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Abstract— Online optimal planning of robotic arm movement
is addressed. Optimality is inspired by computational models,
where a “cost function” is used to describe limb motions
according to different criteria. A method is proposed to
implement optimal planning in Cartesian space, minimizing
some cost function, by means of numerical approximation to
a generalized nonlinear model predictive control problem. The
Extended RItz Method is applied as a functional approximation
technique. Differently from other approaches, the proposed
technique can be applied on platforms with strict control
temporal constraints and limited processing capability, since the
computational burden is completely concentrated in an off-line
phase. The trajectory generation on-line is therefore computa-
tionally efficient. Task to joint space conversion is implemented
on-line by a closed loop inverse kinematics algorithm, taking
into account the robot’s physical limits. Experimental results,
where a 4DOF arm moves according to a particular nonlinear
cost, show the effectiveness of the proposed approach, and
suggest interesting future developments.

I. INTRODUCTION

It is a common belief that the human body moves “opti-

mally” and that feedback control is performed during human

reaching movements [1]. According to computational motor

control, human limbs trajectories during goal-directed move-

ments can be modeled by an optimization process guided by

suitably defined performance indexes [2]: more precisely, as

the minimization of nonlinear cost functions, sometimes even

non-differentiable [3]. In literature different computational

models can be found, describing trajectories as the mini-

mization of variance [6], torque change [7], jerk [5], energy

of moto-neurons signals [4]. In humanoid robotics, where

reaching is the fundamental action primitive, such models

are particularly interesting [8]. During such movements (e.g.

reaching, walking) the focus is not only on the successful

reach, but also on the trajectory performed by limbs: by

implementing computational models on the robotic platform

it is possible to mimic human movements, and achieve,

within certain approximations, human-like behaviors [11],

[12]. In this perspective, the robot must be provided with

a tool that is able to plan “optimally”: once given the

biologically inspired principles, generate the trajectories and

execute the desired motions in real-time (possibly without

being resource-demanding). Unfortunately, implementations

on humanoid platforms (e.g., see [13], [14], [9], [10]) face
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notable computational limits. Rather than finding a generali-

zed optimal solution to the planning problem, which would

surely incur into the curse of dimensionality and prevent

the application in real-time, the proposed approaches in

literature focus on the optimization of single point-to-point

movements. The corresponding optimal control problems are

usually tackled via numerical methods and nonlinear pro-

gramming algorithms, but the optimization process requires

heavy computations and prevents the application in real-

time :as an example, in [10] a single movement generation

is reported to take from 1 to 4 minutes, even with a fast

optimizer as IPOPT [28].

Since closed-form solutions are utterly hard to find (im-

possible in many cases), approximate solutions can be ad-

dressed. In particular, Nonlinear Model Predictive Control

(NMPC) methods can be used. The explicit precomputation

of NMPC is prohibitive1 for state/parameters above R
10: e.g.

in [26] a fast direct multiple shooting algorithm and several

approximations were made to reduce a 20 CPU seconds

computations on a 3GHz Pentium IV to 200ms, for a 5 state

0.15 seconds trajectory.

Among the possible options, here an off-line approxima-

tion of the global control law is preferred: the complete

precomputation of a neural approximation of an explicit

Finite/Receding Horizon (FH/RH) optimal control law (sup-

ported by an intermediate control to compensate modeling

errors) allows finding almost instantly the controls, in the

order of µs, leaving the machine free for other tasks during

on-line execution (e.g. contact detection, learning, etc.). Note

that the closed-loop control on the robot considered in this

work runs at 5−20ms (at least 5ms are necessary for force

control, which will be used with this method in the future).

Note also that the aforementioned techniques usually solve

single optimization problems, i.e. each trajectory is the result

of an optimization problem (typically varying its boundary

conditions); conversely, in the proposed approach a gene-

ralized solution is found, for all the possible initial/desired

conditions (positions, velocities and so on). Thus, in the on-

line phase no further processing is required; the computation

of the on-line controls is very fast, consisting only in a single

forward pass of a neural network, as will be discussed later

on; real-time performances can be guaranteed; furthermore,

the machine controlling the robot does not require an ex-

ternal optimization routine (usually resource consuming), or

1The reader should see [27], where off-line precomputation, delay
compensation and other techniques were surveyed, discussing reasonable
compromises between computational time, convergence of the method,
approximation performances and real-time guarantee.
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licensed software, nor specific hardware.

The proposed technique consists of two steps. In the first,

off-line, a suitable sequence of approximating functions is

trained, so that they can approximate the sequence of optimal

control functions of a stochastic Finite Horizon problem. The

ERIM is chosen as a functional approximation technique,

while the use of feed-forward neural networks guarantees

that the optimal solutions can be approximated at any desired

degree of accuracy [21], [17]. Planning is carried out in

Cartesian space and once the optimal trajectories are deter-

mined, they are converted into motor commands – joint level

– using a closed-loop inverse kinematics algorithm (which

takes into account the manipulator physical limitations). In

the on-line phase, a single forward computation of a neural

network (consisting of few elementary operations such as

additions, multiplications etc. - see [23]) yields the proper

control at each time instant. The feasibility of this approach

has already been tested on the control of a thrusts-actuated

non-holonomic robot [18], while numerical results showing

its effectiveness for different cost functions were presented

in [22], for the motion of a simpler planar manipulator.

The remainder of the paper is organized as follows.

Section II describes the robotic setup: the humanoid robot

James. Sections III and IV describe the FH and RH neural

controllers, along with the training procedure and the closed

loop inverse kinematics, respectively. Sections V shows ex-

perimental results. Section VI discusses future works, while

Section VII draws the conclusions.

II. ROBOTIC SETUP

James [30] is a humanoid torso, consisting of a head, a

left arm and hand, with the overall size of a 10 years old

boy (see Fig. 1). Among the 7 DOF of the arm, only 4

have been considered, i.e. 3 for the shoulder and 1 for the

elbow. In Tab. I the range of the four joints positions is

reported. Torque is transmitted to the joints by rubber toothed

belts, pulleys and stainless-steel tendons, actuated by rotary

DC motors. Motors are controlled with 12 Digital Signal

Processing (DSP) boards (Freescale DSP56F807, 80MHz,

fixed point 16 bits). Each board provides for the regulation

of two motors, with a 1KHz control loop. Optical encoders

are used for the feedback position control loop implemented

on the boards. A CAN-bus line allows the communication

between the boards and the remote PC, where an ESD CAN-

USB is provided. Reference position and velocity commands

can be set by the user through the latter.

DSP boards have limited memory and computation ca-

pability and cannot support more than simple operations,

namely low level motor control (basically PID position

control), signal acquisition and pre-filtering from the optical

encoders. For this reason, implementing an on-line controller

directly on the DSP boards is impossible in the current setup:

the control is indeed computed on the remote PC, while the

DSP boards act like mere low level controllers.

Fig. 1. The humanoid robot James.

q0[◦] q1[◦] q2[◦] q3[◦]
-10 -140 -115 0 min
150 100 30 100 max

TABLE I

VALUE RANGES OF THE ARM JOINT POSITIONS.

III. OPTIMAL TRAJECTORY PLANNING

THROUGH FINITE/RECEDING HORIZON

REGULATORS

A. Problem formulation

The elements involved in the planning phase are the end-

effector of the manipulator and the target. Their Cartesian

coordinates, with respect to a fixed reference frame, at time

instant t are respectively denoted2 by xr
t , x

g
t ∈ R

3 (each of

them consisting of three elements, in the x, y, z direction: the

orientation is neglected for the moment, but the approach can

be easily generalized for the orientation problem). Consider

ξt a generic vector describing the difference between the

current end-effector coordinates and the target ones, ξt ,

[xg
t − xr

t ], or a more detailed vector containing position,

velocities, acceleration errors, etc. (e.g. ξt , [xg
t − xr

t , ẋ
g
t −

ẋr
t ]). It is assumed that the following compact model can

be used to describe the evolution of the end-effector with

respect to the target ξt, if the control ut acts on the robot:

ξt+1 = f (ξt, ut) , t = 0, 1, . . . (1)

where at the time instant t, ξt is the state vector, taking

values from a finite set Ξ ⊆ R
n, and ut is the control vector,

constrained to take values from a finite set U ⊆ R
m. At any

time instant t, the desired state is ξ∗t = 0, meaning that

the goal is to bring the difference vector between the end-

effector and the target to zero. Thanks to the time invariance

of the system dynamics and of the cost function, t = 0
can be considered as a generic time instant. Then, a single

(functional) FH optimization problem is addressed.

Problem 1 (Reaching): Find a sequence of optimal con-

trol functions µ◦
0, . . . , µ

◦
N−1, that minimize the cost func-

2Hereinafter, x(t) = xt, u(t) = ut, where t is a generic time instant.
The subscript i and t will be used referring to a RH or FH sequence of
states/controls.
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tional

J̄ = E
ξ0∈Ξ

{

N−1
∑

i=0

hi(ξi, µi(ξi)) + hN (ξN )

}

(2)

subject to the constraints µ◦
i ∈ U ⊆ R

m and ξi+1 =
f(ξi, µi(ξi)).
The i-th couple “controller-function” of the FH problem

is shown in Fig. 2. It is remarkable that the problem is

generalized for every possible initial state ξ0 (i.e. for every

possible robot and target’s coordinates) in virtue of the

Expectation operator E.

The solution of Prob. 1, which is a FH problem, allows to

solve without additional effort the corresponding RH prob-

lem. In fact, by making the assumption that the desired state

ξ∗t = 0 holds for N stages, a certainty equivalence principle

is implicitly applied: at time instant t, the target vector ξ∗t
is supposed to remain constant for N time instants, that is:

ξ∗t+i+1 = ξ∗t+i, i = 0, . . . , N − 1. If at each time instant a

FH problem is solved and only the first control function is

retained, then it is possible to exploit the generalized FH

solution also in the RH case.

Remark 1: This is the situation corresponding to the track-

ing of unknown/unpredictable targets: the robot assumes

the target to retain the current position, plans a trajectory

and moves toward it. A change in the target’s position

does not affect the tracking behavior, since at each time

instant the target’s coordinates are measured and the control

corresponding to a newer trajectory is performed. Thus, the

method can be applied to both static or moving targets.

The corresponding RH problem is:

Problem 2 (Tracking): For every time instant t ≥ 0, find

the RH optimal control law u◦
t = µ◦

t (ξt) ∈ U , where µ◦
t

is the first control function of the sequence µ◦
0|t, . . . , µ

◦
N−1|t

that minimize the FH cost functional

J̄t = E
ξt∈Ξ

{

N−1
∑

i=0

hi(ξt+i, µi|t(ξt+i)) + hN (ξt+N )

}

. (3)

µ◦
0 is a time invariant control function, i.e. uRH

t =
µRH(ξt) = µ◦

0(ξt).
Remark 2: The goal “to reach a target” could also be

expressed by a hard constraint like ξN = 0, rather than

a soft one defined by function hN . The latter has been

preferred, since the robot could not be able to reach the target

perfectly as a consequence of the unpredictable behavior of

the target or the robot’s intrinsic physical limits; for example,

the target could be outside the arm’s reachable space. In such

situations, an optimization problem with a hard constraint

would fail (i.e. no solution). A convex cost term like hN

instead, always ensures a solution.

Remark 3: Note that the solution of a FH/RH problem

for a certain ξ0 = ξ̂ yields a sequence of controls and

points discretizing the optimal trajectory. Solving for all

the possible and admissible ξ0 ∈ Ξ means that a set of

L sequences of controls are computed, for all the possible

initial states. This set is used as a training set for the neural

networks, so that through the (off-line) learning procedure

they can approximate the optimal control functions. Then,

each single control in real-time does not require any op-

timization process, but is immediately retrieved from the

approximated “global” solution.

ξi ξi+1

ξ∗i

uiµi
f

Fig. 2. The i-th element couple, when the control task is “unfolded” in
time and a desired value ξ∗

i
is considered. The input to the neural controller

can be the difference between the desired and the current state, only if f is
linear: in that case this solution is not only feasible, but preferred since it
halves the inputs to the neural controller, thus reducing the computational
complexity of the method. In a general situation (e.g. f nonlinear), the
inputs are both ξi and ξ∗

i
.

Remark 4: With reference to Fig. 2, it is worthy to note

that the proposed method is particularly appealing if function

f is a nonlinear dynamic model of the robot, i.e. the function

qi+1 = f(qi, q̇i) is known. In this case, the intermediate

Closed-Loop Inverse Kinematic control (CLIK), described

later on, would not be necessary as the control law could take

into account the Inverse Kinematics and compute the controls

in the joint space directly. Such function has not been

estimated yet, thus the Inverse Kinematics problem must be

solved taking into account the imperfect discretization of all

the joint variables. More details are in Section IV. Note that

if qi+1 = f(qi, q̇i) is known, since the kinematics of the

robot is known, it is straightforward to find [qi+1, xi+1] =
F (qi, xi, q̇i, ẋi).

B. From a functional optimization problem to a nonlinear

programming one

Since the RH problem exploits the solution of the FH

problem, only the latter is discussed hereinafter. In order to

solve Problem FH the ERIM [16] is applied: the admissible

control functions µ0, µ1, . . . , µN−1 are constrained to take

the form of one-hidden-layer (OHL) neural networks:

µ̂i(ξi, wi) = col

(

σ

[

ν
∑

h=1

cihjϕh(ξi, κih) + bij

])

(4)

with j = 1, . . . ,m, where the vector , wi ∈ R
W , being wi =

{cihj , κih, bij , ∀h, j} and W = (n+1)ν+m(ν+1), collects

all the parameters to be optimized in the i-th network.

µ̂i(·, wi) : R
n × R

W 7→ R
m, chj , bj ∈ R, κh ∈ R

n+1,

being ν the number of neurons constituting the network;

σ(·) = U tanh(·) bounds the controls within the admissible

range [−U,U ]; ϕ is a basis function (i.e. a sigmoid). Input

and output normalization are assumed, but not indicated

for the clarity of notation. By substituting (4) into (2), the

µ̂t µ̂t+1

xg
t xg

t+1

xr
t xr

t+1
x∗
t , ẋ

∗
t x∗

t+1, ẋ
∗
t+1

TT

RR

Fig. 3. Unfolding in time of the approximating neural networks. T accounts
for the “target”, while R for the “robot”.

1292



general functional cost J̄ (µ0, µ1, . . . , µN−1) is turned into a

function Ĵν(w) which is only dependent on a finite number

of real parameters, w = col(wi, i = 0, 1, . . . , N−1). Prob. 1

is thus restated as:

Problem 3 (Neural Reaching): Find the optimal vectors

of parameters w◦
0 , . . . , w

◦
N−1 that minimize the cost function

Ĵν = E
ξ0∈Ξ

{

N−1
∑

i=0

hi(ξi, µ̂i(ξi, wi)) + hN (ξN )

}

subject to the constraints µ̂i(ξi, wi) ∈ U ⊆ R
m and ξi+1 =

f(ξi, µ̂i(ξi, wi)).
Then, for every time instant t, the time-invariant RH control

law corresponds to uRH
t = µ̂RH(ξt, w

◦
0) = µ̂◦

0(ξt, w
◦
0).

C. Solution of the nonlinear programming problem by

stochastic gradient

The optimal parameters in the OHL control functions can

be found by a stochastic gradient steepest descent:

wi(k + 1) = wi(k)− α(k)∇wi
Ĵν [w(k)] +

+ η(wi(k)− wi(k − 1)) (5)

for k = 0, 1, . . ., with the usual regularization term η ∈ [0, 1].
The convergence of the method is assured by a particular

choice of the step size α(k), that must fulfill a set of

conditions [20]. The partial derivatives necessary for the

application of (5):
∂Ĵν

∂wi
=

∂Ĵν

∂ui

∂µ̂i(ξi, wi)

∂wi
. are computed

in two steps. In a forward phase the system and the neural

controllers are unfolded in time, making a chain where the

feedback is explicit (see Fig. 3) (at iteration step k, given the

initial state ξ0, all the intermediate states ξi and controls ui

generated by the sequence of OHL networks are computed).

In a backward phase, all the gradient components are com-

puted and “back-propagated” through the networks’ chain.

The recursive propagation is described by the following

equations, for i = N − 1, N − 2, . . . , 0:

∂Ĵν

∂ui
=

∂hi(ξi, ui)

∂ui
+

∂Ĵν

∂ξi+1

∂f(ξi, ui)

∂ui

∂Ĵν

∂ξi
=

∂hi(ξi, ui)

∂ξi
+

∂Ĵν

∂ξi+1

∂f(ξi, ui)

∂ξi
+

∂Ĵν

∂ui

∂µ̂i(ξi, wi)

∂ξi

initialized by ∂Ĵν/∂ξN = ∂hN (ξN )/∂ξN .

IV. CLOSED LOOP INVERSE KINEMATICS

The arm motion control focuses on the first four joints, i.e.

three joints of the shoulder and one of the elbow (for further

details see Section II). James hand is considered as the

end effector of the manipulator. As already pointed out, the

rotation of the hand is neglected and will be object of future

works. Denoting with xr = [x, y, z] the Cartesian coordinates

of the end effector with respect to a fixed reference frame,

and with q = [q0, q1, q2, q3] the vector of the joint position

variables of the arm (see Tab. I), then the forward kinematics

xr(t) = farm(q(t)), farm : R
m → R

n is found using the

Denavit-Hartenberg convention [19]. The target’s Cartesian

coordinates are denoted by xg(t). The orientation of the

ROBOT

−

et
R(s)

vt

ẋ∗
t

q̇∗t
J†

farm

qt

xr
t

x∗
t

Fig. 4. A simple CLIK scheme. The block J† refers to (6). The retrieving
of the target’s cartesian coordinates is not modeled, as it would require
to discuss the robotic visual system, the target identification module etc.
For the sake of simplicity, many details about the closed loop control are
voluntarily neglected, to keep the scheme clear.

end effector is neglected. Within this context, the 4 DOF

manipulator is redundant.

Given a desired trajectory for the end-effector, denoted

by x∗(t), and its velocity profile, ẋ∗(t), in the Cartesian

space, Cartesian and joint space velocity commands, v(t)
and q∗(t) respectively, are computed with a Closed Loop

Inverse Kinematic (CLIK) algorithm, as shown in Fig. 4.

Among the possible ways to invert the kinematics the

following is used (see Fig. 4):

q̇∗(t) = J†v(t) + (I − J†J)q̇a(t)

= J⊤(JJ⊤ + k2I)−1v(t) + (I − J†J)q̇a(t) (6)

where J† is a damped least-squares pseudo-inverse of the

Jacobian J ; q̇a(t) represents an arbitrary joint velocity vector

which is projected in the null-space of the Jacobian matrix by

the projector (I − J†J) (I is the identity matrix). q̇a(t) was

chosen such that joints positions were maintained far from

their physical limits [29]. In such manner it is possible to

cope with singularities and to exploit the intrinsic redundancy

of the manipulator. The parameter k2 in (6) is determined

adaptively as in [25], i.e. depending on the smallest singular

value σmin of the Jacobian matrix:

k2 =

{

0 σmin > σ̄

[1− (σmin

σ̄ )2]k̄ σmin < σ̄
. (7)

In this specific case, k̄ = 0.10 and σ̄ = 0.20, the latter

determined sperimentally. The parameters were chosen by

driving the arm to singular positions.

Note that the singularity is solved by acting on the singular

values, which are configuration-dependent, while redundancy

is resolved by selecting the solution which stays furthest

away from the joints bounds. A point-wise approach like this

may not lead to the best solution for the overall trajectory.

It is reasonable to solve the Inverse Kinematics in this way,

since “globally” the control functions are already an approx-

imation of the global ones, and the smoothing properties of

the neural networks should prevent rough behaviors.

In order to avoid the “drift” effect due to the discretization

of the joints positions (see [19]) a closed loop inverse

kinematic algorithm is used. The classical scheme relies on

a purely proportional regulator, i.e. R(s) = Ke, where Ke

is a diagonal positive defined matrix. In an ideal situation,

the correction term Kee(t), where

e(t) = x∗(t)− xr(t) , (8)
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guarantees convergence to zero of the cartesian error and

the error dynamic ė + Kee = 0 is asymptotically stable.

The convergence velocity of such system depends on the

eigenvalues of the gain matrix Ke > 0 [29][19].

In order to perform tracking tasks, the discrete-time system

should respond to rapid variation of the tracking trajectory:

hence, the gain Ke should be raised until some reasonable

performances are met. Unfortunately, Ke cannot be raised ad

libitum: its upper-limit is determined by the physics of the

problem. Moreover, high-frequency terms (e.g. unmodeled

dynamics) also prevent to raise it to a sufficient value: in

the experiments, a too high valued Ke (e.g. Ke = 20I)

was already revealing elastic effects (a step-response was

used to investigate the system); higher (e.g. Ke = 40I) was

compromising the safety of the robot.

For these reasons the simple proportional gain Ke was

substituted with the following:

R(s) = Ke
1 + sτe

s
(9)

where Ke is still a positive diagonal matrix, τe a time

constant. Incidentally, (9) corresponds to a PI controller,

where the proportional gain is Keτe and the integral one is

Ke. The sampling time ∆t = 5− 50ms is then fundamental

for the proper tuning of the digital integral gain; the time

constant τe (corresponding to the zero −1/τe) can be thus

properly raised. For example, τe = 30,Ke = 0.5 when

∆t = 20ms. It is worth noting that the use of this regulator

was necessary to have high proportional gain and without

incurring in an instability of the system. With the pure

proportional Ke, a high gain was compromising the transient

of the trajectories, and the safety of the robot (high oscillating

velocities exalt the elasticity effect of tendons transmission).

It is worth noting that the commanded velocities are

checked by a further lower level control: to prevent the robot

to make fast movements, joint velocities q̇∗(t) are saturated

in the range [−25,+25](deg/s). This rough solution is

necessary to avoid the stress of the elastic parts of the

robot (mainly tendons) and their consequent damage. In this

specific case, the regulator (9) assures asymptotic stability

with faster response of the system with respect to the purely

proportional regulator. The commanded Cartesian velocities

are then:

v(t) = ẋ∗(t) +Keτee(t) +Ke

∫

e(t)dt. (10)

where e(t) is the one of (8). Also in this case, it is possible

to guarantee stability and convergence, for τe > 0,Ke > 0
and the trend of convergence depends on the two eigenvalues

resulting from s2 + keτes+ ke = 0 (Ke = keI).

In Section III a method for the optimal trajectory planning

in the Cartesian space, i.e. finding x∗(t), ẋ∗(t), was dis-

cussed. More precisely, it has been shown how a FH or RH

neural controller could be exploited for optimal planning: a

neural control law µ̂◦ was used to find the optimal trajectory

in the Cartesian space, which satisfied some performance

criterion. A scheme illustrating how the neural network copes

with the CLIK controller is presented in Fig. 5.

ROBOT

−

et
R(s)

µ̂◦

vt

ẋ∗
t

q̇∗t
J†

farm

qt

xr
t

x∗
t

xg
t

J

Fig. 5. James’s arm CLIK controller, with the contribution, in evidence,
of the neural controller.

V. EXPERIMENTAL RESULTS

In this experiment, a receding-horizon neural controller is

used to plan Cartesian trajectories for reaching.

The desired trajectory is characterized by the follow-

ing convex cost function: J =
t+N−1
∑

i=t

c(ui) + ξ⊤i+1Vi+1ξi+1

where ξ = [∆x,∆ẋ,∆y,∆ẏ,∆z,∆ż], i.e. the difference

between the target and the end-effector Cartesian positions

and velocities, u = [ẍ, ÿ, z̈] , [ux, uy, uz]. Note that J
(in its general form, see Eq. 2) usually represents a tradeoff

between the minimization of the energy consumption and the

“best” end-effector proximity to the target during and at the

end of the manoeuvre. The second term is indeed related to

the distance to the target during the manoeuvre, which results

in high velocity desired trajectories. Conversely, the first term

acts as a damping quantity, which is necessary to reduce

the risk of damage of the platform. Weight matrices Vi, in

(??), were chosen such as to obtain reasonable compromise

between the attractiveness of the target and the energy

consumption. c(ui) is a nonlinear but convex function:

c(uj
i ) = α

[

1

β
ln(2 + eβu

j

i + e−βuj

i )−
1

β
ln(4)

]

, j = x, y, z

(11)

which, for large values of β approximates the ideal but non

differentiable cost α
∣

∣

∣
uj
t

∣

∣

∣
, as shown in Fig. 6.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

c(
u
j i
)

uj
i

Fig. 6. The cost function (11), with K = 0.01 and β = 50.

In particular, Vi = diag(1.0, 80.0, 1.0, 80.0, 5.0, 10.0), i =
1, . . . , N − 1, VN = 40I . Output velocities were bounded

within a safe range. Function f (see Eq. 1) is a double time

integrator of the controlled accelerations ui.

Remark 5: The double integrator approximates ideally the

robot and the CLIK controller; the latter takes entirely into
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account of singularities and redundancies, and is properly

tuned to achieve the desired behaviors. Thus, the overall

system performances do not degrade.

The training of the neural networks chain was performed off-

line with the following parameters: N = 60, ν = 40 (where

N represents is the number of control steps, and ν is the

number of total neurons of the net), ϕ = tanh. More than 107

random samples were used to feed the networks, considering

the whole reachable Cartesian space for the robot, and an

augmented space for the target (to consider also unreachable

targets); velocities and position were uniformly sampled. The

neural networks’ weights w and biases b were initialized with

a slightly modified version of the known Nguyen-Widrow

method [24], adapted to the multiple dimension case: b =
rand(0.7ν(1/n)) , w = rand((0.7/n)ν(1/n)) where ν, n are

the number of neurons and the number of inputs of the neural

network, respectively, and rand(a) is a function extracting

a random value within the range [−a, a].
Remark 6: The flops count for the on-line computation of

the approximated optimal controls is about 4633, which in a

Pentium IV 3GHz are approximatively 10µs.

In Fig. 7 the task is presented: the target is “fixed” (i.e.

still), but changes unpredictably its position after a variable

unknown period of time. This situation is representative of

the case where the attentive system of the robot selects

a target to be reached in the space (e.g. when the robot

recognize a known object of interest). Cartesian trajectories

of the end-effector and target position (named “desired”)

are shown in Fig. 8, while the corresponding arm’s joint

position and velocities are shown in Fig. 9. The saturation

of velocities is evident in the joint velocity profiles.

Remark 7: Eq. 11 reminds the absolute work term [3],

measuring the energy expenditure of a movement. In this

case the goal is not to minimize an absolute work term

(which would require the torques and thus a more complex

dynamic model), however it is interesting to show that the

proposed method can be applied to the implementation of

“complex” nonlinear costs, which are usually superseded due

to their mathematical difficulty (e.g. induced by the absolute

value).

VI. FUTURE WORK

Ongoing work deals with the control of the 7DOF arm

(including orientation in the desired trajectory), and the

effective implementation of the visual feedback. Remark 4

suggests the application of the method in presence of a non-

linear function f , which could avoid the CLIK, solving the

singularities and redundancy issues. Thus another problem

will be addressed, as the estimation of such function is not

trivial [31]. As pointed out in Remark 7, the proposed method

can be applied with different cost functions, and given the

generic formulation, in different contexts (i.e. for different

state and control vector ξ, u). Lately James has been provided

with a single force/torque sensor (FTS), placed in the middle

of the arm [23]. Ongoing work is currently investigating

how to exploit the proximal force sensing measurements to

retrieve the joint forces and torques in the arm, with the
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Fig. 7. “Neural” trajectory (blue) of the end-effector, reaching a target (red)
which changes unpredictably. The shape of each trajectory is determined by
the cost function J and its parameters.
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Fig. 8. Cartesian positions and velocities of the end-effector during the
movements in Fig. 7. It is worth noting the different velocity profiles (e.g.
ẏ, ż) due to the different parameters of the cost function.

purpose of implementing force/torque control. The future

plan is to apply the proposed method for planning in the

torque space, and in a mixed Cartesian/torque space, thus

allowing the implementation of the absolute work principle.

Furthermore, the FTS will provide the necessary information

to detect contacts occurring during motion: this will enable

to plan trajectories preserving safety during motion.

VII. CONCLUSION

In this paper on-line optimal trajectory planning is tackled

through Finite and Receding Horizon Neural control. A

reaching/tracking task for a 4DOF humanoid arm was pre-

sented, where the cost affecting the motion was particularly

significant, showing the capability of the proposed method

to handle nonlinear systems and/or nonlinear cost functions
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Fig. 9. Position and velocity of the arm’s joints during the movements in
Fig. 7.

without further complications. The trajectory generation and

execution can be separated: this way the computational

burden is concentrated in the off-line phase (controls are

computed directly online without recurring to further opti-

mizations), so that the computation of the (approximated)

optimal controls can be performed quickly (almost instan-

taneously) and efficiently on-line, without incurring in real-

time issues or being resource demanding.
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