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Abstract— Programming by Demonstration (PbD) enables
robotic hands to learn human manipulation skills through
storing motion primitives and recognizing motion types. In this
paper, Empirical Copula is introduced to recognize dynamic
human hand motions for the first time using the proposed
motion template and matching algorithm. The huge compu-
tational cost of Empirical Copula is alleviated by the proposed
re-sampling processing. The experiments with human hand
motions including grasps and in-hand manipulations demon-
strate Empirical Copula outperforms the Time Clustering
(TC) method, Gaussian Mixture Models (GMMs) and Hidden
Markov Models (HMMs) in terms of recognition rate. In
addition, Empirical Copula is also proved to be able to recognize
different motions from different subjects.

I. INTRODUCTION

As one of the most distinguished features which differ

from other animals, the human hand is attracting more and

more research interests for building human-like robotic hand

with not only similar dexterous manipulation, which can be

of great help in mobile robots, industries and healthcare.

Simulating human hand’s mechanism has enabled anthropo-

morphic robotic hands develop fast in the past decades, such

as the JPL/Standford Hand[1], the Belgrad/USC hand[2], the

Utah/MIT Hand[3], the Cog Hand[4], the Robonout hand[5]

and the ShadowHand[6]. Especially, the ACT hand [7] has

not only the same kinematics but also the similar anatomical

structure with the human hand, providing a good start for

the new generation of anatomical robotic hands. However

anatomically correct robotic hand is still a far way to go due

to the lack of appropriate sensory systems, unsolved human-

robot interaction (HRI) problems, mysterious neuroscience

issues, etc.

Though artificial hand may perform stronger and faster

motions than the human hand, the high dimensionality and

reliable safety make it challenging to program and manipu-

late human-like robotic hands for dexterous manipulations as

human does. The need for hands that can adapt to a variety

of grasps and augment the arm’s manipulative capacity with

fine position and force control is addressed[8], [9]. To solve

this problem, Programming by Demonstration (PbD in figure

1) was introduced for complex robotic applications in HRI

domain such as grasping and dexterous manipulation [10].

Motion capturing and modeling had been intensively stud-

ied such as [11], [12], while motion recognition is still an

open problem due to the ambiguity of dynamic grasps though
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Fig. 1. Programming by Demonstration in the context of grasping tasks

it had been investigated in the past two decades. Various

methods have been used or created for the human hand

motion recognition. Neural network approach demonstrated

its powerful grasp recognition in Glove-Talk project [13],

support vector machine was fused to recognize hand gestures

[14], and the finite sate machine was also proposed to track

and recognize hand gestures with interaction of video games

[15]. Natal et al [16] and Bedregal et al [17] developed fuzzy

rule-based methods for the recognition of hand gestures,

however the methods are highly dependent on a detailed

previous analysis of the recognized gesture features with

manual transfer involved. Note that Heumer et al [18]

attempted to provide a performance criteria for hand grasp

classification including 28 algorithms provided by Weka

data mining software package. However these algorithms

usually require more parameters such as finger angular speed

instead of position trajectories only, they are also paid less

attention to the context of intelligent robotics, for instance

real-time recognition requirement. Wu et al [19] proposed a

signature descriptor based on elaborated invariants and used a

non-linear inter-signature matching algorithm for signature’s

trajectory recognition, which can solve the problems of

occlusion and differences of observing viewpoints, viewing

distance and speed, but it has no capability to deal with the

continuous motions.

State of the art in grasp recognition can be represented

by methods based on Gaussian Mixture Models (GMMs)

[20] and Hidden Markov Models (HMMs) [21], [22]. For

instance, Calinon and Billard [20] applied GMMs on robot

learning of human gestures. On the other hand, Bernardin

et al [22] presented a method of using HMMs to recognize

continuously executed sequences of grasping gestures. Ju et

al [23] compared Time Clustering (TC) with HMMs and

GMMs on the recognition rate of 13 types of different grasps.

Gaussian Model is confined to normal distributed clusters, so

that more Gaussian components are needed for approximat-

ing the data with curve manifolds[24]. The reason that these

two statistical methods are popular is that they are very rich
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in mathematical structure and hence their theoretical basis

can be adopted for a wide range of applications.

Empirical Copulas were introduced and first studied by

Deheuvels in 1979 [25], which can be used to study the

interrelations of marginal variables with unknown underlying

distributions. Dempster et al. [26] constructed an Empirical

Copula for collateralized debt obligation tranche pricing

and achieved better performance than the dominant base

correlation approach in pricing non-standard tranches. Ma

and Sun [27] proposed a Chow-Liu like method based

on a dependence measure via Empirical Copula to esti-

mate maximum spanning product copula with only bivariate

dependence relations while Morettin et al. [28] proposed

wavelet estimators based on Empirical Copula which can be

used for independent, identically distributed time series data.

Copula has has been applied widely to areas of finance [29]

such as option pricing and portfolio value-at-risk to deal with

the skewness. However, few research has been done applying

Copula to machine learning field.

In this paper, the principle of PbD is adopted. We introduce

another statistical method, Empirical Copula, into the field

of recognizing human hand motions for the first time. The

results of experiments on the grasp dataset and in-hand

manipulation dataset are compared with those of GMMs,

HMMs and TC, to demonstrate its recognition efficiency.

Datasets of these motions are captured by Cyberglove. This

paper is organized as follows: Section II describes the theo-

retical foundation of Copula and Empirical Copula; Section

III proposes the recognition method using Empirical Copula;

SectionIV demonstrates the experiment results and compares

them with GMMs, HMMs and TC methods. Finally the paper

is concluded with conclusions and future work.

II. DEPENDENCE STRUCTURE ESTIMATION VIA

EMPIRICAL COPULA

As a general way of formulating a multivariate distri-

bution, copula can be used to study various general types

of dependence between variables. Other ways of formu-

lating multivariate distributions include conceptually-based

approaches in which the real-world meaning of the variables

is used to imply what types of relationships might occur.

In contrast, the approach via copulas might be considered

as being raw, but it does allow much more general types of

dependencies to be included than would usually be invoked

by a conceptual approach. The measures of dependence via

copula include Kendall’s tau, Spearman’s rho, Gini’s gamma

and Blomgvist Beta, whose relationships have been analyzed

in [30]. Spearman’s rho is considered in this paper. In this

section, we revisit the theoretical foundation of copula and

Empirical Copula, then introduce the theorem of calculating

Spearman’s rho using bivariate Empirical Copula.

A. Copula

A n-dimensional copula is defined as a multivariate joint

distribution on the n-dimensional unit cube [0, 1]n such that

every marginal distribution is uniform on the interval [0, 1].

Definition II-A.1. A n-dimensional copula is a function C
from In to I with the following properties [30]:

1 For every ui in I ,

C(0, · · · , ui, · · · , 0) = 0, (ui = 0, i = 1, · · · , n)
(1)

and

C(1, · · · , ui, · · · , 1) = 1, (ui = 1); (2)

2 C is grounded and N-increasing, ie., for each

B = xn
i=1[xi, yi] ⊆ [0, 1]n

Vc(B) =
∑

z∈xn
i=1

{xi,yi}

(−1)N(z)C(z) ≥ 0
(3)

where the N(z) = card{k |zk = xk} . Vc(B) is the so

called C-volume of B.

Sklar’s Theorem [31] is central to the theory of copula and

underlies most applications of the copula. It elucidates the

role that copula plays in the relationship between multivariate

distribution functions and their univariate margins.

Sklar’s Theorem II-A.1. Let H be a joint distribution

function with margins Fi(i = 1, 2, · · · , n). Then there exists

a copula C such that for all xi in R̄,

H(x1, · · · , xn) = C(F1(x1), · · · , Fn(xn)) (4)

where C is a n-dimensional copula, Fi are marginal distri-

bution function of xi.

If Fi(i = 1, · · · , n) are continuous, C is unique. If C is a

n-dimensional copula and Fi(i = 1, · · · , n) are distribution

functions, then the function H defined by equation 4 is a

joint distribution function with margins Fi(i = 1, · · · , n).
More details can be seen in [30], [32].

B. Empirical Copula and Dependence Estimation

The Empirical Copula is a characterization of the depen-

dence function between variables based on observational data

using order statistics theory and it can reproduce any pattern

found in the observed data. If the marginal distributions are

normalized, the Empirical Copula is the empirical distribu-

tion function for the joint distribution. Because only bivariate

Empirical Copula will be employed in this paper (see section

III), details of bivariate Empirical Copula is given as follows.

Definition II-B.1. Let {(xk, yk)}n
k=1 denote a sample of size

n from a continuous bivariate distribution. The Empirical

Copula is the function Cn given by

Cn( i
n
, j

n
) =

Num((x,y)|x≤x(i),y≤y(j) )

n
(5)

where x(i) and y(j), 1 ≤ i, j ≤ n, denote order statistics

from the sample [30].

The Empirical Copula frequency cn is given by

cn( i
n
, j

n
) =

{
1
n
, if (x(i), y(j)) is an element of the sample

0, otherwise

(6)
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Note that Cn and cn are related via

Cn(
i

n
,
j

n
) =

i∑

p=1

j∑

q=1

cn(
p

n
,
q

n
) (7)

Theorem II-B.1. Let Cn and cn denote, respectively, the

Empirical Copula and the Empirical Copula frequency func-

tion for the sample {(xk, yk)n
k=1. If ρ denotes the sample

version of Spearman’s rho [33], [34], then

ρ = 12
n2−1

n∑
i=1

n∑
j=1

[Cn( i
n
· j

n
) − i

n
· j

n
] (8)

Spearman’s rho is used to measure two variables’ asso-

ciation [30]. According to the definition and theorem, we

can estimate one-to-one correlations between variables using

Empirical Copula based on Spearman’s rho.

III. MOTION RECOGNITION USING EMPIRICAL COPULA

A. Pre-processing

Supposing the number of objects is n and number of

attributes is m, for m << n, according to the equations

5 and 8, the time complexity of Spearman’s rho is O(n3).
If number of samples is huge, computational time would

be too long to get the result, which will be proved by the

experiments in Section IV. In order to alleviate the burden of

huge computational cost, re-sampling processing is adapted

for fewer data points. One intuitional and fast method of

re-sampling is to take the samples at equal interval on the

original datasets, e.g., in figure 2, the number of sample

points is set to be 6 on one grasp motion data. Before re-

sampling, low-Pass filter is applied to remove high frequency

factor and uncertainty noise in order to achieve smooth

signals.

0 100 200 300 400 500
50

100

150

200

Sample points

A
n

g
le

 v
a

lu
e

Fig. 2. Re-sample the data at equal interval

B. One-to-one correlation and motion template

Supposing there are m variables which could be joint

angles or articulation positions in every motion, C2
m is the

total number of the one-to-one correlations. Let ρij be the

Spearman’s rho between ith and jth variables, and the motion

template is defined as the matrix P of Spearman’s rhos:

P =




ρ11 · · · ρ1m

...
. . .

...

ρm1 · · · ρmm





where ρij = ρji when i 6= j and ρij = 1 if i = j. Given

s observations for one motion, the template is trained by

taking the average of all Spearman’s rho matrices.

P̂ =

s∑
i=1

wiPi

s∑
i=1

wi

(9)

where w = [w1, · · · , ws] is a weight vector used to store

the relative difference of each observation in the estimated

template, so that more valid observation may carry larger

weight than those with more uncertainties, which may be

caused by noise, capturing devices, softwares and the envi-

ronment. Figure 3 shows an example of the motion template

representing the one-to-one correlations among the finger

angles when grasping a big ball.
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Fig. 3. An example of motion template (grasping a big ball)

The matrix P effectively aggregates the dependence rela-

tions of m variables into just one m × m matrix, a highly

reduced dimensionality of feature space. The relation matrix

is naturally uniformed that the matrix is not dependent on

differently sampled trials associated with specific speeds.

This makes direct comparisons of relation matrices with dif-

ferently sampled data feasible and computationally efficient.

C. Motion recognition

Motion recognition is straightforward with the proposed

template. It is achieved by finding the best match between an

observed motion template and pre-trained motion templates.

The proposed algorithm is applied on an observed motion to

generate its motion template U = {̺ij |i, j = 1, · · · , m}. Its

dissimilarity with the pre-trained template is achieved by

Dt = ‖U − P‖t =

(
m∑

i=1

m∑
j=1

|ρij − ̺ij |
t

) 1
t

(10)

Dt is t-norm distance; t ≥ 1 and is a real number; usually

we take t ∈ {1, 2,∞} that D1 is the taxicab norm, D2

is the Euclidean norm and D∞ is the maximum norm.

The derived Dt norm infers the dissimilarity between the
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observed motion and the trained motions. The threshold of

the template P is defined as

thP =

m∑
i=1

m∑
j=1

|ρij |

α
;

(11)

where α ≥ 1, which indicates the threshold is 100/α
percent of the whole absolute value of the template. Different

datasets may have different α values. In this paper, we set

α = 10, then the threshold of the template in fig 3 would

be 28.46. The matching criterion of the motion recognition

is that if Dt ≤ thP, the observed motion is recognized as

belonging to the trained motion.

IV. EXPERIMENT

Two datasets are captured by Cyberglove from different

subjects, including grasp and in-hand manipulation data. 21

hand angles are recorded every time and their positions are

shown in figure 4.

Fig. 4. Positions of the recorded hand angles

A. Datasets

According to the human hand grasp taxonomy [35], hand

grasps are classified into 6 atomic different types, for in-

stance, power grasps, precision grasps, and circular/prismatic

grasps, etc. We selected 13 different grasp motions as shown

in Fig. 5 to test the algorithm recognition ability. Note that

every type of grasp is repeated 10 times for training and

testing and lasts about 3 seconds.

Fig. 5. Selected grasping tasks

The other dataset is for in-hand manipulation, which is

much more complex than simple grasp motion, and asso-

ciated with the most complex human motor skills. It’s the

ability to change the position/orientation or adjust an object

within one hand. Ten types of manipulations are recorded

also by Cyberglove 10 times per type as listed in table I,

and a few examples are shown in figure 6.

TABLE I

10 TYPES OF IN-HAND MANIPULATION

1 Open a mobile phone and then close it.

2 Screw to open a small bottle using only thumb, index
finger and middle finger.

3 Pick up a coin and move it from the fingertip to the palm

4 Remove the pencil from back to front for writing, as
shown in figure 6: (a) pencil walking

5 Pick up a pencil and simply rotate to write, as show in
figure 6:(c) simple rotation

6 Pick up a pencil and complexly rotate to write, as show
in figure 6:(d) complex rotation

7 Screw to open a big bottle using all five fingers

8 Roll a small cylinder

9 Pick up a scissor and cut paper

10 Pencil flips, as shown in figure 6:(b) pencil flips

Fig. 6. Four examples of pencil in-hand manipulation

B. One person

We evaluate the proposed method by the experimental

set-up including 13 types of hand grasping motions and

10 types of in-hand manipulations from one subject as

mentioned, in which the whole datasets are divided into ten

equal parts, one tenth of which are used for training the

models/templates and the rest for testing the algorithms. In

our experiments, it is assumed that there are all types of

motion templates which are corresponding to all possible

testing motion samples, which ensures the existence of local

minimums for recognition.

These recognition results of Empirical Copula is compared

with those of GMMs, HMMs and TC from our previous

paper [23] for full understanding of its performances. Figure

7 presents the recognition rate of Empirical Copula using

one tenth training data along different number of re-sampled

points. It can be seen that, when more than 5 re-sampled

points from one tenth training data are considered, the

recognition rate reaches more than 85.5% and even 90%.

It’s the highest recognition rate of these four methods using

only one tenth of dataset for training, while 0% for HMMs,

55.56% for GMMs and 85.47% for TC [23].

On the other hand, the similar result can be seen in figure

8 and paper [23] (72% for TC, 57% for GMM and 0%
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Fig. 7. Recognition rate of Empirical Copula using grasps data from the
same subject with different number of re-sampled points from one tenth
training data.

for HMM) for the in-hand manipulation data. The reason

that recognition rates of these four methods for in-hand

manipulation data rise less slowly in general than those for

grasps data maybe that the in-hand manipulation datasets are

more complex and more non-linear than grasp data and their

dependence structures are more distinctive. Therefore, more

training data or more re-sampled points are needed for in-

hand manipulation operations.
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Fig. 8. Recognition rate of Empirical Copula using in-hand manipulation
data from the same subject with different number of re-sampled points from
one tenth training data.

The Empirical Copula algorithm saves the computational

time using fewer data points for modeling by re-sampling

training data at equal interval, so the fewer re-sampled points

are considered, the less time is needed for modeling. Figure

9 presents the used time of Empirical Copula algorithm with

the re-sampling processing using in-hand manipulation data.

If the training data is not re-sampled and one tenth of each

dataset is used for training, the computational time used by

modeling for in-hand manipulation is 1236 seconds, which is

more than 80 times of the cost time by Empirical Copula with

15 re-sampled points. It proves the re-sampling processing

efficiently reduces the cost time of Empirical Copula and

makes Empirical Copula more practical.

C. Different persons

Even for the same motion, different subjects perform

grasps/manipulations in different ways subject to the dif-
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Fig. 9. Computational time of Empirical Copula algorithm with re-sampled
points using in-hand manipulation data with different number of training
data

ferent personal habits, manners and speeds. These personal

differences ask for a more effective recognition algorithm

which can manage not only different motions but also

different subjects. In order to test the algorithm’s robustness

to different person, four-subject datasets have been collected,

including two men and two women with different heights.

Each motion is repeated 10 times by each subject. One

tenth of the data is used for training, while others are for

testing. Results are shown in figure 10 for grasp and figure 11

for in-hand manipulation, where recognition rates can reach

80% for grasp and 84% for in-hand manipulation. They are

a little lower compared to figure 7 and 8, but they show

that Empirical Copula still gets more that 80% recognition

rates and it is capable of identifying different motions from

different subjects.
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Fig. 10. Recognition rate of Empirical Copula using grasp data from
different subjects with different number of re-sampled points from one tenth
training data.

V. CONCLUDING REMARKS

In this paper, Empirical Copula is introduced to be one

of recognition methods for dynamic human hand motion for

the first time. Because of the ability of Empirical Copula to

analyze dependence relations between variables, we use the

structure of the dependence relations among the finger angles

as the motion template. This template frees the limitation of

the motion speed when comparing different motions, so that

recognition process is achieved by finding the dissimilarity
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Fig. 11. Recognition rate of Empirical Copula using in-hand manipulation
data from different subjects with different number of re-sampled points from
one tenth training data.

between an observed motion template and pre-trained motion

template. The experiments with one subject convince us that

the recognition method using Empirical Copula outperforms

other three methods because of its higher recognition rate

with only one tenth data as the training data; experiments

with different subjects prove that it is capable of identifying

different motions from different subjects. Based on those, it

can be regarded as one of the most efficient recognition meth-

ods. In addition, the proposed re-sampling pre-processing

overcomes the main drawback of Empirical Copula, huge

computational cost, and makes it more practical, while

maintaining high recognition rates. Future work is mainly

focused on how to find the proper number of re-sampled

points for different datasets, how to set the value of α and

qualitative descriptions [36], [37], [38], [39], [40].
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