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Abstract— This paper presents a novel navigation and motion
planning algorithm for mobile vehicles in rough terrains.
The main purpose of the algorithm is to generate feasible
trajectories while selecting smoother paths, in the sense of
level of roughness, toward the goal position. The purpose
is achieved by adapting the passivity-based model predictive
control optimization setup (PB/MPC), recently proposed for
flat terrains, to the case of an outdoor irregular terrain. The
passivity-based concept is used to enhance MPC in order to
stabilize the goal position guaranteeing the task completion. The
framework which is obtained can exploit any vehicle model in
order to carefully take into account the vehicle dynamics and
terrain structure as well as the wheel-terrain interaction. The
inherited property of the MPC optimization allows to impose
any additional constraint into the PB/MPC navigation, such
as those needed to prevent vehicle rollover and unnecessary
sideslip. The cost function representing the level of roughness
along a candidate path is used to select the appropriate terrain
areas toward the goal position. The results have been verified
by several simulation examples.

I. INTRODUCTION

The popularity of the research of the unmanned ground

vehicles has been increased recently due to their usefulness

in different operation environments. Planetary explorations,

search and rescue missions in hazard areas, surveillance,

humanitarian de-mining, as well as agriculture applications

such as pruning vine and fruit trees, represent possible

fields of using autonomous vehicles in natural environments.

Differently from the case of indoor mobile robotics where

exclusively flat terrains are considered, the outdoor robotics

deals with all possible natural terrains. The unstructured

environment and the terrain roughness including dynamic

obstacles and poorly traversable terrains pose a challenging

problem for the autonomy of the vehicle.

A nice overview of motion planning has been presented

in [1] and [2]. The main focus of the early research stage

was finding collision-free paths. In [3] the potential field

approach for real-time obstacle avoidance was introduced

while the concept of navigation functions was illustrated

in [4] and [5]. The research on motion planning evolved

by adding the capability of taking into account the vehicle

motion dynamics constraints within the well known dynamic

window approach [6], [7]. This subject was extended to

the high-speed navigation of a mobile robot in [8] by

the global dynamic window approach, as the generalization

of the dynamic window approach. A combination of the
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dynamic window approach with other methods yielded to

some improvements in long-term real-world applications [9].

Dubowski and Iagnemma extended the dynamic window

approach to rough terrains introducing the vehicle curvature-

velocity space. In this space the stability constraints of the

vehicle, for instance expressed by limit values of the roll-

over and side slip indexes, can be easily described. The

given algorithm was also suitable for high speed vehicles

and appropriate for real-time implementation [10]–[12].

Rapidly-exploring random trees (RRT) is a type of prob-

abilistic planners originally developed to cope with differ-

ential constraints by LaValle and Kufffner [13]. In [14] the

authors introduced quasi-PRM and lattice roadmap (LRM)

algorithms. LRM was extended in [15] to allow the state

lattice to represent the differential constraints of the mobile

vehicle. Inverse trajectory generation was used in [16] and

[17] to navigate UAV and UGV, respectively.

The passivity-based nonlinear model predictive control

(PB/MPC) has been introduced in [18], where the authors

presented the connection of this approach to optimal con-

trol. A mobile vehicle navigation framework based on the

passivity theory concept combined with nonlinear model

predictive control has been recently proposed in [19], where

the PB/MPC has been used to stabilize the goal position

with the help of the navigation function. Namely, the vehicle

model was shaped according to the energy-shaping technique

using the navigation function constructed for the given terrain

configuration. Then, this new virtual model was used to

generate feasible trajectories by satisfying vehicle differential

constraints, the limits on the vehicle inputs, as well as

safety constraints. Moreover, the passivity-based constraint,

inherently included in the PB/MPC optimization setup, en-

hanced the navigation framework by guaranteeing the task

completion. This framework was proposed for flat terrains

where the estimated terminal cost-to-go value, required in the

MPC optimization, was created by the navigation function.

This paper extends the PB/MPC navigation scheme from

flat to rough terrains. The advantage of this framework to

easily adapt a more complex vehicle model that accounts

for terrain structure as well as wheel-terrain interaction is

exploited for mobile vehicle navigation in rough terrains.

Such model generates more appropriate trajectories in rough

terrains, comparing to those generated by models made for

flat terrains, where the effects imposed by the terrain irregular

structure are intended to be eliminated afterward, within

the control loop. According to the MPC optimization, any

additional constraint can be imposed into the PB/MPC nav-

igation, such as those related to vehicle stability, preventing
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from vehicle rollover and unnecessary sideslip. In order to

use the PB/MPC navigation scheme for rough terrains as an

online approach, the appropriate prediction of the cost-to go

(roughness-to go), that is the estimate of the roughness yet

to be traversed toward the goal position, is also proposed.

To summarize, the obtained algorithm has the following

properties: 1. guaranteed task completion, 2. easy adaptable

to any vehicle model, 3. easy adaptable to any additional

constraints, 4. capability of avoiding obstacles and selecting

less rough terrain areas toward the goal position, and 5. an

online optimization based on estimation of the roughness-to

go value.

II. THE PB/MPC NAVIGATION PLANNING

The PB/MPC navigation framework is given by the fol-

lowing setup (1-8):

J(u) =
∫ t0+T

t0

γ(x, u)dt +Γ(t0 +T ), (1)

V (x) = kNF(xcg,ycg)+
1

2
v2
, (2)

d

dt
x = f (x)+g(x)u (3)

y = h(x) = [
∂V

∂x
g(x)]T , (4)

uT (t)y(t)<−yT (t)φ(t) (5)

τ : [0,1]→C f ree ,τ(0) = q(t0),τ(1) = q(t0 +T ) (6)

v(t0 +T ) = 0 (7)

cos∠(∇NF,eṙ)|t=t0+T1
< 0

cos∠(∇NF,eṙ)|t=t0+T < 0
(8)

The task of this optimization is to find the input u of

the vehicle (traction force and steering angle momentum)

along the optimization time horizon t ∈ (t0, t0 +T ), that is

over all potential candidate paths, by minimizing the cost

function J(u) given in (1). The integrand γ(x,u) is selected

depending on what is locally required to minimize. The

terminal part Γ(t0 +T ) represents the estimation of the cost-

to-go from the end of the horizon to the goal position in

the sense of the selected measure. Similar to [20], where

the authors developed a navigation algorithm for a unicycle

mobile vehicle in flat terrains based on model predictive

control combined with control Lyapunov function, the value

of the energy storage function at the end of the optimization

horizon, J =V (x(t0 +T )), was selected in the given naviga-

tion framework. The energy storage function is selected as

in (2) and it includes a virtual potential term constructed by

the navigation function of the given terrain and a kinetic

term, where (xcg,ycg) and v are the current coordinates

and velocity of the vehicle. Eq. (3) represents the virtual

model obtained by shaping the energy of the real vehicle

dynamics by the navigation function, where x are the new

states. The choice of the output (4) forces the system to be

a passive one with respect to the radially unbounded and

continuously differentiable storage function V , and is based

on the passivity control theory concept. Constraint (5), where

φ injects a damping to the model, makes the goal position

an asymptotically stable point.
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Fig. 1. Left: Generated path based on the limited set of motion primitives.
Right: The path presented with black color and no lattices was obtained
by the GA algorithm while the other one by the optimization with a few
motion primitives.

Eq. (6) constraints the optimization on the collision-free

configurations, where τ is the map from the initial to the

final vehicle configuration q, into the collision free space

C f ree. Constraint (7) gives the guarantee that there exists

such control u that can stop the vehicle at the end of the

horizon satisfying the collision-free constraint (6). If this

constraint holds then any state space point x(T1) preserves

safe policy, where T1 < T . Not allowing the vehicle to

reach zero velocity, the optimization is repeated each T1 for

the horizon T . By the choice J = V (x(t0 + T )), condition

(7) implies J = kNF(r(t0 +T )), where r = (xcg,ycg) is the

current position vector of the vehicle. Such minimization

task ensures the shortest possible path to the goal, since the

selected navigation function represents the shortest path to

the goal for each vehicle position.

Conditions given in (8), where cos∠(∇NF,eṙ) is the

current angle between gradient of the navigation function and

current vehicle velocity direction, are the terminal conditions

which keep the vehicle oriented toward the decrease of the

navigation function at the end of each PB/MPC optimization

cycle. This condition helps the optimization to find a feasible

solution.

The optimization problem (1-8) can be solved by control

parametrization within the given horizon where the problem

became a nonlinear programming optimization (see e.g.,

[17]). Another approach is based on a priori defined motion

primitives [21] that has widely been used in mobile vehicle

navigation, was also used in [15]. In [19], the GA algorithm

was implemented for local optimization, where chromosomes

consisted of the potential values of the vehicle accelerations

and steering angles. Fig. 1 illustrates the approach based on

the limited set of maneuvers and the GA approach.

III. THE PB/MPC COST FUNCTION FOR ROUGH

TERRAINS

A. Decrease of navigation function

The main task of the PB/MPC navigation scheme (1-

8), used in [19], is to select such a control u giving the

minimal value of the energy function, that is J =V (x(t0+T ))
at the end of the optimization horizon, and if condition

(7) holds, this means to obtain the minimal value of the

navigation function, NF(r(t0+T )). Such optimization policy

certainly implies the shortest path to the goal under the
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selected local optimization technique. However, choosing the

shortest path to the goal position may be a rather strict

constraint especially when the vehicle moves in unknown

rough terrains.

In order to ensure the decrease of the navigation function

along the selected paths if different cost function is used,

the additional constraint (9) has been imposed. Since the

optimization is performed within time T , while the control

action u is applied only over T1, both conditions of (9) need

to be included.

NF(r(t0 +T ))< NF(r(t0 +T1))< NF(r(t0)) (9)

B. Local measure of roughness

Let us explain some possible cost functions that can

describe the level of roughness of the selected path and can

be used within the PB/MPC navigation planning. The first

candidate to describe the hardness of a path traversability

is certainly the function that penalizes high roll and pitch

values along the path. One such function is used in [15] and

is given by:

γ(x, u) =
∫ t0+T

t0

(1+α(ϕ2 +θ 2))dt, (10)

where ϕ , θ are the roll and the pitch angles along the

candidate path. Coefficient α represents the tradeoff between

the minimum-time and minimum slope-dwell solutions. If

α = 0, then the solution gives the fastest path along the

horizon.

The second candidate was proposed in [22] and is given

by:

γ(x, u) =
∫ t0+T

t0

dt

vmax(r)
. (11)

This function describes the roughness level in terms of the

high mobility of the vehicle, where vmax(r) is the maximal

value of the vehicle velocity at each point of a path that

still do not cause sideslip and rollover of the vehicle. This

function is more descriptive when it is important to increase

the vehicle mobility. It favors those paths that allow high

speeds while preserving vehicle stability constraints.

Other possibilities for the estimation of the hardness of

traversability of a candidate path are given in [23]–[25],

where the authors introduced a traversability index as a

parameter that described the roughness of the terrain.

For demonstration purposes, the local measure of the

roughness is expressed by the relative height of the terrain,

describing its deviation from flatness. This approximation is

done for all candidate paths within the optimization horizon,

and does not decrease the generality of the approach since

any roughness function mentioned above can be used instead.

C. Roughness-to-go value

The vehicle optimizes the level of roughness toward the

goal position in order to select smother paths. In order to

optimize the residual roughness, the cost-to-go terminal part

Γ(t0 +T ) represents roughness-to-go value, is added to the

local measure of the roughness, in accordance with (1). If it

is possible to estimate the optimal roughness-to-go value in

case the terrain cost map is given with respect to the vehicle

constraints, then the PB/MPC navigation policy would be an

optimal one. The computation of the optimal path toward

the goal position for each MPC horizon according to the

given terrain cost map is rather expensive and cannot be

implemented during the navigation. In the optimal control

of nonlinear systems, hence in the MPC, the estimation of

the optimal cost-to-go value is often impossible to find and,

therefore, some rough estimations of this value are needed.

For this purpose, the estimated value of the roughness-to-

go function is calculated with a conservative assumption

that the vehicle goes straight from the end position of the

optimization horizon, x(t0 +T ), toward the goal position.

IV. VIRTUAL MODEL OF THE VEHICLE WITH SHAPED

ENERGY

A. Model of the vehicle in rough terrain

The main challenge to derive the vehicle model acting

in rough terrain is to include the terrain uncertainties. Both

tire compliance and suspension compliance should also be

modeled (see e.g., [26]–[28]).

The vehicle model driven with traction force input up and

steering input us is given by the state space form:

ẋ = f (x)+g(x)

(

up

us

)

, (12)

where
ẋ = (ẋcg ẏcg v̇ ψ̇ ψ̈ β̇ ϕ̈ δ̇ )T

f (x) = (v fex v fey fv ψ̇ fψ fβ fϕ fδ )
T

g(x) = (
0 0 gv1

0 0 gβ1
0 0

0 0 0 0 0 0 0 gδ2

)T

ψ , δ , ϕ and β are current vehicle orientation with respect

to the given reference frame, steering angle, body roll angle,

and angle of velocity direction with respect to vehicle

reference frame, respectively.

The nonholonomic constraints are

fex = cosβ cosψ − sinβ sinψ , fey = cosβ sinψ + sinβ cosψ

fv and gv1
in (12) are obtained using the vehicle longitu-

dinal dynamics motion equation:

mv̇ = Fx cosβ +Fy sinβ , (13)

where m is total vehicle mass, Fx and Fy are forces acting

along the x and y directions of the vehicle internal reference

frame, respectively, given by:

Fx = [−2sinδFs. f +up], Fy = [2cosδFs. f +2Fs.r +∑4
i=1 Ti],

Fs. f and Fs.r being lateral forces of the front and rear

wheels. These forces can be approximated using the stiffness

coefficients, C f and Cr, as Ff = C f α f and Fr = Crαr, α f

and αr being the slip angles of the front and rear tyres

approximated by:

α f = δ − arctan
v sinβ+L f ψ̇

vcosβ , αr =−arctan
v sinβ−Lrψ̇

vcosβ ,

where L f and Lr are the distances of the front and rear wheels

from the vehicle center of mass, respectively.
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Ti represents the terrain disturbance force acting at each

wheel i= 1..4. Assuming the terrain elevation is a continuous

and differentiable function z(x,y), Ti is given by:

Ti = Ni

(

−sinψ ∂ z
∂ x0

+ cosψ ∂ z
∂ y0

)

,

where Ni is the normal contact force at wheel i while ∂ z
∂x0

and ∂ z
∂y0

are gradients calculated in the vehicle body frame.

fβ and gβ1
are obtained using the momentum equation:

mv(β̇ + ψ̇) =−Fx sinβ +Fy cosβ +mshϕ̈, (14)

ms being the mass of the chassis and h the height of the

chassis center of mass.

ϕ̈ can be extracted from the suspension compliance model

equation:
Ixxϕ̈ = Fyh+Mroll +Ms, (15)

where Ixx is the roll moment inertia of the chassis, Mroll =
msghϕ is the moment caused by the inclination of the chassis

center of mass and Ms the suspension moment on sloped

terrain which can be given as:

Ms =−k f (ϕ −ϕ f )− kr(ϕ −ϕr)−b f (ϕ̇ − ϕ̇ f )−br(ϕ̇ − ϕ̇r),

k f , kr being the stiffness and b f , br the damping rates of the

respective axles. ϕ f and ϕr are the roll disturbances caused

by the terrain. By the assumption that wheels do not lose

contact with the terrain, these disturbances are given by:

ϕ f ,r =
z f ,r+1−z f ,r

yw
, ż f ,r =

∂ z
∂ x0

vcos(ψ +β)+ ∂ z
∂ y0

vsin(ψ +β)

z f ,r are the positions of front and rear wheels respectively,

and yw is the vehicle width.

fψ is obtained using the momentum equation:

Izzψ̈ = 2Fs. f L f cosδ −2Fs.rLr +
4

∑
i=1

TiLi, (16)

Izz being the yaw moment of inertia, Li the longitudinal

position of each wheel with respect to the vehicle center

of mass.

The last raw of (12) represents the steering dynamics of

the vehicle from which fδ and gδ2
can be extracted.

B. Energy-shaping

The main task of this section is to make a virtual model

that is passive with globally asymptotically stable equilib-

rium point in which information on the goal position is

included. More precisely, this task could be considered by

making the subsystem described by triple state of interest

( xcg ycg v )e = ( x∗ y∗ 0 ), where (x∗,y∗) is the goal

position, to be globally asymptotically stable. The posi-

tion coordinates could be transformed with ex = xcg − x∗ ,
ey = ycg − y∗ , transforming the desired equilibrium point into

the zero-state, that is ( ex ey v )e = ( 0 0 0 ).
Now, the model of the system given in (12) becomes:

ė = f (e)+g(e)

(

up

us

)

, (17)

where

ė = (ėx ėy v̇ ψ̇ ψ̈ β̇ ϕ̈ δ̇ )T
, f (e) = f (x),g(e) = g(x).

The energy of the given system could be shaped with the

traction force input given in the following way:

up =
1

gv1

(− fv − k∇NF(r)eṙ)+ vp, (18)

where
k∇NF(r)eṙ = k‖∇NF(r)‖cos∠(∇NF(r),eṙ) (19)

is the scaled inner product of the gradient of navigation func-

tion NF(r) with a unit vector of current direction represented

by the vector ṙ. This term favors those directions toward the

decrease of navigation function NF(r), hence toward the goal

position. For instance, if the vehicle goes in the direction of

the steepest descent of navigation function, (19) will have a

minimum possible value thus providing the maximum value

in (18). If the vehicle climbs the surface of the navigation

function, the component (19) will have positive values, hence

decreasing the speed and stopping the vehicle. vp is new

traction force control input of the system.

The virtual model obtained by energy-shaping technique

applied to the model (17) is:

ė = f̃ (e)+ g̃(e)

(

up

us

)

, (20)

where g̃(e) = g(e) and

f̃ (e) = (v fex v fey −k∇NF(r)eṙ ψ̇ fψ f̃β fϕ fδ )
T

Note that
v̇ =−k∇NF(r)eṙ fr +gv1

vp (21)

and the function fβ was changed into f̃β since gβ1
6= 0.

In [19] authors have shown that for the general case of

the vehicle energy shaped model, the subsystem that contains

triple state of interest xss has the zero-state equilibrium point,

that is xsse = (ex ey v)T
e = (0 0 0)T . For the purpose

of clarity, the proof is recalled here.

Assuming ėx = 0, ėy = 0 and v̇ = 0, namely that there

is no movement in both directions of the reference frame,

the vehicle velocity is equal to zero, v = 0. From v̇ = 0,

using (21) with input vp ≡ 0, it follows ∇NF(r)eṙ = 0. One

possible solution of the latter equation, cos(∇NF(r)eṙ)) = 0,

implies that the first condition in (8) is not satisfied since this

equality also holds at the end of the operating time horizon

T1. This means that this equality is true only for the second

possible solution, r = (x∗ y∗), that is ex = 0 and ey = 0, since

the unique minimum of the navigation function NF(r) is at

this point.

C. Passivity-based stability

1) Output of the system: The virtual model will become

passive when the output is selected according to (4), that is:

yT =
∂V

∂x
g(x) = ( ∂V

∂ ex

∂V
∂ ey

∂V
∂ v

0)g(x) = (gv1
v 0) (22)

This means that despite the fact that there are two inputs, the

output of interest with respect to the given storage function

is

y = gv1
v =

1

m
v. (23)
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Fig. 2. Vehicle follows flat terrain on the left-side toward the goal position

2) Zero-state observability: In [19] it has been shown

that, for the general case of the vehicle with energy-shaped

model, the subsystem that contains the triple state of interest

xss was zero-state observable. For the purpose of clarity, this

proof discussion is recalled here.

The subsystem of interest is:




ėx

ėy

v̇



=





v fex

v fey

−k∇NF(r)eṙ



+





0 0
0 0

gv1 0





(

vp

us

)

(24)

ZSO conditions y ≡ 0 and u ≡ 0 imply v ≡ 0 if y1 is selected

according to (23). This means ėx = 0 and ėy = 0, as well as

v̇ = 0. Using (21), it follows ∇NF(r)eṙ = 0. Similar to the

discussion given in Subsection B, the latter equation implies

r = (x∗ y∗), that is ex = 0 and ey = 0, so that xss = 0, namely

the subsystem (24) is zero-state observable.

3) Damping injection: Since all conditions of Theorem 1

are satisfied, the new traction force input vp could be selected

in the form vp = −φ(y), where φ is any locally Lipschitz

function such that φ(0) = 0 and yT φ(y)> 0 for all y 6= 0. One

possible choice of damping injection using function φ(y) is

(see e.g., [29]):

vp =−ε
1

gv1

2

π
arctan(kvv) =−εm

2

π
arctan(kvv), (25)

where ε and kv are positive constants that should be selected.

In order to obtain stability, with the assumption on the

vehicle velocity v ≥ 0, we can write:

vp ≤−εm
2

π
arctan(kvv). (26)

This choice of vp satisfies (5) making the equilibrium xsse to

be a globally asymptotically stable point.

This claim could be easily checked using the time deriva-

tive of the energy storage function V along trajectories of

the system (20) with the input vp that satisfies (26).

With the help of (21), we have:

V̇ =
∂V

∂x
ẋ = ( ∂V

∂ ex

∂V
∂ ey

∂V
∂ v

0)ẋ = gv1
vvp, (27)

and, using (26), the condition on the derivative of the energy

storage function along trajectories of the closed loop system

is obtained

V̇ = gv1
vvp ≤−εv

2

π
arctan(kvv). (28)

Hence, V̇ is negative semidefinite and V̇ = 0 if and only

if v = 0. By zero-state observability, y ≡ 0 and u ≡ 0 implies

xss = 0. Therefore, by the invariance principle, the origin

of the subsystem that contains triple states of interest xss is

globally asymptotically stable.
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Fig. 3. Vehicle follows flat terrain section on the right-side toward the goal
position
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Fig. 4. Vehicle avoids rough terrain sections toward the goal position
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Fig. 5. Vehicle avoids highly rough terrain sections toward the goal position

V. SIMULATION

In all given simulations, we assume that the terrain is

perfectly known. In the case there are unknown terrains

sections toward the goal position, these sections are assumed

to be completely flat when the roughness-to-go is estimated.

However, this problem of unperfect terrain information is

unavoidable and such driving paradigm is coherent with the

natural human driving policy.

The obtained results show a desirable behavior of the

vehicle, meaning that the vehicle was capable to select

more traversable terrain sections. All presented examples are

illustrated by two subfigures, the left one that represents the

generated path in rough terrain, and the right one which

depicts the contour plot representing the cost field of the

level of roughness. Fig. 2 and 3 show the capability of the

vehicle to follow flat parts of the terrain toward the goal

position. In Fig. 4 and 5, two different rough terrains are

given where the vehicle avoided more difficult rough areas

while approaching the goal position.

The presented results show that even if a limited set of

motion primitives is used, a desirable vehicle behavior is

obtained. In the case when there is no obstacle but only rough

terrain, a quadratic function can be used to form a navigation

function having a unique minimum at the goal position.

However, if this is not the case, any form of navigation

function can be used instead [1].
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VI. CONCLUSION

A novel navigation and motion planning algorithm for

mobile vehicles in rough terrains has been proposed. In

this algorithm, the MPC navigation paradigm is enhanced

with the passivity control concept to stabilize the goal

position. This gives the important property of the algorithm

of guaranteeing the task completion.

The PB/MPC navigation and motion planner can be used

with any vehicle model suitable to carefully describe the ve-

hicle behavior for any terrain configuration as well as wheel-

terrain interaction, in order to generate feasible trajectories.

Such motion policy is more general and reliable comparing

to the one where trajectories for rough terrains are generated

as for flat terrains, where the effects imposed by the terrain

are intended to be eliminated afterward, within the control

loop.

The inherited property of the MPC optimization allows

one to impose any additional constraint into the PB/MPC

navigation such as the constraint on the vehicle stability that

can be described by rollover and sideslip angles.

The cost function that estimates the roughness-to-go value,

that is the hardness of the residual path traversability, helps

the vehicle to select smother areas toward the goal position.

The proposed PB/MPC navigation planning in unknown

terrains seems to be natural and consistent with the safe

driving policy adopted by humans in such terrains, where

the cost function represents the roughness-to-go value. In

addition, the MPC paradigm is suitable for on-line use, unlike

the off-line approaches used by sample-based algorithms.
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