
Learning to Hash Logistic Regression

for Fast 3D Scan Point Classification

Jens Behley, Kristian Kersting, Dirk Schulz, Volker Steinhage and Armin B. Cremers

Abstract— Segmenting range data into semantic categories
has become a more and more active field of research in robotics.
In this paper, we advocate to view this task as a problem of
fast, large-scale retrieval. Intuitively, given a dataset of millions
of labeled scan points and their neighborhoods, we simply
search for similar points in the datasets and use the labels
of the retrieved ones to predict the labels of a novel point using
some local prediction model such as majority vote or logistic
regression. However, actually carrying this out requires highly
efficient ways of (1) storing millions of scan points in memory
and (2) quickly finding similar scan points to a target scan point.
In this paper, we propose to address both issues by employing
Weiss et al.’s recent spectral hashing. It represents each item
in a database by a compact binary code that is constructed so
that similar items will have similar binary code words. In turn,
similar neighbors have codes within a small Hamming distance
of the code for the query. Then, we learn a logistic regression
model locally over all points with the same binary code word.
Our experiments on real world 3D scans show that the resulting
approach, called spectrally hashed logistic regression, can be
ultra fast at prediction time and outperforms state-of-the art
approaches such as logistic regression and nearest neighbor.

I. INTRODUCTION

Classification of sensor data is a fundamental ability

needed by autonomous robots operating in natural and

changing environments. It enables the systems to distinguish

properties of objects in their surrounding, which first of

all, is necessary for identifying basic characteristics like

the drivability of terrain or the compliance of obstacles.

Classification can further more act as a filter to detect useful

features in the data, for example to improve self-localization

and map building approaches. Above all, classification is

often a prerequisite to detect task-relevant objects, which is

a cornerstone for every high-level behavior of an intelligent

autonomous system.

For these reasons, the classification of sensor readings,

both camera images and laser scan data, into semantically

meaningful classes has received a lot of attention in computer

vision and robotics. Especially in the robotics community,

the interpretation of 3D laser scans has become an active

J. Behley , V. Steinhage and A. B. Cremers are with the Department of
Computer Science III, University of Bonn, 53117 Bonn, Germany.
K. Kersting is with the Knowledge Discovery Department, Fraunhofer
IAIS, Schloss Birlinghoven, 53754 Sankt Augustin, Germany.
D. Schulz is with the Unmanned Systems Department, Fraunhofer FKIE,
53343 Bonn-Wachtberg, Germany.
Kristian Kersting was supported by the Fraunhofer ATTRACT fellowship
STREAM and by the European Commission under contract number
FP7-248258-First-MM.
{behley, steinhage, abc}@iai.uni-bonn.de,
kristian.kersting@iais.fraunhofer.de,
dirk.schulz@fkie.fraunhofer.de

field of research, and very good results have been achieved

recently [1], [2], [3], [4], [5]. However, most of the proposed

approaches use computationally expensive statistical infer-

ence techniques for the classification, but modern 3D laser

sensing devices easily produce massive datasets of up to now

1.3 million laser points per second. The current techniques

are, therefore, not able to classify the data on-line. In this

article, we address this problem and propose a new fast

approach based on novel ideas from machine learning for

the classification of mass data.

A recent exciting development in the machine learning

community has been the insight that massive datasets are

not only challenging but can also be viewed as an oppor-

tunity [6]. Machine learning and data mining techniques

typically consist of two parts: the model and the data.

Most effort in recent years has gone into the modeling

part. Massive datasets, however, allow one to move into

the opposite direction: how much can the data itself help

us to solve the problem? Halevy et al. [7] even speak of

”the unreasonable effectiveness of data”. Massive datasets

are likely to capture even very rare aspects of the problem

at hand. Does this also hold for 3D scan point classification

tasks? Can we learn the characteristics of objects from very

dense laser points without learning complex models? These

are exactly the problems we examine in this paper.

Specifically, we investigate the question of classifying

objects within 3D scans. This is a challenging problem as it is

a highly non-linear optimization task. Consider for instance

detecting cars in 3D laser scans. A car is not just a single

surface but it is composed of flat and curved surfaces. In turn,

it is difficult – if not impossible – to elegantly describe them

in terms of simple geometrical features so that the feature

vectors form a linear separable cluster in feature space. It is

more likely that their descriptions scatter in the feature space.

Indeed, we may overcome this problem by using collective

classification approaches. They take the surrounding of a

laser point into account: intuitively, class labels should prop-

agate smoothly among neighboring points. The increased

performance, however, comes at the expense of much higher

computational costs for learning and inference. When very

many scans are available, simple scan indexing techniques

can be used to retrieve scans with object arrangements

similar to the query scan. If we have a big enough database

then we can find, with high probability, scans looking very

close to a query scan, containing similar scenes with similar

objects arranged in similar spatial configurations. Moreover,

if scans in the retrieval set are (partially) labeled, then we

can propagate the labels to the query scan and in turn

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 5960

perform classification using some simple local models such

as majority vote or logistic regressions.

Although conceptually simple, actually carrying out near-

est neighbor approaches requires highly efficient ways of

(1) storing millions of scans in memory and (2) quickly

finding similar scans to a target scan. Our main contribution

is to address both issues by representing each item in a

database by a compact binary code that is constructed so

that similar items will have similar binary code words. In

turn, similar neighbors have codes within a small Hamming

distance of the code for the query. Then, we learn a logistic

regression model locally over all points with the same binary

code word. More precisely, we use Weiss et al.’s recent

spectral hashing to compute the compact binary codes [8].

Using codes learned by spectral hashing, retrieval can be

amazingly fast – millions of queries per second on off-the-

shelf PCs. Our experiments show that the resulting approach,

called spectrally hashed logistic regression, obeys a constant

time complexity for classification of 3D laser points. More-

over, the fast classification performance does not sacrifice

accuracy. Spectrally hashed logistic regression works sur-

prisingly well in our application: identifying cars, foliage,

walls and load bearing areas in 3D laser scans. The laser

scans are produced by a Velodyne laser scanner mounted on

a mobile robot that is equipped with an inertial navigation

system (INS). The position and rotation information from the

INS allows us to register the laser scans approximately. To

our knowledge, we are the first to apply spectral hashing to

a robotics task and in combination with logistic regression.

We now proceed as follows. First, we discuss related

work in section II. In section III, we introduce the proposed

classification approach using spectral hashing, which is also

briefly introduced in this section. Section IV presents our

current results and finally section V concludes and outlines

future work.

II. RELATED WORK

In robotics mostly data-driven approaches based on Con-

ditional Random Fields (CRF) [9] have been used to classify

3D point clouds. Angulov et al. [1] introduced Associa-

tive Markov Networks [10] for this purpose, and most of

the up-following approaches were based on this collective

classification approach. However, these techniques require

quadratic programming and linear programming, for learning

and inference respectively, which is almost intractable for

larger point sets. Several methods have been proposed to

speed up the process, either by using data reduction [2], [3]

or by more efficient learning and inference methods [11],

[4], [5]. In the following, we will briefly mention the most

recent approaches for supervised 3D laser scan classification

and summarize their main ideas.

Munoz et al. showed in [4], how high-order interactions

between cliques instead of pair-wise couplings and already

classified scans can be used to allow accurate on-board clas-

sification. Furthermore, they proposed to use functional gra-

dient boosting [12] for learning node potentials as weighted

sums of linear regressors instead of the usually used log-

linear potentials [5] . Agrawal et al. [13] augmented a

CRF with object potentials generated by segmenting the

scene into objects and calculating the covariances of the

objects’ laser points. Lai and Fox [14] applied an exemplar

approach using 3d models from the web, and employed

domain adaption in order to remove artefacts not visible in

real laser scans. Patterson et al. [15] employed a nearest

neighbor approach using spin images [16] and extended

Gaussian images (EGI) [17]. First a set of reference points is

sampled from the labeled training scene and spin images are

computed. The spin images are stored in a database. When

classifying unseen scans spin images of reference points

are matched against the database, and clustered hypotheses

verified using the EGIs.

In general, a lot of effort has been invested into more

complex models and most of the approaches need a lot of

processing power to classify laser points. As we pointed out

in the introduction, we are moving in the opposite direction,

inspired by the work of Torralba et al. [18] who employed

the power of a vast number of images to label arbitrary

scenes according to a very, very large database of images

from the well-known LabelMe dataset. They used distance-

preserving hashing to enable a fast retrieval of approximate

nearest neighbors.

Finally, we have to mention the well-known locally

weighted learning of Atkeson et al. [19], which learns a local

model for every query point using k nearest neighbors from

the training data. These neighbors are weighted according to

the distance to the query point. Now, our aim is to avoid the

need for the exact calculation of the k nearest neighbors, as

this is too expensive for larger sets of training data.

III. SPECTRALLY HASHED LOGISTIC REGRESSION

Assume that we have a huge amount of scan (points), say

N , and that the decision boundaries are very irregular. In

this case, nearest neighbor approaches are an elegant and

very flexible tool for classification. However, having fast

techniques for finding nearest neighbors to a query is then

essential.

Recently, hashing methods for fast retrieval have received

a lot of attention within the machine learning community, see

e.g. [8], [20]. They learn a mapping from the input data to a

low-dimensional Hamming, i.e., binary space. Note that the

fact that the embeddings are binary is critical to ensure fast

retrieval times. As [8], [20] report, this kind of retrieval can

be amazingly fast; millions of queries per second on standard

computers. This is because the Hamming distance between

two objects can be computed via an xor operation and a bit

count. Moreover, if the input dimensionality is very high, as

in our case, hashing methods lead to enormous computational

savings as few bits are often already sufficient to encode

compactly the whole dataset.

Hashing naturally leads to the following 3D scan points

classification approach:

1) (Hashing) Learn a compact binary code for a given

set of N scans.

5961

2) (Local Classification) Learn a local classification

model such as majority vote or logistic regression on

all scans that have the same binary code.

3) (Prediction) For classifying a new scan (point) x,

compute the code of x, look-up the associated local

model, and use it to assign a class label to x.

Indeed, this non-parametric large-scale classification ap-

proach is a special case of locally weighted regression

performing classification around a point of interest using all

training scans that have identical binary codes only. As we

will argue in the next section, if the look-up of the code for

a new scan is done in a clever way, this can yield ultra fast

classification performance. Furthermore, as our experimental

evaluation will show, this approximation works surprisingly

well in our classification setting. It actually outperforms

nearest neighbor and logistic regression.

A. Spectral Hashing

For computing the compact binary codes, we are using

Weiss et al. spectral hashing [8]. The main benefit of spectral

hashing is that the partitioning of the feature space can be

computed in linear time.

Spectral hashing works as follows. To preserve distances,

one is interested in a hash function that maps nearby data

points xi and xj to binary hash codes that have a small

Hamming distance. Thus, the objective for a hash function

h : R
n 7→ {0, 1}k, which helps us to search efficiently in

large datasets xi ∈ R
n that is distributed according to a

distribution p(x), can be formulated as follows:

min.

∫

K(xi, xj) · ||h(xi) − h(xj)||
2 · p(xi) · p(xj) dxi dxj

(1)

s. t.

∫

h(x)p(x) dx = 0 (2)

∫

h(x)h(x)T p(x) dx = Id (3)

Here, the function K(xi, xj) defines the similarity between

different data points. A common choice is the Gaussian ker-

nel K(xi, xj) = exp(−||xi − xj ||
2/ǫ2). The two constraints

encode the requirement that the different bits of hash codes

should be independent (Eq. 2) and uncorrelated (Eq. 3).

As Weiss et al. [8] have shown, finding such codes is NP

hard. To overcome this problem, they relax the constraint

that the codewords need to be binary, h(x) ∈ {0, 1}k. This

relaxed problem can be solved in polynomial time. Indeed, it

has been shown that the solution is given by eigenfunctions

Φ(x). If p(x), x =
(

x(1), x(2), . . . , x(n)
)

∈ R
n is separable,

i.e. p(x) =
∏

i pi(x
(i)), and the similarity is defined by

the Gaussian kernel then the solution Φ(x) is given by the

product of the 1-dimensional eigenfunctions

Φ1

(

x(1)
)

Φ2

(

x(2)
)

· · ·Φn

(

x(n)
)

(4)

and eigenvalue λ1 ·λ2 · · ·λn. Especially, if p(x) is a uniform

distribution on [a, b], the eigenfunctions Φk(x) are given by

Φk(x) = sin

(

π

2
+

kπ

b − a
x

)

(5)

λk = 1 − exp

(

−
ǫ2

2

∣

∣

∣

∣

kπ

b − a

∣

∣

∣

∣

2
)

. (6)

Assuming that data is uniformly distributed, we can now

calculate the eigenfunctions and threshold the values at 0 to

obtain a codeword. This results in the following algorithm to

determine a hash function h for data points X = {xi ∈ R
n}:

1) Calculate the k principle components using eigenvalue

decomposition of the covariance matrix. Rotate the

data xi according to the k largest eigenvectors, result-

ing in x̃
(j)
i , 0 ≤ j < k.

2) Determine for every dimension a(j) = minj

(

x̃
(j)
i

)

and b(j) = maxj

(

x̃
(j)
i

)

and evaluate the eigenvalues

according to (6). Sort the eigenvalues to find the k
smallest eigenvalues.

3) Threshold the resulting eigenfunctions Φk(x) with

smallest eigenvalue at 0, to obtain the hash code.

As shown in [8], the algorithm is not restricted to uni-

formly distributed data, and can generate hash codes that are

capable to find a good partition of the data, which allows

to search efficiently for nearest neighbors. We will show in

the next section, how the space of data points is partitioned

using this hashing algorithm. Furthermore, we will show that

the calculation of the hash function can be done efficiently,

since we do not need to handle every data point explicitly:

computing the covariance is sufficient. In turn, we only have

to determine the minimum and maximum of the rotated

feature vectors to get an partition of the feature space.

B. Combining Spectral Hashing and Logistic Regression

The main idea underlying locally weighted regression is

to use local models of linear regression learned from k
neighboring points of a query point. By using this lazy

classification, one could approximate even non-linear target

functions with local linear regression models. However,

finding the k nearest neighbors can get rather complex in

high-dimensional data, so that the computational cost grows

with an increasing set of training points.

To overcome this, we partition the feature space using

spectral hashing, learn local models directly from the training

data and store these local logistic models for every partition

given by the hash function h, when necessary. If only feature

vectors from one class y lie in a hash bin, we just store a

bias weight β in the weight vector wy and the rest of the

weight vectors is initialized with −β as bias weight. This is

summarized in algorithm 1. More precisely, we use a binary

logistic regression with L2-regularization and train it in one-

against-all fashion to get a multi-class classification. But

indeed the algorithm is not restricted to logistic regression

models, so that even non-linear classifiers could be used

to classify locally within a partition defined by the hash

function. To get the class of an unseen laser point, we just

5962

(a) (b) (c) (d) (e)

Fig. 1. Some examples of the partition of a highly non-linear feature space (a) using the proposed spectrally hashed logistic regression. Subfigure (b)
is generated using 2 bits, (c) uses 4 bits, (d) was trained with 8 bits and in (e) we used 16 bits for hashing of the feature space. The repetition in class
assignments is caused by the sinusoid in the eigenfunction in conjunction with a dimension, where the minimum and maximum of the feature vectors in
that dimension is not the same as the minimal and maximal value of that dimension. (Best viewed in color.)

compute the binary code using the learned hash function

and retrieve the right local logistic model for classification,

the one with the same binary code. If no logistic model is

associated with that code, we compute the mean predictions

of all nearest models in the same Hamming distance.

Figure 1 visualizes some examples of spectrally hashed

logistic regression for different number of bits used for the

hash codes. As on can see, with increasing hash size, the

partitioning increases and also the decision boundaries of

the local logistic regression models adapt to the non-linear

feature space, as we have argued in the beginning of this

section. Furthermore, smaller partitions lead to less data

points inside a partition, thus the learning of the logistic

regression can be performed more efficiently due to the

reduced size of the training set. But also a negative side

effect is observable: as the number of possible bits increases,

it gets more likely to perform overfitting, as we will see in

the next section.

IV. EVALUATION

To evaluate our approach, we use a dataset recorded

with a Velodyne 3D laser scanner mounted on an QinetiQ

Longcross platform. The robot is equipped with an Ox-

ford Ltd. inertial navigation system (INS) that is sufficiently

precise to allow scan registration without additional mapping

software. As mentioned before, the laser scanner produces

1.3 million laser points per second. As we want to compare

different classification approaches, we down-sampled single

360◦ laser scans from approx. 86.000 to approx. 8.600 by

taking only every tenth measurement from the scanner. By

reducing the laser scans in this manner, we end up by

129.000 laser points per second.

All experiments were done using 10-fold stratified cross-

validation and the classification accuracy is averaged over all

folds. The experiments were performed using precomputed

feature vectors, so that the timing results do not include the

time required for the evaluation of the features. The training

set has been randomized before doing cross-validation. How-

ever, we used for every cross-validation the same random

seed to get comparable results. We used a uniform class

distribution for learning the classifiers. This reduces the

influence from classes that are significantly more prominent,

such as load bearing areas or foliage.

Algorithm 1: Learn local logistic regression models

Data: training set X = {(xi, yi)}
with features xi ∈ R

d and labels yi ∈ Y, |Y| = K
Result: hash function h, local logistic models

Li = {(w0, . . . , wK)}

learn hashing function h (cf. section III-A)

/* build hashtable */

foreach (xi, yi) ∈ X do
hi := h(xi)
H[hi] := H[hi] ∪ (xi, yi)

end

/* learn local models Li */

foreach hi ∈ [0, 2k−1] ∧ H[hi] 6= ∅ do

if |{y|(x, y) ∈ H[hi]}| = 1 then

foreach y ∈ Y do

wj =

{

(β, 0, · · · , 0) , j = y
(−β, 0, · · · , 0) , otherwise.

store wj in local models Li.
end

else

foreach y ∈ Y do
learn logistic regression with weights wy .

store wy in local models Li.
end

end

end

The velodyne dataset has been labeled manually with

different classes: vehicle, ground, building and vegetation.

The class ground consists drivable area, but also side-

walks and lawn. The class vegetation is quite diverse

and contains all kinds of plants as shrubs, foliage, trees

and bushes. Overall 3.371.808 points has been labeled in

which 2.419.584 (71.7%) points are ground, 295.723 (8.8%)
points are vehicle, 38.326(1.1%) points are building and

618.175(18.3%) points are vegetation.

A. Features

In the experiments, we tried several features and feature

combinations proposed in different prior approaches, and

the well-known spin images [16] showed the best results.

However, we also try to detect walls and buildings, and spin

5963

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0

 5
0
0
0
0

 1
0
0
0
0
0

 1
5
0
0
0
0

 2
0
0
0
0
0

 2
5
0
0
0
0

 3
0
0
0
0
0

 3
5
0
0
0
0

 4
0
0
0
0
0

c
la

s
s
if
ic

a
ti
o
n
 r

a
te

instance count

Classification rate per amount of training data

NN
LR

SHNN
SHLR (16)

SHLR (8)
SHLR (4)

Fig. 2. Classification rates using 10 fold cross-validation with different
classification approaches.

images in the original implementation, are not suitable to

distinguish between those, because they achieve rotational

invariance of features by using the point’s normal as spin-

axis. We compensate this shortcoming by using the up-

vector instead, as proposed by Agrarwal et al. [13] for their

local shape histograms. The up-vector is determined by the

orientation information of the INS system employed. We

used in all experiments a bin size of 0.1 m and 20 bins

per dimension.

B. Results

To test our approach, we compared the results with dif-

ferent other local classifiers. First, we used a binary logistic

regression (LR)1 [21] as baseline with the same amount of

training data and extended it to a multi-class classifier by

training it in one-against-all fashion. Besides this, we also

implemented a nearest neighbor classifier (NN) using the

ANN library [22]. However, due to the high computational

costs of querying nearest neighbors in high-dimensional data,

we only evaluated this approach up to 250.000 data points.

All classifiers were implemented in C++ and the experiments

were performed on an Intel Xeon X5550 with 2.67 GHz

using a single core and 12 GB memory.

Because we are also interested in the performance of

spectral hashing as nearest neighbor approach (SHNN), we

implemented a nearest neighbor classifier using the learned

hashing function. Like in algorithm 1, a hash table is

generated and the feature vectors hashed to the same code

are stored in a linked list for that bin. In experiments the

usage of 16 bits and a Hamming distance of 1 to search for

the exact nearest neighbor yielded the best results.

Fig. 2 depicts the classification rates achieved. The nearest

neighbor using the kd-tree easily outperforms logistic regres-

sion, which confirms our intuition that the feature space is

not linearly separable and nearest neighbor approaches can

handle this. Also the nearest neighbor using the hash func-

tion of spectral hashing outperforms the logistic regression.

Notable is the time required for classification using the hash

1Publicly available at http://www.autonlab.org.

 1

 10

 100

 1000

 10000

 0

 5
0
0
0
0

 1
0
0
0
0
0

 1
5
0
0
0
0

 2
0
0
0
0
0

 2
5
0
0
0
0

 3
0
0
0
0
0

 3
5
0
0
0
0

 4
0
0
0
0
0

d
u
ra

ti
o
n
 i
n
 s

e
c
o
n
d
s

instance count

Learn time per amount of training data

NN
LR

SHNN
SHLR (16)

SHLR (8)
SHLR (4)

Fig. 3. Time needed for learning different classification approaches.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0

 5
0
0
0
0

 1
0
0
0
0
0

 1
5
0
0
0
0

 2
0
0
0
0
0

 2
5
0
0
0
0

 3
0
0
0
0
0

 3
5
0
0
0
0

 4
0
0
0
0
0

d
u
ra

ti
o
n
 i
n
 s

e
c
o
n
d
s

instance count

inference time per instance

NN
LR

SHNN
SHLR (16)

SHLR (8)
SHLR (4)

Fig. 4. Time needed for classification of one laser point (without
computation of the features).

compared to the kd-tree as depicted in Fig. 4. Using hashing

results in a significant decrease of search time for nearest

neighbors, and the classification results remain comparable.

Nevertheless, our approach with 8 bits and 4 bits out-

performs even the nearest neighbor approach. This can be

explained by the usage of logistic regression, which is less

sensitive to outliers. The classifier with 16 bits performed

worse than the others using less bits due to over-fitting using

insufficient training data. Fig. 5 shows an example laser

scan with a point classification achieved by our method.

The approach produces very good results, but still has some

difficulties to distinguish between the classes foliage and

cars, which results from very similar appearance of some

lower bushes with the front part of cars. Also notable is the

decrease of classification accuracy, in regions where the scan

gets sparser.

The even more interesting aspect of our approach is the

inference time (see Fig. 4) and the time needed for learning

(see Fig. 3). In Fig. 4 logistic regression and the proposed

spectrally hashed logistic regression are the most efficient

classifiers, since in the case of logistic regression only

the weight vector has to be applied to the feature vector

and scaled by the sigmoid function. In our approach the

5964

(a) (b)

Fig. 5. Classification result of our proposed approach (b) compared to a (a) manual labeling. The image is composed of 5 360 degree scans which has
been classified separately. The classes are color-coded as follows load bearing = purple, car = yellow, vegetation = green and walls = blue. (Best viewed
in color.)

calculation is a little bit more time consuming, since we have

to rotate the data and evaluate the hash function. Learning

is more time consuming than logistic regression, especially

when using only a small number of bits.

V. CONCLUSIONS AND FUTURE WORKS

We have presented an extremely simple and hence efficient

algorithm for classifying 3D scan points called spectrally

hashed logistic regression. As shown, one simply learns a

hash function using spectral hashing – perform PCA on the

data and fit a multidimensional rectangle; the aspect ratio of

this multidimensional rectangle determines the code using

a simple formula – and uses it to look-up local logistic

regression models that are learned on scans mapped onto the

same code. Despite its simplicity, its performance is superior

to state-of-the-art methods in our experiments.

There are several interesting avenues for future work.

Next to running more experiments, one should investigate

other (combinations of) features to improve the classification.

Another promising avenue is the overall speed-up of the

calculation of the features, which is currently the bottleneck

in our current implementation. Finally, it is interesting to

start exploring what can be called hashed locally learning in

general, i.e., easy-to-implement classification or regression

approaches that easily scale to millions of data items and

run at real-time. Our experimental results are an encouraging

sign that this may not be insurmountable.

REFERENCES

[1] D. Anguelov, B. Taskar, V. Chatalbashev, D. Koller, D. Gupta,
G. Heitz, and A. Ng, “Discriminative Learning of Markov Random
Fields for Segmentation of 3D Scan Data,” in CVPR, vol. 2, 2005, pp.
169–176.

[2] R. Triebel, K. Kersting, and W. Burgard, “Robust 3D Scan Point
Classification using Associative Markov Networks,” in ICRA, 2006,
pp. 2603–2608.

[3] E. H. Lim and D. Suter, “Conditional Random Field for 3D point
clouds with Adaptive Data Reduction,” in Int. Conf. on Cyberworlds,
2007, pp. 404–408.

[4] D. Munoz, N. Vandapel, and M. Hebert, “Onboard Contextual Classifi-
cation of 3-D Point Clouds with Learned High-order Markov Random
Fields,” in ICRA, 2009, pp. 4273–4280.

[5] D. Munoz, J. A. D. Bagnell, N. Vandapel, and M. Hebert, “Contextual
Classification with Functional Max-Margin Markov Networks,” in
CVPR, 2009, pp. 975–982.

[6] A. Torralba, R. Fergus, and W. T. Freeman, “80 Million Tiny Images:
A Large Data Set for Nonparametric Object and Scene Recognition,”
TPAMI, vol. 30, no. 11, pp. 1958–1970, 2008.

[7] A. Halevy, P. Norvig, and F. Pereira, “The Unreasonable Effectiveness
of Data,” IEEE Intelligent Systems, vol. 24, no. 2, pp. 8–12, 2009.

[8] Y. Weiss, A. Torralba, and R. Fergus, “Spectral Hashing,” in NIPS,
2009, pp. 1753–1760.

[9] J. Lafferty, A. McCallum, and F. Pereira, “Conditional Random Fields:
Probabilstic Models for Segmenting and Labeling Sequence Data,” in
ICML, 2001, pp. 282–289.

[10] B. Taskar, V. Chatalbashev, and D. Koller, “Learning Associative
Markov Networks,” in ICML, 2004, pp. 807–814.

[11] D. Munoz, N. Vandapel, and M. Hebert, “Directional Associative
Markov Network for 3-D Point Cloud Classification,” in Proc. of the

4
th Int. Symp. on 3D Data Processing, Visualization and Transmis-

sion, 2008, pp. 63–70.
[12] N. Ratliff, J. A. Bagnell, and S. Srinivasa, “Imitation Learning for

Locomotion and Manipulation,” in Humanoids, 2007.
[13] A. Agrawal, A. Nakazawa, and H. Takemura, “MMM-classification of

3D Range Data,” in ICRA, 2009, pp. 2269–2274.
[14] K. Lai and D. Fox, “3D laser scan classification using web data and

domain adaptation,” in RSS, 2009.
[15] A. Patterson, P. Mordohai, and K. Daniilidis, “Object Detection from

Large-Scale 3D Datasets using Bottom-up and Top-down Descriptors,”
in ECCV, 2008, pp. 553–566.

[16] A. Johnson and M. Hebert, “Using spin images for effcient object
recognition in cluttered 3D scenes,” TPAMI, vol. 21, no. 5, pp. 433–
449, 1999.

[17] B. Horn, “Extended gaussian images,” Proc. of the IEEE, vol. 72,
no. 12, pp. 1656–1678, 1984.

[18] A. Torralba, R. Fergus, and Y. Weiss, “Small codes and large databases
for recognition,” in CVPR, 2008.

[19] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally Weighted
Learning,” AI Review, vol. 11, pp. 11–73.

[20] R. Salakhutdinov and G. Hinton, “Semantic Hashing,” Int. J. Approx.

Reasoning, vol. 50, no. 7, pp. 969–978, 2009.
[21] P. Komarek and A. Moore, “Making Logistic Regression A Core

Data Mining Tool: A Practical Investigation of Accuracy, Speed,
and Simplicity,” technical report, Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA, Tech. Rep., May 2005.

[22] S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Wu, “An
optimal algorithm for approximate nearest neighbor searching fixed
dimensions,” J. of the ACM, vol. 45, pp. 891–923, 1998.

5965

