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Abstract—This paper addresses the problem of learning and
efficiently representing discriminative probabilistic models of
object-specific grasp affordances particularly when the number
of labeled grasps is extremely limited. The proposed method
does not require an explicit 3D model but rather learns an
implicit manifold on which it defines a probability distribution
over grasp affordances. We obtain hypothetical grasp config-
urations from visual descriptors that are associated with the
contours of an object. While these hypothetical configurations
are abundant, labeled configurations are very scarce as these
are acquired via time-costly experiments carried out by the
robot. Kernel logistic regression (KLR) via joint kernel maps is
trained to map the hypothesis space of grasps into continuous
class-conditional probability values indicating their achievabil-
ity. We propose a soft-supervised extension of KLR and a
framework to combine the merits of semi-supervised and active
learning approaches to tackle the scarcity of labeled grasps.
Experimental evaluation shows that combining active and semi-
supervised learning is favorable in the existence of an oracle.
Furthermore, semi-supervised learning outperforms supervised
learning, particularly when the labeled data is very limited.

I. INTRODUCTION

Grasping is a fundamental skill for robots that need to

interact with their environment in a flexible manner. A wide

spectrum of tasks (e.g., emptying a dishwasher, opening

a bottle, or using a hammer) depend on the capability to

reliably grasp an object or tool as part of a larger planning

framework. It is therefore imperative that the robot learns

a task-independent model of an object’s grasp affordances

in an efficient manner. Given such a flexible model, a

planner can be used to grasp and manipulate the object for

a wide range of tasks. In this paper, we investigate learning

probabilistic models of grasp affordances for an autonomous

robot equipped with a 3D vision system (see Figure I). Here,

affordance refers to the likelihood of the robot to grasp

the object from a specific location and orientation. Such a

location-orientation pair is considered as a successful grasp

configuration if placing the fully open hand in this pose and

closing it allows the robot to gain firm control over the object.

Until this decade, the most predominant approach to grasp-

ing has been obtaining a full 3D model of the object and then

employing analytical techniques such as friction cones [1]

and form- and force- closures [2]. Given the difficulties of

obtaining a 3D model with sufficient accuracy to reliably
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apply these techniques, designing statistical learning methods

for grasping has become an active research field [3], [4],

[5], [6]. These new learning methods often employ efficient

representations and vision based models, without requiring

full 3D reconstruction, in order to provide a more robust

alternative to traditional approaches. Much of the previous

work focuses only on learning successful grasps [3], [4].

While such generative approaches can be advantageous in

cases of a well-defined data distribution, it is well-known

that discriminative learning methods have three main advan-

tages over generative models [7]: Firstly, they model class-

conditional probabilities of both successful and unsuccessful

grasp configurations, leading to a more descriptive model and

higher confidences for unsuccessful grasp regions. Secondly,

they can incorporate arbitrary feature representations more

flexibly. Thirdly, due to the conditional training, they are not

affected from any modeling error of the data distribution.

The investigation of discriminative learning methods for

grasp affordances presented in this paper continues on from

previous approaches of conditional grasp affordance models,

namely [5] and [6]. In [5], the authors propose extracting a

set of 2D image features and apply a discriminative super-

vised learning method to model grasp affordance probabili-

ties given the 2D images. In [6], this approach is extended by

combining the classifier of [5] with a probabilistic classifier

using a set of arm/finger kinematics features in order to

identify physically impossible 2D points for the robot to

reach. The strength of their approach is the combination of

two important kinds of information, i.e., image and kinematic

features, in a probabilistic manner.

We propose using Kernel Logistic Regression (KLR) [8]

for training grasp affordance models. The main motivation

behind this approach is to have the system learn a mapping

from local visual features to probabilities directly, as this

yields more general models than a comparison of explicit

geometric models to those in an object database. While this

approach enjoys the advantages of a probabilistic model, it

can also capture the non-linear relations between potential

grasps efficiently via kernels. This is an essential merit, since

our visual grasp features are extracted from the contours of

the objects and the orientation of the robot’s hand, which

results in the grasps lying on a non-linear manifold.

The KLR method provides a principled way of combining

information from the object as well as from the robot hand

via joint kernels [9]. By training a single classifier using

joint kernels, as opposed to training two separate classifiers

as was previously done [6], our approach can capture non-

linear interactions of the morphology of the robot hand and

The 2010 IEEE/RSJ International Conference on 
Intelligent Robots and Systems 
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 1586



the surface characteristics of the object implicitly. The system

therefore does not have to rely on explicit representations

such as closed form geometric descriptions or libraries of

feasible grasps.

Executing and labeling grasps of novel objects is a time-

consuming process that requires human monitoring and may

damage the objects. However, a vast number of hypothetical

grasp configurations can be generated by a vision model,

such as the Early Cognitive Vision reconstructor [10]. These

hypothetical grasps can not be given any confident labels,

as they have not been empirically tested, and are therefore

effectively unlabeled. We investigate using such unlabeled

data in our KLR approach to reduce the number of grasps

that need to be annotated for the affordance model. In

particular, we propose combining a novel semi-supervised

KLR method with active learning in the context of robot

grasping.

Semi-supervised learning and active learning are sub-fields

of machine learning that aim to handle the scarcity of labeled

data. Semi-supervised learning methods, e.g., [11] and the

references therein, use a large set of unlabeled data in

order to improve the classification performance by revealing

the underlying geometry of the data. Active learning does

not rely on a source of unlabeled data, but rather assumes

the existence of an annotator, commonly referred to as the

oracle, that can provide labels to queries. In a robotics

context, the annotator corresponds to the robot attempting

to perform new grasps. The goal of active learning is to

guide the robot to evaluate the most informative grasps so

that the classification error is reduced with the fewest queries

possible.

Fig. 1. Three-finger Bar-
rett hand equipped with a 3D
vision system. A table tennis
paddle is used in the experi-
ments.

This framework enables the

robot to learn incrementally

by autonomously evaluating

grasps. We provide comparisons

between supervised, semi-

supervised as well as a

hybrid of semi-supervised

and active learning setups, as

minimizing the need for large

amounts of labeled data is an

essential concern. Experimental

evaluations show not only that

the proposed active learning and semi-supervised learning

methods individually improve the system’s performance,

but that the amount of necessary annotated data is also

significantly reduced when supervised learning is combined

with active learning.

This paper is organized as follows, in Section II, we de-

scribe the details of the acquisition of the features. Section III

gives a detailed explanation of the machine learning tech-

niques evaluated in the context of robot grasping. Section IV

overviews relevant work in the literature. In Section V, we

introduce the experimental setup, give empirical results and

provide a comparison of supervised, semi-supervised and

active learning approaches. Finally, Section VI provides a

discussion and directions for future work.

(a) Feasible configurations (b) Infeasible configurations

(c) Hypothesis space

Fig. 2. Kernel logistic regression algorithm is used to discriminate the
successful (a) and unsuccessful (b) grasps lying on separable nonlinear
manifolds. The entire hypothesis space of potential grasp configurations for
the table tennis paddle in Figure I is extracted from pairs of ECV descriptors
and contains feasible grasps as well as infeasible configurations as shown
in (c).

II. VISUAL FEATURE EXTRACTION FOR GRASPING

The inputs of our learning algorithm are represented as

grasp configurations generated from Early Cognitive Vision

(ECV) descriptors [12], [13], which represent short edge

segments in 3D space, as described in [3]. Accordingly,

an ECV reconstruction is performed. Next, pose hypotheses

for potential grasps are generated from pairs of co-planar

ECV descriptors. The grasp position is set to the location

of one of the ECV descriptor pairs whereas the grasp

orientation is computed from the normal of the plane on

which these descriptors lie. The assumption is that two co-

planar segments constitute a potential edge of the object that

the robot hand can hold. However, this is quite optimistic

as many infeasible edges and orientations will be included

in the hypothesis space, see Figure 2. Hence, we need a

learning algorithm to discriminate between the feasible and

infeasible grasps contained in this set.

Each grasp is represented with seven values in the object

relative reference frame, three for the position and four for

the orientation in unit length quaternions. The object relative

reference frame is a coordinate system that is attached to the

object such that any rigid body transformation applied to

the object will also be applied to the coordinate system and

objects therein.

III. LEARNING GRASP AFFORDANCES

In this section, we outline the key concepts of our learning

algorithm. First, we describe a kernel that decomposes into

separate distance measures on the position and rotation

parameters. We use this kernel in the KLR algorithm. Later,

we propose a soft-supervised variation of the KLR algorithm
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so that it can accommodate unlabeled data via this distance

metric. Finally, we describe the uncertainty criterion to select

grasps for the queries in the active learning setting.

A. Joint Kernel

Each grasp configuration x = (v, r) consists of seven

parameters, i.e., three from the 3D position v of the robot

hand in the object’s reference frame, and four from the

unit quaternions r defining the rotation. These values have

different coordinate systems and have to be treated separately

in order to obtain a proper distance metric. This distance met-

ric, which indicates the similarity of two configurations, is

employed for both the kernel computation and the similarity

measure required by the semi-supervised learning algorithm,

see Equation (2). We define the joint kernel as

K (xa, xb) = exp

(

−
‖va − vb‖

2

2σ2
v

−
δ(θab)

2

2σ2
f(θ)

)

,

where δ is the rotational distance, σv and σδ(θ) are the

standard deviation of the pose and rotation distances of all

pairs of samples respectively. In order to cope with the

double cover property [14] of quaternions, we compute the

rotational distance δ(θab), as the smaller angle between the

two unit length quaternions ra and rb. This definition allows

us to use a Gaussian distribution on this rotational distance

metric. Here, θab is the angle of the 3D rotation that moves

ra to rb, i.e., θab = θ(ra, rb) = arccos(rTa rb), and

δ(θab) = min{θ(ra, rb), θ(ra,−rb)}.

For further details on distance computations between unit

quaternions see [14]. This joint kernel is similar to that

in [15] in the way it decomposes into kernels on position

and rotation features. However, there the authors employ a

Dimroth-Watson distribution to get the rotational kernel as

opposed to the Gaussian distribution, which is computation-

ally faster to work with.

B. Kernel Logistic Regression

Our goal is to model the conditional probability distribu-

tion of grasp success y ∈ {−1, 1} given a grasp configuration
x as defined in Section III-A. Given labeled data S =
{(xi, yi)}

l
i=1, KLR achieves this goal by maximizing the

regularized log-likelihood of the data R(w;S) defined by

R(w;S) =
l
∑

i=1

log p(yi|xi;w)− ǫ‖w‖2, (1)

p(y = 1|x;w) =1/(1 + exp(−〈w, f(x)〉)),

where f(x) refers to an implicit feature representation in-

duced by a Mercer kernelK [16], and w is the corresponding

weight vector. This optimization problem can be derived

from the Maximum Entropy (MaxEnt) framework [17],

where the goal is to find a conditional probability distribution

p(y|x) that matches the data (in the sense that the expected

values of features with respect to p(y|x) should match

their empirical counterparts) while remaining as simple as

possible, or equivalently maximizing the class conditional

entropy H = −
∑

y p(y|x) log p(y|x),

max
p

Ex∼p̃m
[H(p(y|x))] st.

∥

∥Ex∼p̃m
Ey∼p(y|x) [yf(x)]−E(x,y)∼p̃j

[yf(x)]
∥

∥ ≤ ǫ.

Here p̃j denotes the empirical joint distribution and p̃m
denotes the empirical marginal distribution over x. Defining
p̃m(xi) = 1/l and p̃j(xi, yi) = 1/l for all (xi, yi) ∈ S and

using duality techniques yield (1).

C. Semi-Supervised Kernel Logistic Regression

The duality relation mentioned in Section III-B suggests

that the accuracy of KLR depends on accurate estimates of

the empirical marginal and joint distributions. Our goal in the

semi-supervised KLR (SSKLR) method is to use unlabeled

data to reduce the sampling bias of these distributions.

This can be achieved by imposing the smoothness of the

conditional distribution in the sense that two similar grasp

configurations have similar success and failure probabilities.

To this end, we propose assigning soft-labels to unlabeled

grasp configurations {xi}
n
i=l+1 that are in the vicinity of

labeled grasp configurations with respect to the manifold

on which the grasp configurations lie. If the similarity

metric conveys the true geometry of the grasp configurations

and KLR is trained with respect to the soft success/failure

assignments for unlabeled grasp configurations as well as

the true labels of labeled grasp configurations, the resulting

conditional probability distribution is expected to be smooth.

Similarity based soft-label assignment is equivalent to

manipulating the joint distribution p̃j to include soft labeled

data. We define p̃m(xi) = 1/n and p̃j as

p̃j(xi, y)=











1/Zj if 1 ≤ i≤ l, y = yi,

sik/Zj if l < i≤n, 1≤k ≤ l, xi∈ Nk, y = yk,

0 otherwise,

(2)

where sik is a similarity measure between samples xi and

xk, Nx is the neighborhood of x with size κ, and Zj is

the normalization factor for p̃j to be a proper probability

distribution. Equation (2) allows an unlabeled data to be

soft-labeled by multiple labeled data with possibly different

labels, which is desirable if an unlabeled data point lies close

to multiple label regions. Given these definitions and using

duality, we derive the SSKLR problem as maximizing

R(w;S) =

n
∑

i=1

∑

y

p̃j(xi, y) 〈w, yf(xi)〉 (3)

−

n
∑

i=1

p̃m(xi) log
∑

y

(exp 〈w, yf(xi)〉)− ǫ‖w‖2.

The Representer Theorem [16] states that optimal

weight vector of Equation (3) admits the form w∗ =
∑n

i=1 yαif(xi) [16]. When we substitute the solution into

Equation (3), we get a convex optimization over α which can

be solved using any convex optimization technique. Inference
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of a new grasp configuration x is given by the sign of
∑n

i=1

∑

y yαik(xi, x).

D. Uncertainty based active learning

We can employ active learning in scenarios where the

robot has the means to choose what to learn. For the active

selection of grasps, we use uncertainty sampling [18] which

is straightforward for probabilistic models. In this method,

the algorithm queries for the grasps on which it is the least

confident. Therefore, at each iteration, the algorithm requests

the true label for the grasp, x⋆ that has the highest class

conditional entropy among the set of unlabeled grasps, U
x⋆ = argmax

x∈U

H(p(y|x)). In turn, the robot carries out the

configuration that corresponds to x⋆ and labels it accordingly.

IV. RELATED WORK

Efficient representation and vision based modeling of

grasp configurations is an active research field [3], [5]. We

follow the methodology in [3] to obtain grasp pose candi-

dates and orientations as described in Section II. However,

the authors learn grasp densities using successful grasps

only, whereas in this paper, we model the class condi-

tional probabilities of both successful and unsuccessful grasp

configurations in a discriminative manner. Furthermore, we

focus on the scarcity of the labeled data points and we

evaluate active and semi-supervised learning algorithms with

the smallest number of annotated experiences possible.

Granville et al. [4] present a method where the robot

learns a mapping from object representations to grasps from

human demonstration. They cluster the orientations of grasps

and each cluster is associated with a canonical approach

orientation. The authors indicate that limiting the encoding

to orientations or excluding position knowledge, is due to

their underlying assumption that orientation and position are

independent.

As labeled data collection is expensive for most robotics

tasks, active learning techniques have already been consid-

ered. Salganicoff et al. [19] proposed some of the earliest

work on uncertainty based active learning for vision-based

grasp learning by modifying the ID3, a decision tree algo-

rithm. Montesano and Lopes [20] also propose a method to

learn local visual descriptors of good grasping points via

self-experimentation. Their method associates the outputs

with confidence values. Morales et al. [21] propose an active

learning method for grasp reliability. They use a K-nearest

neighbors approach to learn grasp affordance probabilities

whereas we propose an information theoretic approach and

kernel methods extended to semi-supervised learning.

In machine learning, various methods to combine semi-

supervised and active learning have been proposed to exploit

the merits of both approaches [22], [23]. We attempt to

be the first in the context of robotics. The active learning

methodology in [23] is similar to ours, as the authors

employ confidence sampling for active learning based on the

probabilistic outputs of a logistic regression classifier. Their

method differs from ours since they perform semi-supervised

learning via self-training, whereas we propose a soft-labeling

approach motivated from the maximum entropy framework.

V. EMPIRICAL EVALUATION

We have empirically evaluated the methods described in

Section III on a 3-finger Barrett robot with simple objects

such as a table tennis paddle. For supervised learning, we

have used a Kernel Logistic Regression classifier and the

joint kernel defined on position and orientation features. For

the semi-supervised experiments we have used SSKLR loss

given in Section III-C. Details on the experimental setup

such as data collection, preprocessing, model selection and

the results are given below.

A. Experimental Setup

We collected 200 samples, 100 successful (positive labels)

and 100 unsuccessful (negative labels) grasps. We preprocess

the data by normalizing the position parameters to zero

mean and unit variance. The unit quaternions do not require

preprocessing. In all experiments, we fix the hyperparameters

at the initial step using fourfold cross validation. The model

variance in semi-supervised and active learning can be high

as the training set is typically very small. In order to com-

pensate for the resulting high variance, we have generated

20 random training sets with equal numbers of positive and

negative samples and corresponding test partitions. We report

the average classification error on these random test sets.

For the active learning scenario, we used a separate active

learning pool.

Our framework has two hyper-parameters which are to be

set during the model selection. The first parameter, κ is the

size of the neighborhood in the soft-label assignment step in

Equation 2. The second parameter, ǫ is the regularization

constant of the kernel logistic regression algorithm. We

sweep over a grid of values κ = {10, 20, 30, 50}, and

ǫ = {10−2, 10−3, 10−4}.

B. Evaluation on collected data sets

We evaluate the supervised and semi-supervised models

with increasing sizes of labeled data. In all experiments,

we train initial models with 10 randomly selected labeled

samples. We perform model selection in this setup and fix

the value of the hyper-parameters for the following steps.

The semi-supervised algorithm uses an additional unlabeled

set of size 4000. All results are the averages over the models

trained over 20 realizations of the training set. For the SSL

formulation, we take sik = K(xi, xk).
First, we empirically evaluate the performance of semi-

supervised learning versus supervised learning. Figure 3

shows the improvement of classification error as randomly

selected samples are added to the training sets one at a

time (hence, classification error of KLR and SSKLR with

respect to increasing labeled data). As expected, when the

size of the labeled data is small, semi-supervised learning

is advantageous over supervised learning. The difference

diminishes as the dataset gets larger.
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Fig. 3. Supervised (KLR) and semi-supervised (SSKLR) logistic regression
error versus the number of randomly selected labeled samples added to the
initial training of size 10. Model selection is carried out at the initial step
with 10 samples. 50 samples are added in an incremental manner and all
models are retrained at each iteration. SSKLR uses an unlabeled training set
of size 4000. κ, the neighborhood size for the similarity based augmentation
(Equation 2) is set to 30. stages.

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Number of actively selected grasps

C
la

s
s
if
ic

a
ti
o

n
 E

rr
o

r

 

 

Uncertainty Sampling − Supervised

Uncertainty Sampling − Semi−supervised

Fig. 4. KLR and SSKLR classification error as actively selected samples
are queried via uncertainty sampling. The error bars indicate one standard
deviation of uncertainty over 20 models. The initial 10 labeled samples are
randomly selected.

An alternative evaluation measure is the perplexity of the

data, 2H(p) = 2(
∑

x

∑
y
−p(y|x) log

2
p(y|x)) which measures

the uncertainty of the predictions of the trained models.

This information theoretic measure is commonly used for

probabilistic models in fields such as speech recognition and

natural language processing [24]. In Figure 5, we plot the

perplexity of KLR and SSKLR. This figure shows that the

semi-supervised model is more confident (smaller perplexity)

of its predictions than the supervised model, and thus yields

preferable results. We also note that the variance of perplex-

ity across different validation sets are smaller in the case

of SSKLR, when the dataset is small. This renders semi-

supervised learning more robust compared to supervised

learning in real-life scenarios.

Secondly, we comparatively demonstrate the impact of

active learning. Figure 4 illustrates the performance of both
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Fig. 5. Perplexity in random sampling.
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Fig. 6. Perplexity in active sampling.

KLR and SSKLR when incrementally trained with uncer-

tainty based sampling. The corresponding perplexity plots

are shown in Figure 6. The comparison of KLR and SSKLR

in the active learning setting shows a similar behavior to that

of random selection, Figure 3 and 5. Figure 7 illustrates

the classification error rate for all four scenarios together.

For the supervised classifier, the improvement rate is clearly

faster with active learning rather than random selection. A

10% error rate is achieved with 17 samples whereas to get

the same error rate 40 samples are required for the random

selection case.

C. On-Policy Evaluation

To test our approach in a real life setting we have used the

watering can shown in Figure 8(a). For the experiments we

have collected a total of 20 labeled instances of 10 successful

and 10 unsuccessful configurations. Figure 8(b) illustrates

the initial training set of data samples where green refers

to feasible grasps and red refers to infeasible ones. Later,

we trained the system incrementally with 15 more samples

separately, both with random (RS) and actively sampled (AS)

data. After we stopped training we have identified 10 test

configurations on which the AS and RS algorithms disagree

the most. When we carried out these configurations on the

robot, in 10 out of 10 configurations the decision of AS was
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Fig. 7. Classification error rate for KLR, SSKLR, active-KLR and active
SSKLR.

(a) Watering can

  

(b) Initial set of training samples

Fig. 8. The watering can used for the on-policy evaluation is shown in (a).
We initiate the incremental algorithm with 20 labeled configurations shown
in (b).

correct and RS failed indicating that the AS is performing

better close to the decision boundaries.

VI. CONCLUSION AND FUTURE WORK

We have presented a probabilistic approach to model the

success likelihoods of grasp configurations from a pool of

hypothetical configurations extracted from ECV descriptors.

The main bottleneck in the learning process is the scarcity

of labeled data due to the time-consumption of annotating

grasps. Therefore, we have used semi-supervised and active

learning approaches in the context of robot grasping. We

have experimentally evaluated these approaches in two set-

tings, in the former the data is provided only once as a batch

whereas in the latter the agent has the means to query new

labeled samples incrementally. We provided the results for

three-finger Barrett hand and simple objects. Experimental

evaluation indicates that combining semi-supervised and ac-

tive learning approaches is effective in improving the robot’s

performance with limited supervision. However, it may not

always be possible to incrementally train a system. When that

is not possible, semi-supervised learning is advantageous.

The future direction is to learn visual cues that are shared

among various objects so that the grasp affordance models

are not object-specific but can be generalized to many object

categories. We plan to investigate this direction by using

the features proposed in [6] within the joint kernel KLR

framework.
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condensed, and semantically rich visual descriptors and their applica-
tions in robotics,” International Journal of Humanoid Robotics, 2010.

[11] O. Chapelle, B. Schölkopf, and A. Zien, Eds., Semi-Supervised Learn-

ing. Cambridge, MA: MIT Press, 2006.
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