
Object Interaction Language (OIL): An Intent-based Language for
Programming Self-Organized Sensor/Actuator Networks

Daniel J. Sutton, Peter T. Klein, Michael W. Otte and Nikolaus Correll

Abstract— This paper introduces the Object Interaction Lan-
guage (OIL) that allows programming and coordination of
distributed, heterogeneous sensor-actuator networks, such as
sensor networks and multi-robot systems. OIL is an interpreted,
object oriented language and is contained in an OIL environ-
ment. An OIL environment provides communication between
agents and allows agents to exchange code snippets among each
other. Possible implementations of OIL environments can be
— in the simplest case — a sheet of paper with OIL code
literally printed on it, or a computational agent endowed with
sensors, actuators and wireless communication. The atomic
primitive in OIL is the intent for which implementation is
resolved during runtime, potentially using code from other OIL
environments and leading to distributed execution. We develop
the structure of the language and demonstrate its key properties
using a distributed computation task that is parallelized via
an OIL environment. We evaluate the algorithm empirically
by running OIL code on a team of six computational agents
that communicate wirelessly. We then show experimentally how
OIL can be used to allocate sensing and mobility in a multi-
robot system using a case study in navigation, where one robot
dynamically provides laser range data to another robot which
is blind to its environment.

I. INTRODUCTION

We wish to design formalisms and algorithms that allow
for efficiently distributing sensing, computation, actuation
and communication into an environment for automating
chores at home and at work. We believe that interaction
between computational agents and everyday objects such
as appliances, furniture, and even tableware, e.g., would be
tremendously facilitated when every object could share a
description of its functionality and algorithms as well as its
physical properties that supports the computational agent’s
perception and manipulation capabilities. Imagine a house
with a set of mobile manipulators, mobile trays, cups, and
a coffee-machine given the task to deliver a cup of coffee
to a user. Instead of implementing this task using a single
robotic agent, which interacts with a passive environment, we
are interested in a distributed, self-organised task execution
in which each agent contributes domain specific algorithms,
sensing and actuation: the coffee-machine could orchestrate a
mobile manipulator to pick up a cup, place it under the coffee
machine’s outlet, remove it once the coffee is brewed, place
it on the tray, and have the tray finally deliver the coffee to

D. Sutton, M. Otte, and N. Correll are with the Department of Computer
Science, University of Colorado at Boulder, Boulder, CO 80309, USA
firstname.lastname@colorado.edu

P.Klein is with the Department of Aerospace Engineering,
University of Colorado at Boulder, Boulder, CO 80309, USA
peter.klein@colorado.edu

you. In this example some of the sub-tasks can be executed
in parallel, while others need to be executed sequentially.

We believe that this approach in which each agent provides
the code and data structures that are relevant to its operation
would drastically lower the perception abilities required from
a single agent interacting with passive objects. Also, such an
organization would be truly scalable as it can be extended
by agents offering different functionality and algorithms, and
it is robust as some functionality might be redundant in the
system.

Towards this end, we envision each agent to be represented
by a class in an object oriented programming (OOP) sense,
which offers a series of methods and variables. Looking
closer at our coffee-brewing example, namely the task of
picking up the cup, we could imagine literally printing code
for a pick-up method on the cup, which contains the object
geometry and instructions on how to grasp it.

A. Contribution of this paper

We examine how individual agents’ intentions to execute
particular actions of complex tasks that are composed of
sequential and parallel elements might drive behavior and
communication in a multi-agent system. To this end, we
provide a formal description, algorithms and an implemen-
tation of an interpreted, object oriented language Object
Interaction Language (OIL) that automatically includes code
provided by other agents in the system at run-time, selects the
“best” implementation among comparable agents, allows for
parallel execution of sub-tasks, and is robust to agent failure
due to an exception handling mechanism. We empirically
investigate the scalability limitations of a self-organized
computation task on a team of six physical agents that
communicate over an unreliable, stochastic wireless network.
Finally we demonstrate how OIL might be used with real
robots with a navigation task in a heterogeneous team of
robots.

B. Outline of this paper

After concluding the introduction with an overview of
related work, we provide an informal overview of the OIL
language in Section II and a formal definition of concepts and
algorithms in Section III. We then illustrate the developed
concepts using computation and robotics examples in Section
IV and evaluate them empirically in Section VI. Limitations,
applications and further work are then discussed in Section
VII.

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 6113

C. Related work

Self-organizing agent organisations, i.e. agent organiza-
tions that coordinate which agent is doing which task in
a fully decentralized manner, has been brought forward as
powerful alternative to centralized coordination for multi-
agent systems [2], [11]. Advantages of self-organisation are
that the solution is scalable due to the absence of a central
agent that would eventually become a bottleneck of the
system, and robust due to the absence of a single point
of failure and potential redundancy in the agent popula-
tion. Disadvantages are that a self-organized approach to
coordination cannot always guarantee optimal allocation of
resources. Kota et al. [6] present a self-organized agent
framework where agents communicate service requests to
their peers and compare the resulting performance of a
simulated system with a centrally planned and a randomized
approach. Deloach et al. [4] present a similar architecture
that explicitly employs re-organization for responding to
changing environments and agent failure.

Other approaches to team formation for heterogeneous
agents include auction based algorithms [5], [1]. In [5],
a box pushing task is carried out by a team of three
heterogeneous robots and can only be achieved by the
three robots joining their capabilities. All sub-tasks are then
auctioned off sequentially and are bid on only by robots that
have the appropriate capabilities. In [1], tasks are allocated
redundantly among temporarily disconnected sub-teams, and
tasks are re-allocated in response to agent failure.

Examples of real-world distributed physical agent systems
that are strongly heterogeneous in terms of computation,
sensing, actuation and communication and that are controlled
in a distributed self-organizing manner are the “PEIS ecol-
ogy” [10] and the distributed robotic garden [3]. In [10] a
series of agents ranging from appliances to mobile robots
are coordinated via a virtual environment abstraction that
includes remote inspection of agent properties. In [3], tomato
plants equipped with wireless routers coordinate robots for
watering tasks and also store information about the plants
that is then used for manipulation.

II. OIL: OVERVIEW

The Object Interaction Language (OIL) is an object-
oriented, interpreted language that subsumes Python. Python
has been chosen as it allows the environment to include
code at run-time and offers features to look up classes and
their properties. Therefore, OIL code can be executed on
any platform that provides a Python interpreter. In fact,
Python suits OIL so well that the current OIL implementation
fuctions much like the C preprocessor: OIL directives in
python source files are uesd at compile time to generate
Python code that implements OIL. OIL also allows one
to “program” objects that do not have any computational
capabilities. In this case, OIL code can provide algorithms
and data structures that are specific to this object and are
used by computational agents interacting with this object.

OIL code is executed in an OIL environment, which is
the union of all OIL environments an agent has previously

interacted with. Possible examples of such interactions are
wireless communication, detecting an RFID tag or simply
reading code from objects using a camera.

For the example of picking up a cup, OIL code provided
by the cup is then executed by a manipulator once it has
perceived the cup and parsed its code contribution. The
obvious advantage of this approach is that existing agents
in the system will be immediately able to interact with
objects and agents never encountered before as all relevant
algorithms and information are stored directly on the object
they describe.

OIL extends the object oriented programming paradigm
by four concepts: intent, service discovery, intent resolution,
and intent collections. These concepts are formally defined
in Section III and illustrated by examples in Section IV. In
practice, OIL code, consisting of a sequence of intents, is
pre-processed into algorithms that implement concepts such
as intent discovery, intent resolution, intent collections and
exception handling transparently to the user.

III. FORMAL DEFINITION

OIL is an object oriented language that subsumes the
Python language [9]. OIL extends Python by the following
concepts intents, intent discovery, intent resolution, and in-
tent collections.

Definition 1 (Intent): An intent ι is a high-level language
primitive of OIL. An intent corresponds to a computing,
sensing, actuation, or communication task that is imple-
mented by at least one agent in the system. An intent can be a
sequence of other intents as well as any high-level language
primitive defined by the Python language [9]. We refer to
the set of Python-based intents as P and the set of intents
provided by OIL as O.

Each intent ι has one ore more implementations. An im-
plementation is a three-tuple (I, t, q) consisting of OIL code
I , a time-stamp t corresponding to when the implementation
can be made available by the agent, and a scalar quality
metric q, which can refer to the computational complexity
of a particular algorithm or the speed of a robotic agent, e.g.

We refer to the set of implementations as an OIL environ-
ment Ei. Formally,

ι→ (I, t, q) ∈ Ei ⊆ O ⊇ P (1)
Each time OIL interprets a statement, it needs to resolve

where the intent is implemented. We refer to this process as
intent discovery. An implementation contains code that leads
to local or remote execution. This is transparent to the agent
executing the intent.

Definition 2 (Intent discovery): Intent discovery is the
process of determining whether an intent ι is implemented
by agent i, i.e. ι ∈ Ei, or discovering its implementations by
other OIL environments. We refer to the set of implementa-
tions that satisfy intent ι as Iι. Formally,

Ei → Ei ∪ Iι (2)

The ’→’ operator is defined by Algorithm 1.

6114

Algorithm 1: INTENT DISCOVERY (PSEUDO CODE)
Data: OIL high-level language primitive (intent) ι
Result: set of OIL implementations of ι: Iι
if ι 6∈ P then1
Iι ← ∅2
while Iι = ∅ && !timeout do3

Responses ← broadcast(ι)4
foreach i ∈ Responses do5
Iι ← Iι ∪ { i }6

Ei ← Ei ∪ Iι7
if timeout then8

// cannot resolve intent (user exception)9

Algorithm 1 is executed by the interpreter at run-time
and first checks whether the intent is part of the Python
implementation (line 1). If not, the agent broadcasts the
intent and processes all responses (line 4). This is repeated
until the responses provide at least one implementation
or a user-defined time-out occurs (line 3). The received
implementations are then added to the local OIL environment
(line 7).

Notice that intent discovery returns OIL code that is
composed of intents that might again need discovery steps.
We refer to this concept as nesting and OIL can be infinitely
nested and also recursive.

Once, possible implementations of an intent have been
discovered, the agent needs to resolve which implementation
of an intent to choose. We refer to this process as intent res-
olution. Differences among intent implementations can have
multiple reasons, e.g. agents having different computational
power or sensor and actuator precision. These differences are
represented by the implementation quality q (see Definition
1). Other important differences between implementations
could be the availability of an agent, e.g. in case an agent is
busy. This property is represented by the implementation’s
availability time stamp t (Definition 1).

Definition 3 (Intent resolution): Intent resolution is the
process to find the optimal implementation I of intent ι from
the set Iι that results from intent discovery. In this paper, an
optimal implementation is an implementation that will be
available in the shortest possible time. If there are multiple
implementations with the same delay available, the intent
with the best quality q is selected. The quality metric is not
the focus of our current research, and so it is intentionally
abstract in this description. For an implementation ι →
(I, q, t)i provided by agent i, we can say

ι ∈ Ei, i = argmin
j
{t|(I, q, t)j} (3)

The ’argmin’ operator is defined by Algorithm 2.
Algorithm 2 finds the implementation in Iι that leads to

the lowest execution delay using a systematic search (line 3).
If there are multiple implementations offering the same delay,
the algorithm will select the implementation with the best
quality (line 4). At the discression of the programmer ,OIL
code can ues the mutex capabilites in the Python language to

Algorithm 2: INTENT RESOLUTION (PSEUDO CODE)
Data: set of OIL implementations that satisfy ι: Iι ⊆ Ei
Result: OIL implementation of ι: I
BestSoFar ← ∅1
foreach (I, q, t) ∈ Iι do2

if {t — (I,q,t)} - CurrentTime < AcceptableDelay then3
if {q|(I, q, t) > quality(BestSoFar) then4

BestSoFar ← (I, q, t)5

i ← {i|BestSoFar}6
if BestSoFar = ∅ then7

// Timing constraints not matched (user exception)8

Algorithm 3: INTENT COLLECTION (PSEUDO CODE)
Data: set of OIL intents ι1, . . . , ιn
Result: set of OIL intent results r1, . . . , rn
R← ∅1
forall ιj ∈ ι1, . . . , ιn do2
Iι ← Discovery(ιj)3
I ← Resolution(Iι)4
R← R∪ (rj ← execute(ιj , I))5

while (|R| < n) do6
// wait for all tasks to complete7

ensure that resource allocation conflicts are managed cleanly.
The algorithm completes in time O(‖Iι‖) with ‖Iι‖ the
number of implementations received. Notice that Algorithm
2 throws an exception only if no agents can provide an
implementation with an accepted delay as ‖Iι‖ ≥ 1 after
discovery (see Algorithm 1).

Although the concepts intent discovery and resolution
allow for a distributed implementation of a given OIL script,
they are not enough for implementing parallel execution. For
this reason, we introduce the concept of an intent collection,
which contains intents that can be executed in parallel.

Definition 4: An intent collection is a set of intents
[ι1, . . . , ιn] whose execution is independent from each other.
Intents that are part of a collection [. . .] are then discovered
and executed in parallel. The ’[. . .]’ operator is defined by
Algorithm 3.

Algorithm 3 collects the results from a set of OIL intents in
a data structure. For this, each intent is discovered, resolved
and executed in parallel (line 2). The algorithm waits then
until all intents are completed. Notice that exceptions are
handled during discovery and execution and are transparent
to intent collection. That is, an intent collection is always
complete, unless discovery or execution fail permanently
with a user exception.

In a multi-agent system, it might be that intent discovery
fails or that intents become unavailable after their resolution.
We thus define the concept of an exception.

Definition 5 (Exception): An Exception is a condition
E(ι, i) that caused the execution of ι to fail and broke the
expected control flow of the intent implementation i. In this
case, the execution of ι might revert to the INTENT DIS-
COVERY or INTENT RESOLUTION operations. OIL handles

6115

Algorithm 4: EXCEPTION HANDLING (PSEUDO CODE)
Data: an OIL intent ι and implementation I causing the

exception
Result: execution or rejection of OIL intent ι
Iι ← Iι \ I1
if Iι ≡ ∅ then2
Iι ← Discovery(ιj)3
if Iι ≡ ∅ then4
Ei ← Ei \ ι5
// cannot find replacement for ι (user exception)6

else7
i← Resolution(Iι)8
execute(ι, I)9

Fig. 1. Finite state machine generated by the OIL interpreter showing the
interplay of Algorithms 1–4. An intent ι is broadcasted in the discovery step
and leads to the set of implementations available in the team Iι. The agent
then resolves a suitable implementation, which might lead to an exception
if the implementation has become unavailable in the mean time. Intents are
then executed and their results collected.

exceptions in a way that ensures that either ι is satisfied
eventually, or the intent is unsatisfiable in the current OIL
environment, which leads to an user exception, telling a user
or higher-level agent the reason for failure. This process is
governed with timing parameters that are a parameter of the
OIL language implementation (see Algorithms 1 and 2). The
’E()’ operator is defined by Algorithm 4.

Algorithm 4 will first remove the implementation I caus-
ing the exception from the set of implementations Iι. In case,
no other implementation is known (line 2), the agent will try
to discover new implementations (line 3), and resolve a new
implementation otherwise (line 8).

A finite state machine that is generated by the OIL inter-
preter showing the interplay of Algorithms 1–4 is depicted
in Fig. 1.

IV. EXAMPLE: AN OIL ALGEBRA

This section demonstrates the OIL concepts of intent nest-
ing and recursion, and parallelization using OIL programs
that lead to distributed implementation of intuitive algorithms
such as calculating the square root of a number recursively
or enumerating prime numbers. These algorithms rely on
basic algebraic operations, which we regard as OIL intents.
We consider these example representative for a wider range
of problems in the domain of distributed computation and
robotics.

Let us assume that the OIL environment provides +,
−, ∗ and /. We can now use these basic intents to write
implementations of higher-level intents such as calculating

the square root of a given number recursively, or enumerating
all prime numbers in a given interval. We selected these
examples as they are intuitive and demonstrate the nesting
and parallelization capabilities of OIL.

An example of a nested and also recursive algorithm in
OIL is an implementation of an algorithm to find the square
root of a number:

intent SquareRoot(num, estimate=None):
if estimate:

sqrt = estimate
else:

sqrt = num
if abs(sqrt * sqrt - num) > epsilon:

return SquareRoot(num,
(sqrt + num / sqrt)/2.0)

else:
return sqrt

Notice that the OIL syntax is identical to that of Python.
In OIL, however, every language primitive of OIL is treated
as an intent. For demonstrating the collection concept, we
chose the task to enumerate all primes in an interval as it
is well known algorithm that is fully parallelizable. Given
an intent isPrime(x) which returns a boolean indicating if x
is prime, the intent enumeratePrimes now demonstrates
the collection concept:

intent enumeratePrimes(lower, upper):
c = collection((isPrime,i)

for i in range(lower, upper))
c.execute()
primes = []
for i in range(lower, upper):

if c.result(i):
primes.append(i)

return primes

V. THE PRAIRIEDOG PLATFORM

The Prairiedog platform is a robotics platform that is
based on the iRobot Create for mobility, with a Hagisomic
Stargazer for localization and a Hokuyo laser scanner for
environment sensing. Computation and communication is
provided by a netbook carried by the robot. The software
layout of the Prairiedog is organized as a ROS stack contain-
ing a number of independent ROS nodes that communicate
via messages. Each external sensor has its own ROS node
that exposes the functionality to the rest of the system. A
planning node (base_planner_cu) calculates the most
efficient path between the robot and a goal using a modified
version of the Field D* algorithm [7]. A dedicated goal server
(goal_server_cu) provides on-demand goal information
to the rest of the system. Additional nodes are currently
being developed for interaction with the mechanical arm,
and multi-robot path-planning.

VI. RESULTS

Computational experiments are carried out on 6 net-
book computers that are communicating wirelessly in ad-

6116

hoc mode. Robotics experiments are carried out on the
Prairiedog Platform, which is controlled by the same netbook
computers. Each netbook runs an OIL environment and
announces intents via UDP broadcast. In case another agent
can service an intent, agents share code using a dedicated
TCP connection. We opted for validation of the OIL concepts
on a real system rather than simulation to demonstrate its
distributed properties as well as to understand the scalability
and robustness of self-organized organization under influence
of real-world challenges such as unreliable communication
channels.

Notice that coordination using wireless communication
is only one possible implementation of exchanging in-
tent implementations. Reading implementations from agents
equipped with RFID tags or bar codes would be also pos-
sible, but would not allow us to demonstrate the remote
execution capabilities of OIL. In practice, code that is
supposed to be remotely executed contains commands that
send function names and arguments over the network and
receive the return value of the computation in response.

A. Parallel Execution

We are interested in experimentally validating the col-
lection concept of OIL implemented by Algorithm 3. We
also would like to find out the overhead resulting from
wireless coordination by measuring the speed-up resulting
from parallelization. In this experiment all agents have the
same capabilities, i.e. each agent can service all OIL algebra
intents.

We run a series of experiments in which one agent
launches the prime number enumerating algorithm for num-
bers from 1010 to 1010+103 using the collection concept of
OIL and dividing the task in 6 chunks. We run this algorithm
with team sizes ranging from one to six agents incrementing
the number of agents in the system by one in each experiment
(20 experiments per team size, 120 experiments total).

Running this algorithm on a single machine took 38.2s in
average. Fig. 2 shows the speed-up for parallelization. We
observe super-linear performance for 2–4 agents, which we
believe is due to artifacts of memory organization in Python
(customary in parallel programming [8]). The speed-up is
sub-linear for more than 4 agents, which we believe is due
to collisions on the wireless channel and reduced throughput
due to other parallelization overhead with a growing number
of agents.

B. Multi-Robot Navigation

In a real-world robotics application, we use OIL to enable
a robot with no environmental sensing capabilities (the
blind robot) to cross an obstacle-filled room with the aid
of a second robot which could provide laser scans of an
area (the sensing robot). When the blind robot needs new
information about objects in the environment, it queries the
OIL environment to discover agents that implement a laser
scanning intent. The sensing robot responds to this query
with an intent implementation that can perform a laser scan
of the environment if a desired location from which to take

Fig. 2. Speed-up for parallel computation of prime numbers from 1 to 6
agents. Homogeneous agents. 20 experiments per team size. Errorbars show
the standard deviation. Red line shows linear speedup.

the scan is specified. The blind robot can execute a laser scan
intent every time it needs more data about the environment,
and the laser scans will be implemented by the sensing robot.
In our experiment, we limit the range of the laser scanner to
1 m, which means that every time the blind robot requests
a laser scan, it receives information on all obstacles that
are within 1 m of the requested scan position. The blind
robot then plans a path to avoid these obstacles, and moves
along this path until it approaches an area that has not been
scanned yet, at which point it will request a new scan of the
unknown area. In order to allow for successful path planning,
the Blind robot stops at least 1 m before the unknown area to
request a new scan. In this way, communication only via OIL
intents leads to an emergent behavior where the seeing robot
efficiently leads the blind robot through the obstacle course.
This is possible because OIL intents allow the sensing robot’s
laser scanner capabilities to be used by the blind robot as a
seamless extension of its own functionality. Fig. 3 shows the
position of the robots as they navigate through an obstacle
course in a typical run of this experiment. The video that
accompanies this paper shows a more complete animation
of this experiment, and a second one with a similar setup.

VII. DISCUSSION

Intent resolution has been implemented using a systematic
search algorithm that optimizes the time delay for which an
implementation is available. In a productive system, we could
also imagine using a combined metric. For example, consider
the implementation of the ⊗ intent as sequence of ⊕ intents
with complexity O(n) vs. an implementation with the native
’∗’ operator (that runs like ’+’ in a single instruction on most
machines). In this case, the quality q would be 1 and n,
respectively, and selecting the slower implementation might
make sense when the faster implementation has a certain
delay. Similar cases can be made for robotic agents that
differentiate themselves by speed.

6117

Fig. 3. Multi-robot navigation across an obstacle filled room, detailed step
diagrams. Progress from initial to final is left to right, top to bottom. Scale
tick marks represent 0.5 m increments. Circles (green) represent positions
of the blind robot, and stars (blue)represent positions of the sensing robot.
Upside down triangles (green) are the desired scan position of the blind
robot, and right side up triangles (blue) are where the sensing robot actually
performed the scans. The small squares (red) are the hits returned by the
laser scanner indicating an obstacle is present.

In this paper, intent discovery exclusively relies on wire-
less broadcasting. We are interested in using OIL also for the
interaction of passive objects with robots. In this case, we
can imagine to extend the discovery algorithm by physical
search, e.g. a robot systematically scanning an environment.
Other possible implementations would be agents whose sole
purpose is to provide discovery for passive agents, such as
shelves that keep track of dishes that they store, e.g.

The nesting and parallelization capabilities of OIL allow
for the design of powerful systems with emergent behavior.
A possible example would be a robotic agent that empties
and re-shelves an entire cupboard in order to reach a specific
item. This property might make OIL code difficult to main-
tain, however, and can lead to unpredictable results. Potential
pitfalls include infinite recursions, circular resolutions, and
repeated discovery-exception cycles. In further work we are
interested in investigating verification techniques that can
automatically detect such problems given all the implementa-
tions of an OIL environment and outline its potential failure
modes.

Algorithms presented in this paper such as discovery and
resolution scale linearly in execution time with the number
of agents in the system, i.e. with O(n) for n agents and
with O(nm) for task sequences with m subtasks. Kota
et al. [6] present algorithms that use heuristics for task
selection that provide better performance for large agent
population. We believe, however, that for applications in
which communication is performed wirelessly with limited
range, such as in a home automation setting, the effects
of channel depletion quickly outweigh the computational
complexity of the coordination algorithm (see also the results
in Fig. 2).

An application of OIL in a multi-robot navigation problem
allows a robot which has otherwise been deprived of envi-
ronmental sensing capabilities to use the sensors provided

by other robots. With one OIL intent implemented on the
sensing robot and utilized by the sensor-deprived robot,
an emergent behavior develops where the team of robots
efficiently navigate an obstacle course. Applying this kind
of set up to other situations could allow other teams of
robots or smart objects to spontaneously share sensing or
actuation capabilities as tasks arise. The emergent behaviors
in these situations may allow a team of robots to accomplish
a complex task by communicating solely via simple intents.

VIII. CONCLUSION

We presented a self-organizing agent model that allows
for serial and parallel task decomposition for teams of
heterogeneous agents. Agents process their tasks sequentially
and recruit other agents by broadcasting intents for sub-
task that they cannot solve themselves. Individual failure
is mitigated by an exception handling mechanism. We also
presented a language implementation, the Object Interaction
Language (OIL), that allows a user to write code describing
the behavior of the entire system and coordinating the
agents transparent to the user. We empirically evaluated an
implementation of OIL and demonstrated load distribution in
the agent system for recursive and parallel task sequences.
We also showed that the coordination mechanism is robust
to agent failure and communication loss. We demonstrated
that OIL can be used to coordinate a real-world multi-robot
navigation task with relative ease. An implementation of OIL
will be made available open-source.

REFERENCES

[1] P. Amstutz, N. Correll, and A. Martinoli. Distributed boundary cover-
age with a team of networked miniature robots using a robust market-
based algorithm. Annals of Mathematics and Artifcial Intelligence.
Special Issue on Coverage, Exploration, and Search, Gal Kaminka
and Amir Shapiro, editors, 52(2–4):307–333, 2009.

[2] C. Bernon, V. Chevrier, V. Hilaire, and P. Marrow. Applications of
self-organising multi-agent systems. Informatica, 30(1):73–82, 2006.

[3] N. Correll, N. Arechiga, A. Bolger, M. Bollini, B. Charrow, A. Clay-
ton, F. Dominguez, K. Donahue, S. Dyar, L. Johnson, H. Liu, A. Pa-
trikalakis, T. Robertson, J. Smith, D. Soltero, M. Tanner, L. White, and
D. Rus. Building a distributed robot garden. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), St. Louis, MO,
2009.

[4] S. A. Deloach, W. H. Oyenan, and E. T. Matson. A capabilities-based
model for adaptive organizations. Autonomous Agents and Multi-Agent
Systems, 16(1):13–56, 2008.

[5] B. Gerkey and M. Mataric. Sold!: Auction methods for multi-robot
coordination. IEEE Transactions on Robotics and Automation, Special
Issue on Multi-robot Systems, 18(5):758–768, October 2002.

[6] R. Kota, N. Gibbins, and N. Jennings. Self-organising agent organisa-
tions. In Proc. of the 8th Conf. on Autonomous Agents and Multi-Agent
Systems (AAMAS 2009), May 2009.

[7] M. W. Otte and G. Grudic. Extracting paths from fields built with
linear interpolation. In Proc. of the The 2009 IEEE/RSJ International
Conference on Intelligent RObots and Systems (IROS 2009), 2009.

[8] P. Pacheco. Parallel Programming with MPI. Morgan Kaufmann, 1st
edition, 1996.

[9] Python Software Foundation. The python language reference - python
v2.6.4 documentation, Oct. 2009.

[10] A. Saffiotti, M. Broxvall, M. Gritti, K. LeBlanc, R. Lundh, J. Rashid,
B. Seo, and Y. Cho. The peis-ecology project: vision and results. In
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), Nice, France, 2008.

[11] G. Serugendo, M. Gleizes, and A. Karageorgos. Self-organization
and emergence in multi-agent systems: an overview. Informatica,
30(1):45–54, 2006.

6118

