
Unsupervised Learning of Compact 3D Models

Based on the Detection of Recurrent Structures

Michael Ruhnke Bastian Steder Giorgio Grisetti Wolfram Burgard

Abstract—In this paper we describe a novel algorithm for
constructing a compact representation of 3D laser range data.
Our approach extracts an alphabet of local scans from the
scene. The words of this alphabet are used to replace recurrent
local 3D structures, which leads to a substantial compression
of the entire point cloud. We optimize our model in terms of
complexity and accuracy by minimizing the Bayesian informa-
tion criterion (BIC). Experimental evaluations on large real-
world data show that our method allows robots to accurately
reconstruct environments with as few as 70 words.

I. INTRODUCTION

Representing and analyzing 3D data is an essential pre-

condition for many robotic applications including navigation,

object recognition, or manipulation. To this end several

authors propose unstructured euclidean representations like

point-clouds, grid maps, or surface maps. Whereas these

methods provide accurate representations of the environ-

ment, their huge memory requirements typically prevent their

application to large-scale environments. In this paper, we

present an approach for compressing 3D data by determining

repetitive patterns and using these patterns for representing

the environment. The key idea of our approach is to extract

an alphabet of common 3D patterns from dense 3D point

clouds and to use this alphabet to compactly represent the

entire scene. A further advantage of our approach is that it

also supports to efficiently carry out other tasks including

place recognition and object recognition.

The idea to compress data by replacing multiple occur-

rences of the same data block by one word of an alphabet

is at the root of classical compression approaches like, e.g.,

LZW [6]. These algorithms, however work on symbolic data.

They furthermore focus on the loss-less reconstruction of

the input without relying on additional knowledge about

the data. In our context, the computationally intensive part

is the recognition and the matching of recurrent patterns

within noisy point clouds. We will address this problem

with efficient data representations that encode the surface

properties of the 3D scene and allow to quickly retrieve the

occurrences of the pattern in the data.

Our method constructs increasingly accurate models and

optimizes them by minimizing the Bayesian information

criterion (BIC) to trade-off the complexity of the model with

its accuracy. We evaluate our approach on large real-world

data sets. One advantage of our formulation is that only few

parameters need to be defined. The experiments reveal that

All authors are with the Autonomous Systems Lab, Department of
Computer Science, University of Freiburg, D-79110 Freiburg, Germany
{ruhnke,steder,grisetti,burgard}@informatik.uni-freiburg.de

Fig. 1. This figure shows a point cloud reconstruction obtained with our
approach. This scene reconstruction was built from an alphabet of size 114
(light blue). Points of the original scene that are not covered by the alphabet
are black. In the bottom right we show two different views of one of the
alphabet words chosen by our method.

our approach can compute accurate models with as few as

70 words, due to the recurrence of the local structures. Note

that the number of words is automatically chosen by our

algorithm and depends on the structural complexity of the

environment. Figure 1 shows an example of a 3D scene

reconstructed with our approach.

In the next section we will provide a detailed discussion of

related work. Then we will explain our map representation,

followed by the alphabet selection procedure based on the

BIC. Then we describe the words of our alphabets and the

features we use to find repetitive structures. After presenting

a final reduction step regarding the instances in the model,

we will present experiments using different 3D data sets.

II. RELATED WORK

Accurate representations of 3D scenes and models are

required by a wide range of applications. Recent develop-

ments on Simultaneous Localization and Mapping (SLAM)

made it possible to obtain large metric models, however

these models can be so large to not fit in memory. Most of

the representations of the 3D data aim at being used within

these SLAM algorithms. In these contexts, it is usually more

important to focus on a reliable subset of the features in the

environment rather than attempting to represent the scene in

its whole complexity.

A straightforward way to describe 3D data is to directly

represent the unordered set of 3D points in the scene.

This representation is commonly referred to as point-cloud.

Popular algorithms in SLAM [7] and computer vision [2]

rely on these kinds of representations. The advantages of

point clouds are that they capture the world at an arbitrary

level of resolution and that one can easily apply spatial

transformations to them. Their disadvantage is that they

lack structural information and that they can be arbitrarily

redundant, resulting in large memory overheads.

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 2137

In computer-graphics oct-trees are a common approach

to represent scarcely occupied volumetric regions. In the

context of 3D laser-based SLAM, Fairfield et al. [4] proposed

to use oct-trees to represent the range measurements. The

advantage of oct-trees is that they compactly represent the 3D

space. Their main shortcoming is the complexity of applying

3D transformations, which basically requires to re-build the

entire oct-tree. Additionally the oct-trees describe the pure

occupancy information, while disregarding the fact that the

3D data originates from a surface. To recover properties

of the surface from an oct-tree representation one needs

to use a high resolution tree that may result in enormous

memory requirements. Surface maps are another popular

representation for 3D data. They can be thought of as 2D

grids, where every cell encodes the height of an object. While

these structures are clearly attractive to represent information

related to the traversability of a given environment, they

are quite inadequate to represent surfaces whose normals

are not aligned with the z axis of the world. Additionally,

it is not possible to represent full 3D environments with

multiple levels using normal surface maps. To overcome this

limitation, Triebel et al. [10] proposed the multilevel surface

(MLS) maps. A MLS map can be thought of as a stack of

surface maps each one describing one of the folds of the

environment, plus a series of “vertical” entries that capture

the information poorly represented by various surfaces. MLS

maps are effective to represent man-made environments.

However, the bounded resolution of the cells in the surface

grid may be a problem for applications requiring a high

accuracy like object detection.

Puente et al. [3] describe an approach for 3D mapping

based on laser range data that relies on extracting planar

patches from the observations. Extracting planes is rather

efficient, however the approach is restricted to environments

where everything is planar. Furthermore, the unavoidable

noise that affects the measurements limits the effectiveness

of this representation in real world scenarios. Limetkai et

al. [5] show the importance of richer semantic descriptions

by introducing the Relational Object Maps that are classical

2D grid maps augmented with the information of object lo-

cations. The objects are classified using features and are used

as landmarks for tasks like localization or place recognition.

In contrast to these approaches our method aims to

represent complex 3D models by utilizing the redundant

information that occurs in different similar locations of an

environment. We store prototypes of recurrent structures in

the form of partial point clouds as words in our alphabet.

These prototypes are then used to replace the occurrences of

the corresponding partial point clouds in the original scene.

Since we only need to store the references to words in

the alphabet and their positions in the scene, we obtain a

substantial compression of the original point cloud. As a

result, our approach produces highly accurate and compact

representations that can be manipulated as effectively as

point clouds. At the same time, this representation has the

potential for making additional tasks like place recognition

or object detection substantially more effective compared to

procedures that operate on the full point cloud.

III. LEARNING COMPACT 3D MODELS

Point clouds are a common representation for 3D scenes

consisting of an unordered set of 3D points D = {di}
sampled at the interface between the occupied and the unoc-

cupied space. The number of points required to represent a

scene is directly proportional to the area of the visible surface

of the objects and to the desired resolution. Furthermore, the

resolution has a strong impact onto the specific applications

that operate on the point cloud. For instance, applications like

object recognition require a resolution higher than the size

of the largest distinctive detail of the different objects to be

detected. In this context, representing large scenes with the

appropriate resolution leads to high memory requirements.

However, in most man-made environments the scenes

exhibit locally repetitive patterns. For instance, flat surfaces,

corners, doorways, or multiple instances of the same object

in the scene result in similar point distributions at different

positions in the cloud. In this paper, we utilize these repeating

structures to represent the scene in a way that is both compact

and accurate.

More precisely, we construct an alphabet of repeating

local structures, which constitute the words of our alphabet.

We then represent the overall scene based on these words,

where a single word can occur multiple times at different

locations in the scene. Each word s of our alphabet A is a

subset of the points of the original point-cloud D selected

from the neighborhood of a given point p with a maximum

distance of δ.

s = {d | d ∈ D, ||d− p|| < δ}. (1)

Given an alphabet A = {s1, . . . , sn} we can reconstruct

a 3D scene that approximates the original one by combining

the words in the alphabet. This can be parametrized by a

model M(A,D) = {m1, · · · ,m|M|} for a given alphabet

and a given scene. A model is a set of tuples mj = 〈idj , Tj〉
where idj is the index of a word in the alphabet and Tj is a

3D transformation. An item mj of the model specifies that

the word with index idj occurs in the scene at location Tj .

Based on this notation we can define the reconstructed scene

R as the union of a set of words in the alphabet, each one

positioned according to its corresponding transformation Tj :

R =

|M|
⋃

j=1

Tj · sidj . (2)

Here, Tj · sidj denotes a set obtained by transforming

all points in the word sidj according to Tj . There is one

remaining issue regarding R that has to be addressed. The

positions of the words in the reconstructed scene might have

a high overlap, leading to multiple points describing the

same part of the original scene. Therefore, we introduce a

sparsification step on R leading to R̂, where every point has

a minimum distance ε to every other point in the set:

R̂ = {ri | ri ∈ R ∧ ‖ri − rj‖ ≥ ε ∀rj ∈ R̂} (3)

2138

On the one hand, the more words are in our alphabet,

the more memory consuming our representation is. On the

other hand, having too few words reduces the accuracy of

the representation. This trade off is naturally captured by the

Bayesian information criterion (BIC).

Our approach proceeds by iteratively enlarging the alpha-

bet. During each iteration we sample a new word from the

scene and use it to enlarge the alphabet. If this word improves

the BIC score we accept it, otherwise we reject the word and

pick another one. The procedure is stopped after a maximum

number of iterations, or when the insertion of new words

does not improve the BIC score anymore.

In the remainder of this section we first discuss the

Bayesian information criterion and describe the likelihood

function that we use to estimate the accuracy of a model.

Subsequently, we discuss how we compute the words in the

alphabet and how we reconstruct a scene based on a given

alphabet. We conclude the section by describing a step of

our approach that aims to reduce the overlap between nearby

words and further improves the result.

A. Bayesian Information Criterion

Given the input scene D = {d1, ..., dN} of size N and the

reconstructed scene R̂[n] = {r0, · · · , rM} of size M created

from the alphabet A[n] in iteration n, the BIC is defined as:

BIC(D, R̂[n]) = −2 · ln(L(D, R̂[n])) + k[n] · ln(N). (4)

Here L(D, R̂[n])) is the likelihood function that measures

how well the data D is represented by the reconstructed

point cloud R̂[n], while k[n] is the number of parameters

(see below). Minimizing the BIC therefore results in finding

a model which is maximally consistent with the input (small

negative log-likelihood), while having a limited complexity

(small k). In our problem, the count of parameters is defined

as follows:

k[n] = 3 ·
|A[n]|
∑

i=1

|si|, si ∈ A[n], (5)

which is the sum of the point cloud sizes of every word in

the alphabet times 3, since a point has dimension 3.

B. Likelihood Function

By assuming the points in the cloud to be independent,

we define the log-likelihood as follows:

ln(L(D, R̂[n])) = ln

(

N
∏

i=1

P (di | R̂[n])

)

(6)

=

N
∑

i=1

ln(P (di | R̂[n])) (7)

Here di represents the ith point in D and the probability

of di is modeled depending on the data associations adi,rj

between di and the jth point in R̂[n]:

P (di | R̂[n]) =
M
∑

j=1

P (di | rj , adi,rj) · P (adi,rj) (8)

The need to model the data associations arises from D
and R̂[n] having different resolutions in corresponding areas.

Since we lack any knowledge about the data associations, we

assume a uniform distribution of the prior P (adi,rj), leading

to

P (di | R̂[n]) =
1

M

M
∑

j=1

P (di | rj , adi,rj). (9)

The main influence of the data association is typically in

the close proximity around the target data point di. There-

fore we only consider data associations within a distance

of 3σ (see below for a definition of σ). Let R̂[n],di =
{r′1, · · · , r′M ′} ⊆ R̂[n] be the points in R̂[n] that are in this

range of di:

R̂[n],di = {rj ∈ R̂[n] | ‖di − rj‖ ≤ 3σ}, (10)

Using this set we can approximate (9) as

P (di | R̂[n]) ≈ 1

M

M ′

∑

j=1

P (di | r′j , adi,r
′

j
). (11)

Given an association adi,rj the probability for a data point

pair is modeled as a spherical Gaussian

P (di | rj , adi,rj) =
1√
2πσ

exp(− 1

2σ2
‖di − rj‖2). (12)

We model the deviation σ range dependent for each point

di proportional to the resolution of the original laser scan at

the range of di. Given an angular resolution of α we compute

σdi
in the following way:

σdi
= λ · tan

(α

2

)

· range(di) (13)

A uniform chosen σ would overestimate the importance of

the low resolution parts in the input data. Consider a typical

3D range scan taken in a planar world where every patch can

be described by a planar point cloud. In this context, the only

difference between the planar point clouds is their resolution.

By using our formulation of the likelihood function, the best

BIC rated word is the one having the “average” resolution.

Reconstructing the scene with this best candidate reduces

the accuracy in high resolution areas, while it improves low

resolution parts.

C. Alphabet Symbols and Model Creation

So far we described, how to evaluate the BIC of a model.

In this section we describe the data structure of the words

in our alphabet and how to obtain a model M(A,D) given

an alphabet A and a scene D.

To be able to find similar structures in the 3D data, we

extract local point features, that provide descriptors for easy

comparison. Every word in our alphabet stores a feature

descriptor and a representative point cloud of the part in

the scene from where the descriptor was extracted.

The decision where to extract the features is a two step

process. First we extract interest points on the range image

using an adaption of the Laplacian of Gaussian (LoG)

method known from the vision community (see our previous

2139

Fig. 2. This figure visualizes the points in an example scene, where
we extracted features. In the bottom right corner is the range image
corresponding to the point cloud.

work [8] for more details). These points are supposed to

cover complex structures in the scene, like corners or other

non-distinctive regions. It is important to use a method that

ideally always extracts the points on the same place on a

surface, to facilitate the feature matching. After the interest

point extraction we distribute feature points on the scan

in a uniform fashion, so that every point in the scan has

a fixed maximum distance to such a point. These points

are supposed to cover uniform structures like planes, where

the exact placement of the point is of less importance. See

Figure 2 for an example. The maximum distance between

these points is connected to the size in the world that is

covered by a feature, since a big enough overlap has to be

guaranteed.

The next step of the feature extraction is the determina-

tion of a descriptor vector, that enables us to evaluate the

similarity between different parts of the scene efficiently.

We calculate the descriptor vector of a features at a certain

position in the scan according to the procedure described in

our previous work [9]. The general idea is, to extract a local

interpolated range image patch from a view point lying along

the normal of an interest point. This constrains 5 of the 6

degrees of freedom of the relative transformation between

the two range images. We resolve the remaining degree of

freedom (the rotation around this normal) by orienting the

patch along the z-axis in the world, i.e., the simulated viewers

orientation is along the normal and upright in the world.

Using these conditions, each feature encodes a complete

6DOF transformation describing its pose in a scan. The

feature descriptor covers a fixed 3D distance around the point

it was extracted from.

To match two of these features against each other, we

treat the range image patches as 1D vectors and calculate the

Euclidean distance between them. A low distance implies a

high similarity between the surfaces the features describe.

See Figure 3 for an example.

To construct a model M given an alphabet A, we need

to determine the assignments mi = 〈idi, Ti〉 between parts

of the original scene and our alphabet words (see Sec. III).

We do this by finding the alphabet word that has the lowest

descriptor distance for every position in the scene where

we extracted a feature. The transformation Ti can directly

be extracted using the transformations associated with the

features as Ti = T−1
a · Ts, where Ta is the transformation

Fig. 3. This figure visualizes the descriptor distances for a corner feature
(top) and a planar feature (bottom). On the left is the original point cloud
with a quadratic patch marking the position and size of the extracted
feature, on the right the descriptor distances to every point in the scene
are visualized. Dark points meaning a low descriptor distance and bright
points meaning a high descriptor distance. One can see, that the corner of
the chair in the top row has only a few similar places in the scene, whereas
the flat feature from the floor in the bottom example is similar to the majority
of the scene.

associated with the feature from the alphabet and Ts is the

transformation associated with the feature from the scene.

D. Reducing the Instances of Symbols in the Model

Since words can have an arbitrary overlap we can reduce

the number of instances of words in the model, while

preserving the likelihood value. Note that this procedure

does not affect the alphabet A, but the number of instances

of words used to reconstruct the scene |M|. To this end

we attempt to remove the redundant instances of words in

the model sequentially. We analyze one word s at a time,

and we consider all occurrences of that word in the model.

The order at which we process the words is given by the

number of occurrences of each word in the model. For each

occurrence of the word s in the model we measure the change

in the likelihood when removing it from the scene. If this

value does not decrease, the occurrence is redundant and we

remove it from the model.

IV. EXPERIMENTS

In this section we present experiments to evaluate the

performances of our approach. We apply our approach to

data obtained in different environments and we measure the

following quantities:

• the number of words in the alphabet |A|.
• the number of word occurrences in the model |M|.
• the compression rate, i.e., the ratio between the memory

consumption of the model generated by our approach

and the memory consumption of the original data.

We use a standard binary representation of the data,

meaning every floating point value takes 4 bytes of

memory. Each 3D point thereby takes 12 bytes, each

6DOF transformation takes 24 bytes, and a reference to

a word in the alphabet takes 4 bytes.

• the number of inliers, i.e., the data points that are

correctly matched by the model.

2140

• the number of outliers which are the points in the re-

constructed model that are not contained in the original

scene.

The number of inliers and outliers is calculated based on

nearest neighbor queries using a kd-tree. A point is consid-

ered to have a correct correspondence if a neighbor is in the

distance of σdi
. Note that in our experiments the fraction of

outliers was never approaching zero even in situations where

the reconstructed scene exhibited a high accuracy. The reason

for this lies in the predictive behavior of the words, that can

be partially matched with the scene and complete parts of

the environment that are not fully observable.

The first experiment deals with the reconstruction of an

indoor scene. Then we investigate how an alphabet learned

on one scene can be applied to reconstruct a second scene.

Finally, we present results obtained with large in- and

outdoor data sets.

A. Scene Compression

In this experiment we want to measure the accuracy of a

model obtained in an indoor scene. The input data correspond

to a scene in which a person is standing in a corridor and

in front of the robot (see Figure 4a. After 500 iterations our

method converged to a model containing 70 words. Figure 4b

shows the evolution of the BIC. For illustration purposes,

Figures 4c and 4d show two different models reconstructed

with 10 and 70 words respectively. We chose a value of

δ = 10 cm in this experiment, meaning our alphabet words

covered spheres with a diameter of 20 cm. The resulting size

of the model is 227,392 bytes which, given an initial point

cloud of size 640,896 bytes, corresponds to a compression

rate of about 35%. The reconstructed point cloud of the final

alphabet with size 70 covers 95% of the input point cloud and

yields 7% outliers according to the previously declared point

cloud evaluation method. See Table I for more details. The

resolution of the reconstruction shows a more uniform point

resolution than the original point cloud in Figure 4a. This is

caused by the fact that a word encodes a surface prototype

and every instance of a word in the scene uses this prototype

for reconstruction. This introduces higher resolutions at more

distant surfaces in this example.

B. Scene Rebuilding

In a second experiment we evaluated how well an alphabet

learned on a given scene can be applied to describe different

scenes. To this end we used the alphabet acquired during

the previous experiment described in Section IV-A, and we

reconstructed a new scene acquired in the same building.

To reconstruct the scene we generated a model M by using

the known alphabet and the method explained at the end of

Section III-C. Based on this model we then reconstructed the

input scene and compared it to the original input.

Figure 5 shows the original and the reconstructed input.

The left picture shows the same person as in the first scene

in another location. The resulting model has 5263 instances

and the reconstruction has 89% inliers and 15% outliers.

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

 10 20 30 40 50 60 70

sc
o

re
 1

0
-7

alphabet size

BIC

(a) (b)

(c) (d)
Fig. 4. This figure shows (a) the original point cloud, (b) the evolution
of the BIC during the learning process, (c) point cloud reconstructed based
on an alphabet of size 10 and (d) based on the final alphabet with size 70.
The planar corridor is already well explained with an alphabet of size 10.
However, the regions enclosed in the black boxes in (c) and (d) indicate the
improved accuracy obtained with an increasing number of words.

Fig. 5. Point cloud of the second scene (left) and the reconstructed point
cloud using only words from the alphabet extracted from the first scene
(right). As can be seen, our approach yields highly accurate reconstructions
even in such situations.

C. Performance on Larger Data Sets

The advantages of our representation are particularly ev-

ident on large data sets, where the size of the alphabet

is bounded by the repetitiveness of the environment. To

demonstrate this, we recorded an indoor data set in the

main corridor of building 79 on our campus. The data set

consists of 31 three dimensional range scans. Figure 6 shows

the reconstructed point cloud and a plot of the occurrence

frequencies for all words. Whereas the points that originate

from the most frequent word are colored in yellow, the points

of the remaining words are colored in blue. The yellow points

cover most of the scene but the occurrence count for the most

frequent word is not proportional to the observed coverage.

This is caused by the fact that words can describe the surface

with a different amount of points and that words can overlap.

Redundant information of overlapping words is not included

in the point cloud reconstruction.

As second data set we chose a portion of a publicly

available 360◦ outdoor data set [1] that was acquired on our

campus. In the outdoor setting we chose a word radius δ of

0.25 m. The coverage is lower than in the indoor setting,

2141

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 20 40 60 80 100 120

#
in

st
an

ce
s

in
 s

ce
n
e

symbols

Symbol instances in map

Fig. 6. Map generated from the corridor data set. Whereas the dominant planar word in the alphabet is colored in yellow the remaining words are colored
in blue. The instance occurrences per word are shown in the right picture. The occurrence frequency does not directly reflect the percentage of the covered
area since the count of points for a word can be different and words may overlap.

TABLE I

EXPERIMENTAL STATISTICS

Data set alphabet size word radius δ word occurrences compression rate comp. rate (gzip) inliers outliers runtime

Single scene IV-A 70 0.1 m 6337 35.5% 33.3% 95.2% 7.3% 7 min
Corridor building 79 114 0.1 m 123930 15.5% 19.8 % 98.1% 10.4% 66 min

360
◦ outdoor 410 0.25 m 115995 20.6 20.2% 87.2% 8.2% 12.5 h

Fig. 7. Point cloud reconstructed from the 3D outdoor data set. The model
covers the observed environment by 87%.

which can be explained by the fact that the outdoor data

has more low resolution regions where no words can be

extracted. The resulting statistics are shown in Table I. Note

that the compression rate is computed using the sparsified

original point clouds. Additionally, we give the compression

rate for the case, that both, the original point cloud and our

model were compressed using the standard file compression

method gzip afterwards. The compression on the raw data

is about 85% in both cases and leads only to a minor

change of the compression rate. Our experiments suggest

that typical real world scenes can accurately be described

by a very small number of reoccurring words. While the

run time for selecting an alphabet is not yet feasible for

on-line applications, a previously learned alphabet might be

sufficient for many applications.

V. CONCLUSIONS

In this paper we presented an approach for learning

compact models of 3D environments. The key idea of our

approach is to learn a set of repetitive patterns in 3D

range data and to use these patterns for approximating the

entire point cloud. To choose the optimal number of words,

we apply the Bayesian Information Criterion. Experimental

results demonstrate that our approach is able to compute ac-

curate models of complex, three-dimensional in- and outdoor

scenes. In future work we plan to improve the procedure for

sampling patterns by employing an informed search strategy.

Additionally, words with a variable scale might improve the

compression substantially. Apart from that, we plan to utilize

the learned models for additional applications including

object recognition, place labeling, and unsupervised learning

of object classes.

REFERENCES

[1] Dataset of 360
◦ 3D scans of the Faculty of Engineering, University

of Freiburg, Germany.
http://ais.informatik.uni-freiburg.de/projects/datasets/fr360.

[2] Paul J. Besl and Neil D. McKay. A method for registration of
3-d shapes. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 14(2):239–256, February 1992.
[3] P. de la Puente, D. Rodriguez-Losada, A. Valero, and F. Matia. 3D

Feature Based Mapping Towards Mobile Robots Enhanced Perfor-
mance in Rescue Missions. In Proc. IEEE International Conference

on Intelligent Robots and Systems (IROS09), 2009.
[4] Nathaniel Fairfield, George A. Kantor, and David Wettergreen. Real-

time slam with octree evidence grids for exploration in underwater
tunnels. Journal of Field Robotics, 2007.

[5] B. Limketkai, L. Liao, and D. Fox. Relational object maps for mobile
robots. In International Joint Conference on Artificial Intelligence,
volume 19, page 1471. Citeseer, 2005.

[6] M.R. Nelson. LZW data compression. Dr. Dobb’s Journal, 14(10):36,
1989.

[7] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann. 6d SLAM
with approximate data association. In Proc. of the 12th Int. Conference

on Advanced Robotics (ICAR), pages 242–249, 2005.
[8] B. Steder, G. Grisetti, and W. Burgard. Robust place recognition for 3D

range data based on point features. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), 2010. TO APPEAR.
[9] B. Steder, G. Grisetti, M. Van Loock, and W. Burgard. Robust on-

line model-based object detection from range images. In Proc. of the

Int. Conf. on Intelligent Robots and Systems (IROS), 2009.
[10] R. Triebel, P. Pfaff, and W. Burgard. Multi-level surface maps for

outdoor terrain mapping and loop closing. In Proc. of the Int. Conf. on

Intelligent Robots and Systems (IROS), Beijing, China, 2006.

2142

