.25m∗0.25m. The correlation window measures 7pixels
in width and 19pixels in height.

The occupancy grid computation parameters are set to:

PFP = 0.01, PFN = 0.05 and τO = 0.15.

B. Results

Figure 5 shows typical results. For each of the cases (a-

f), the left camera’s image is shown in the top left, the u-

disparity occupancy grid in the bottom left, and the cartesian

occupancy grid on the right. For the occupancy grids, lighter

colors indicate an increased likelihood of occupation, while

the background color represents a probability of occupation

of 0.5 (which means that there is no knowledge about the

likelihood of occupation of that cell).

In case a), the closest obstacle is the truck to the right.

In both occupancy grids, we can see the truck to the right,

and a variety of obstacles at a further distance in front and

to the left. In case b), we see a more cluttered scene, and

in the cartesian grid, the various obstacles are visible. Left

to right in the grid, note the oncoming car, the pedestrian

further away, the stoplight pole in the center, the truck as

a large obstacle further away, and the car on the far right.

Case c) shows that obstacles are seen at longer distance. Note

that the area between the camera and the other vehicles is

seen as free space. Case d) shows one of the advantages

of this method, as we can identify both the car turning in

front (the bottom right of the cartesian grid), and the sign

behind it. This effect is easily seen in the u-disparity grid,

on the right, where one can clearly see two obstacles. The

algorithm also correctly notes that there is some likelihood

that the area between the car and the sign is unoccupied.

Cases e) and f) show two scenes cluttered with pedestrian

traffic. In the u-disparity grid, it is obvious that objects are
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Fig. 5. Typical results obtained with a dataset from the French project LOVe. For each result: the left image of the stereo pair, the occupancy grid in the

u-disparity plane and the occupancy grid in cartesian space.

detected at a wide variety of distances. In the cartesian grid,

note the pedestrians, as well as a few of the vertical posts

on the right. Because the obstacles are close to the vehicle,

most of the occupancy grid in these cases remains unknown.

Figure 6 compares this approach to two other methods

of using a stereoscopic sensor to create an occupancy grid,

using case c from figure 5. Method a) detects the maximum

disparity of each column (as in [5]) occupancy probability

is PFN for higher disparity values, and 0.5 behind the

detected object. This approach is very sensitive to noise in the

disparity map and can not percieve partially occluded parts

of the scene. Method b) relies only on filling the grid based

on knowledge of the road and obstacles pixels, as described

in [6]. As such, much of the image has no information

(leading to large areas of 0.5 occupancy probability), and

the resulting grid tends to have high certainty. Finally,

the method described in this paper is shown in c). The

method formally takes into account the probability of false

measurements, making it less susceptible to noise, and finds

the obsacle behind the car whereas method a) found only

the part of the obstacle in front of the car. The probabilistic

model has also provided a more realistic variation in the

occupancy probablity values.

C. Computation time

On a standard laptop, without optimizations, the algorithm

for the u-disparity occupancy grid computation runs in

10 ms. The conversion into cartesian grid runs in 40 ms.

Considering that all the columns of the occupancy grid in u-

disparity can be processed independantly, many operations

can be performed in parallel. Thus it can be efficiently

implemented on a parellel architecture, e.g. a GPU, to furter

reduce computation time. We are now working on such

implementation of the algorithm on GPU, using NVIDIA’s
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a) b) c)

Fig. 6. Comparison of three approaches to compute the occupancy grid. a)

detection of the maximum disparity of each colum, b) exploitation of obstacle

and road u-disparity images as measurement point, c) computation in the

u-disparity plane.

CUDA. Preliminary tests showed that it is possible to run

the complete algorithm at video framerate (25fps), from the

stereo matching to the construction of the cartesian grid.

V. CONCLUSION AND FUTURE WORK

The algorithm described in this paper offers several ad-

vantages over other approaches using stereo vision to create

an occupancy grid. First, using the u-disparity as a starting

point allows computationally efficient calculations. Second,

computing the initial occupancy grid in the u-disparity space

allows for simpler calculation of the visibility. It also allows

the use of data with a pixel-wise precision all along the com-

putation process. Third, we have presented a formal means

of considering the occupation as a function of the probability

that an obstacle is visible, and of the confidence in the

observation of the obstacle. In summary, the contribution of

this paper is to calculate occupancy grids from stereo images

in a computationally efficient way, which formally accounts

for the probabilistic nature of the sensor.

Much work remains to be done. It is expected that this

algorithm will soon be tested on a vehicle also equipped

with dual laser range finders. The three sensors (2 lasers and

stereo-vision) will all provide occupancy grids to a Bayesian

Occupancy Filter. Comparing and fusing these occupancy

grids will provide another means of evaluating the output of

this algorithm. Third, the method will be updated to formally

consider the semi-occlusions in the stereoscopic images (i.e.

pixels next to disparity discontinuities). We also hope to

refine the approach by considering relationships between

parameters in the system (for example, the probability of

a false negative, or false positive, is related to the density of

the disparity image). Finally, work is being done to filter the

Cartesian grid based on the uncertainty of the stereo sensor,

and to take advantage of pixels that are identified as road

pixels.
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