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Abstract— This paper presents a global methodology devel-
oped to increase the reliability of mobile robots. An initial
analysis of robot functions and their corresponding significant
failures enabled us to introduce dedicated observation modules
in the embedded architecture to monitor fault events. Once
detected, the functioning mode of the robot can be adapted
according to the failure severity level to ensure the success of
its mission. The methodology was applied in a case study and
the experimental implementation and results are detailed.

I. INTRODUCTION

Mobile robotic missions are becoming increasingly com-
plex, leading to increased robot complexity. Robots are fitted
with numerous powerful sensors which provide accurate
information about the robot state and its surrounding envi-
ronment. They also have various locomotion and interaction
capacities thanks to efficient and adapted actuators. The
control architecture is the central and critical part of the
robot which manages increasingly complex robot activities.
In a perfect world, a robot would succeed in completing its
allocated missions whatever the situation.

Unfortunately, robots are hampered by numerous types of
fault. The interesting study of Carlson et al. [1] concerning
unmanned ground vehicle operating in real environments
demonstrated that robots are often unable to achieve their
mission. This study covers a large variety of robots and anal-
yses their missions concerning Urban Search and Rescue and
Military Operations. The authors concluded that reliability,
which is the capacity to ensure the ”continuity of correct
service” [2], is low due to a huge variety of failures of
many origins. Hence, in the real world robots do not always
succeed in dealing with some adverse situations.

To improve reliability, it is essential to design robust (ca-
pacity to deliver a suitable service in adverse situations due to
uncertain system environments) and fault-tolerant (capacity
to deliver a suitable service despite faults affecting system
resources) robots [2]. Using these dependable principles, a
robot should be able to complete its mission, even when there
are faults, or to detect that the mission is no longer possible
with its operational capacities and must be abandoned. For
simplicity, we will not make a distinction between fault, error
and failure in this paper they all refer to a malfunctioning.

Robustness and fault tolerance are based on three main
principles [2]: fault or adverse situation detection, diagnosis,
and recovery. The next section summarizes a few different
studies related to these concepts in mobile robotics.

A. State of the art

The first paragraph in this section is related to fault iden-
tification and localization with fault detection and diagnosis
mechanisms. The second concerns fault recovery, and finally
fault tolerance and robustness in control architectures is
tackled.

1) Fault detection and diagnosis methods: Several tech-
niques can be used for fault detection [2]: timing checks
(watchdogs), reasonableness checks (valid interval value
verification), safety-bag checks (command verification), and
model-based monitoring and diagnosis (detection of any
inconsistency between measured system data and corre-
sponding model values) [3]. Model-based fault detection
is widely used to highlight hardware faults ,[4] where
the authors used multiple model based methods (bank of
Kalman filters) to detect sensor and mechanical faults. In
[5], the authors use a particle filter based state identification
method to detect hardware faults such as battery voltage
drops or motor encoder decoupling. Other approaches exist
for example, in [6], a model based diagnosis approach is
described using a probabilistic hybrid automaton to model
the considered failure modes and the nominal mode, or
in [7], who propose a ”generate and test approach” to
check all possible sensing failure origins of current symp-
toms. However, multiple model oriented approaches may
be hampered by state space handling problems when the
number of treated faults increases, especially in an embedded
and real-time context. However in robotics, faults are not
always hardware related, they can also be associated with
the software. Few studies have assessed the detection of
complex robot control software faults during runtime. In [8],
the author develops a model based approach using Petri nets
to monitor component-based systems and detect erroneous
components. But there is no evidence that this approach can
handle real-time constraints. Weber and Wotawa [9] describe
a model-based diagnosis paradigm to detect and localize
runtime control software faults. After a fault detection, the
failed component is identified using a failure dependency
graph. To the best of our knowledge, this proposition has
not been tested in the field.

2) Fault recovery: In robotics, recovery solutions after
fault detection have been proposed in some previous studies.
For example, concerning hardware faults in [6], the authors
determined whether a robot should reconfigure, use a de-

The 2010 IEEE/RSJ International Conference on 
Intelligent Robots and Systems 
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 1018



graded mode or stop on the basis of qualitative constraints
on robot components and diagnostic results. In [7], they use
exception handling to recover from a detected failure.

Concerning software faults, the usual approach is to stop
and restart either the robot, either malfunctioning compo-
nents and its dependent services [9].

3) Fault tolerant control architectures: This section
presents mechanisms currently used in control architectures
to prevent, diagnose and/or recover from faults. Timing
checks, reasonableness and safety-bag checks are usually im-
plemented in robotic control architectures. They are usually
spread over the architecture and directly embedded in the
different control algorithms. In their survey [10], Duan et
al. present different fault tolerant control architectures. The
authors principally focused on hardware fault detection and
mainly proposed software redundancy to tolerate faults. In
the LAAS architecture , the R2C component [11] is in charge
of propriety and assertion tests using safety bag checks.
Both LAAS and CIRCA [12] architectures detect adverse
situations using execution control and propose high level
replanning to tolerate faults. In [13], in the IFREMER control
architecture, Nana proposed to use an Intelligent Diagnosis
System with a dedicated decisional module to detect and
react to faults.

B. Proposal

This short analysis of research concerning fault tolerance
and robustness in mobile robotics highlights some limita-
tions. Concerning fault detection and diagnosis, the methods
mainly deal with hardware faults. Furthermore, these works
generally only focus on a few very specific faults which
are not always relevant in real operating situations. They
do not use methods to identify relevant faults which are
essential to detect. Concerning fault recovery, most fault
recovery solutions proposed in the literature are generally
very basic (often rebooting or stopping). Moreover, recovery
mechanisms often only concern a limited number of faults.

Finally, there is clearly no link between the identification
of pertinent faults, fault detection methods and fault recovery
works. There is also a lack of global structured approaches
to efficiently integrate dependable concepts into the design
of the robot control architecture.

In this context, we will propose such an approach to
improve the control architecture reliability. Firstly, we use a
methodology to identify the most significant faults to detect.
Then we describe a structured approach to integrate the most
relevant fault detection algorithms in the control architecture.
Finally, the decisional capacities of the architecture allow
relevant recovery reactions to fault events.

This paper focuses on the fault identification and detection
aspects of this approach, without detailing the recovery
mechanisms of the architecture. The next section presents the
different steps of our methodology. Section III describes the
experimental context, and section IV describes the applica-
tion of our methodology to a case study. Before concluding,
section V reports the experiment results.

II. THE PROPOSED METHODOLOGY

A. Fault identification

The FMECA (Failure Mode, Effects and Critical Analysis)
approach [14] is used to study potential failures, and to
delineate the most critical ones. It begins with a functional
decomposition of the system. Then the different failure
modes of the functions and their corresponding severities
are identified is made. In order to identify faults that induce
a service failure, we propose to use a functional decompo-
sition. This step of identification sheds light on the different
failures to monitor and also defines their severity according
to different robot tasks.

B. Fault detection

For detection of each identified fault, we propose to
integrate a dedicated monitoring module named Observer in
the control architecture. In an Observer, we use the most
adapted existing fault detection or diagnosis method to detect
a fault event.

The use of specific and independent modules for fault de-
tection first allows inheritance of the modularity, reusability
and upgradeability characteristics of the control architecture.
Secondly, a modular approach allows flexible management
of these Observers so that the fault detection capacity will be
adapted as a function of the robot mission, its environment
or its available resources. The Observers monitor the perfor-
mance of the executive level of the architecture and convey
information on failures to the decisional level.

C. Reaction to detected faults

Severity identification with the FMECA method allows the
user to determine if a detected fault is critical for the current
robot tasks. The reaction to a fault thus takes into account
this information, as well as knowledge on the still operational
robot functionalities, in order to come up with a solution
to manage the encountered problem and pursue the mission
with the current robot capacities. The control architecture
enables a broad range of reactions. For example, if we have
a set of robotic algorithms, they can be tuned to consume
fewer resources or switched to other control algorithms if
they are out of order. Otherwise, the robot autonomy can be
tailored to include the operator’s capacities. This can be done
requesting information from the human operator or switching
to a teleoperated functioning mode

III. EXPERIMENTAL CONTEXT

The experiments were carried out with a Pioneer-3DX
from MobileRobots with two reversible DC motors. The
robot is equipped with two sonar arrays, bumpers and a
camera to perceive the environment. It is controlled by a
control architecture: COTAMA, hosted on a laptop under a
Linux RTAI real-time operating system. This onboard laptop
communicates by a WiFi network with a remote supervisor
PC which manages the overall mission of the robot and
human-robot interactions. The teleoperation mode uses a
UDP protocol.
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A. COTAMA control architecture

COTAMA (COntextual TAsk MAnagement) [15] is a
modular component oriented architecture. It is split into two
main parts, i.e. executive and decisional levels. The executive
level involves robotic control. The decisional level adapts the
robotic control according to the robot mission progress and
its environment.

1) Decisional level: It is divided into two sublevels, i.e.
global and local supervisors. The global supervisor is in
charge of mission execution. Depending on the mission, the
environment and robot state, it defines the objectives that
have to be carried out by the local supervisor. The local
supervisor manages a given objective. It splits the objective
into sub-objectives that are implemented by the scheduler. A
sub-objective corresponds to a set of modules that have to
be executed to achieve this task.

2) Executive level: It is composed of a scheduler and
different dependent modules. Each module implements a
robotic algorithm. Modules communicate data according to
the consumer/producer paradigm. The scheduler manages the
module execution of sub-objective with respect to real-time
constraints on module and sub-objective execution.

B. The robot mission

The proposed robot mission is to deliver objects in the
laboratory upon the users’ request. This mission is carried out
in a known environment, and the laboratory map is available.
However, the environment remains dynamic since, for exam-
ple, some humans can interact in the vicinity of the robot. A
supervisor PC receives requests and schedules the different
delivery tasks. It then interacts with the robot to issue
requests and receive reports. For this mission, we define three
autonomy level functions of the human-robot interaction
class, i.e. autonomous, teleprogrammed and teleoperated.
For each autonomy level, several functioning modes can be
considered depending on the current operational modules.
Typically, we can define less efficient degraded functioning
modes to deal with some failures. The delivery mission of
the robot is divided into three objectives: driving into the
laboratory, and receiving or delivering objects (interactive
tasks with users). This paper deals with the first part of the
mission, i.e. the driving objective, in order to demonstrate
the benefits of the proposed approach.

TABLE I
LIST OF IMPLEMENTED ROBOTIC ALGORITHMS

Robotic tasks Algorithms

Localization Monte Carlo Localization
Robot’s odometry

Path Planning Lazy PRM
Obstacle Deformable Virtual Zone - DVZ

avoidance Safe Manoeuvering Zone - SMZ
Path following Path following with actuators velocity saturation

Table I presents a list of robotic control algorithms in-
tegrated into the architecture. They define an autonomous
level where the robot achieves its driving objective in two

main sub-objectives: first, it defines its path with the Lazy
PRM path planner [16]; second, it executes a path follow-
ing sub-objective. After the reception of sensors data, in
a non-degraded autonomous mode, a simple Monte Carlo
localization method localizes the robot in the map. Then the
path following algorithm proposed in [17] guides the robot
to follow the path. Two obstacle avoidance algorithms with
different approaches are available. The DVZ [16] modifies
the control command sent to the robot in an obstacle-
free direction. The SMZ [18] algorithm punctually defines
another obstacle-free path according to sonar sensors and
gives it to the path following algorithm. The definitions of
degraded functioning modes derived from this autonomous
mode are made switching or removing algorithms. For
example, without the Monte-Carlo localization, the robot
can only use its odometric sensors which are very noisy.
Functioning modes at the teleoperated autonomy level use
very few algorithms. The operator has to localize and control
the robot according to the camera information.

IV. APPLICATION OF OUR METHODOLOGY IN THE CASE
STUDY

In this section, we fully describe the application of our
methodology within this experimental context.

A. Fault identification

1) Functional decomposition: The decomposition of our
robot mission leads to four main functions: to communicate,
drive, take and deliver the object. In autonomous mode, the
drive function is divided into six sub-functions: the robot has
to create its path, perceive the environment from sensors,
localize itself on the given map, follow the path while
avoiding obstacles and, of course, to actuate the wheels to
move. This functional decomposition guides the preceding
mission decomposition into objectives and sub-objectives.

2) Identification of failure severity: The failure severity
depends on its frequency but also on the context. Indeed,
a fault event could not have the same incidence functions
of the available resources at a given instant, the functioning
mode and the current robot task. We can distinguish transient
failures, intermittent failures and permanent failures. We can
then qualify the failure severity on a four-level severity scale:

• Weak: the current functioning mode remains opera-
tional but can be less effective;

• Medium: the current functioning mode is highly per-
turbed. To keep going on the mission, the robot can
remain at the same autonomy level but must skip into
a degraded functioning mode.

• Hard: it is impossible to pursue the mission in the
current functioning mode.

• Fatal: it is impossible to pursue the mission at all.
3) Ishikawa, cause-and-effect diagrams: After identifica-

tion of the failure severity of the different functioning modes,
we find the origin of these failures. We adapt Ishikawa’s
classic diagram [19] using failure cause domains based on the
fault taxonomy presented in [1]. We retain the following fault
domains: Effectors, Sensors, Environment, Human Design,
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Power and Control Architecture. Fig. 1 presents the Ishikawa
diagram of the Drive function.

Fig. 1. Ishikawa diagram of the Drive function

B. Fault detection

Fig. 2 shows (continuous line) the controlling loop of
the robot in the path following sub-objective in autonomous
mode. The lower Pioneer Communication module communi-
cates with the robot, forwarding information (sensor data and
command values) between the robot microcontroller and the
control architecture. Integration of fault detection algorithms
implies that the corresponding observation modules have
been inserted into the control architecture to monitor the
robotic functions of the current functioning mode. Some of
the implemented Observers are presented in the figure with
dotted lines.

Fig. 2. Path following sub-ojective in autonomous mode

Reasonableness check methods are used in the Sensor
Observer module, in the Path following Observer module
and in the Kinematic Observer module. The Localization
Observer checks the consistency between the particle filter
results and the sensed odometric data. Finally, the Obstacle
avoidance Observer checks that the robot avoids collision
and does not enter a dead-end loop. A model-based approach

(multiple model Kalman filters) is used in the Kinematic
Observer to detect actuator failures. Fig. 2 only represents
the robotic control loop of the path following sub-objective.
Other observers are also implemented in the control archi-
tecture:

• Real-time Observer: monitors the architecture scheduler
and verifies the real-time constraints.

• WiFi communication Observer: monitors the WiFi con-
nection (quality, bandwith, etc.).

• Power Observer: monitors the embedded laptop and the
robot power supplies.

C. Reaction to detected faults

Fig. 3. Failure detection recovery for autonomous mode

All of the observer results are aggregated in a dedicated
module named Global Recovery Module (GRM). The GRM
module decides the most appropriate reaction according to
the severity of the failure, to the current functioning mode,
to the available robotic functions and their corresponding
modules. The following principles are used, illustrated Fig.
3 for the autonomous mode:

• If the fault severity is weak, a simple reconfiguration
of some robotic functions can solve the problem. The
current functioning mode remains equally efficient.

• If the severity level is medium, the current functioning
level can be maintained but with some degraded robotic
functions.

• If the severity level is high, the current functioning mode
can no longer be used. A more adapted functioning
mode is needed to pursue the mission with the currently
available robotic modules, and/or with human-robot
interactions.

• If the severity level is fatal, the robot stops its mission
properly.

The GRM reacts to fault detection, or to the disappearance
of the fault. To manage the functioning mode adaptation, the
GRM module generates events to supervisors. These then
modify the functioning mode and its corresponding executive
modules and/or the autonomy level.
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Fig. 4. Experimental mission

V. EXPERIMENTS

In this section, we describe an experimental object delivery
mission in the laboratory. It illustrates our methodology in
action and highlights the fault detections and the involved
reactions. In our setting, some of the observed faults were
deliberately created to test the detection of unusual faults
(like sonar failure). The considered mission is to deliver
object from office A to office B. The object exchange
objectives are not described in order to focus principally
on analysis of the drive objective from A to B. Fig. 4
presents the recorded experimental robot trajectory and lists
the different map points where relevant events were observed.

The robot achieved this drive objective in about 2 minutes.
The total distance covered is about 50 meters. When moving,
the robot speed is 0.3 m/s. The periodic execution of modules
involved in sub-objectives is set to 0.1 s. Table II summarizes
the different mission phases and details the source event
which leads to switching or adapting the robot functioning
mode.

• Phases I - II: The mission objective is received and the
corresponding path is generated.

• Phase III: A repetitious real-time fault is rapidly ob-
served at the beginning of the path following task. This
failure is localized on the particle filter and denotes that
the particle quantity is too high. This fault is considered
to be weak because it can be eliminated by decreasing
the particle number of the algorithm via reconfiguration
of the particle filter module.

• Phase IV: During this phase, the path following task
works well until a localization fault occurs. Indeed,
the robot has encountered an unexpected obstacle. The
robot continue avoiding the obstacle (continued blue

line) whereas the particle filter (dotted blue line) looses
the real localization. This event is considered to be hard
in autonomous mode because it reveals that the robot
gets lost without an identified reason. The robot thus
requests human help and solution.

• Phases V to VII: The human operator decides to observe
the robot environment with the on-board camera in
teleoperated mode (dashed red line). He detects that an
unforeseen obstacle is present and decides to change
the following path and to teleprogram it on the robot
(teleprogrammed mode).

• Phase VIII: The robot starts to autonomously follow
the new path (continued green line). This works until
a permanent fault is observed on sonar. This fault is
considered to be medium since, to pursue the mission,
a degraded autonomous mode can be used without
requiring sonar information to localize the robot.

• Phase IX: This degraded mode can potentially be dan-
gerous because obstacle avoidance is unusable. We
considered that the mission could be pursued anyway
by decreasing the robot speed. The localization is based
only on the odometric information (continued yellow
line). The limited localization reliability leads the robot
to get lost and hit an obstacle. This new failure is hard
because there is no longer any possibility of autonomous
robot behavior. The robot warns the human operator.

• Phases X - XI: Finally, the human operator decides
to end the drive objective using degraded teleoperation
(without obstacle avoidance).

This experimental mission shows that the robot was able
to detect the different faults that occurred, and to react
depending on these faults and actual available resources.
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TABLE II
MISSION DESCRIPTION

Sometimes the robot opted to ask the human operator for
help, and sometimes it solved the problem itself. Finally, the
mission was achieved despite fault events.

VI. CONCLUSION

New strategies are now required to make more reliable
mobile robots. This paper presents a global methodology
to improve robot robustness and fault tolerance. It tries
to answer the following questions: Which faults should be
focused on? How can they be detected? How should the robot
react to these faults in order to pursue the mission?

The proposed methodology merges existing identification
and detection techniques with efficient control mechanisms
and suitable reactions to construct adaptive control architec-
tures. The FMCEA approach permits identification of the
most significant failure sources. They are detected using
suitable detection methods integrated into specific observa-
tion modules. These modules are included at the executive
control architecture level to monitor fault events. Upon fault
detection, a dedicated decisional module chooses, consid-
ering the current functioning mode, the available robotic
functionalities, and the failure severity level, the most suit-
able functioning mode to pursue the mission. A scripted
experiment was presented to illustrate this methodology. The
experiment shows relevant fault detection and dedicated re-
action. However this experiment has to be repeated numerous
times in real environment to analyse success rate of the
mission, and relevance of human operator intervention.

Different aspects of the current study could be improved.
Firstly, the current decisional mechanism is deterministic.
Fuzzy decision making integrating improved use of the robot
performance history could enhance the decision making
quality. Fuzzy decisional level integrating improved use of
the robot performance history could enhance the decisions
quality. Secondly, it would be of interest to more thoroughly
investigate the problem of human-robot interactions from the

human standpoint. Here we just consider that the human
operator can solve some robot problems but the robot could
be more efficient than the human operator to achieve a
given task in some particular contexts. Moreover, it would
be interesting to transpose the proposed approach to a robot
team that could achieve a given overall mission in spite of
some local robot failures.
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