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Abstract— This paper reports modeling and control of a
microsized polymer aggregate of magnetic particles inside an
artery, using a MRI device for supplying propulsion in order
to achieve targeted chemotherapy. Non-Newtonian behavior of
blood is considered, as well as wall effects and interactions,
resulting in a highly nonlinear model. A backstepping approach
is synthesized to ensure Lyapunov stability along a pre-planned
trajectory inherited from the model, with robustness concerns.

I. INTRODUCTION

Autonomous microrobots designed to perform targeted

therapy by navigating in the cardiovascular system are a

prolific research area for minimally invasive surgery purposes

[1]. Untethered robots are particularly well suited either for

reaching remote parts of the body which remain inaccessible

to present tools without operating, or for targeting therapy

in such places. In the case of chemotherapy, such robots

carrying drugs can both improve the therapy’s efficiency,

reduce drug dose and in turn side effects. As the design

of sufficiently powerful embedded actuators for the robot’s

propulsion is currently a technical challenge on such a scale,

wireless transmission of power to the robot using magnetic

fields is the more pertinent approach [2], [3].

Bead pulling has first been studied using magnets [4] or

superconducting magnets [5]. Recently, Martel has proposed

to use the gradients coils of a clinical MRI device to pull

the robot [6]. This innovation combines several advantages.

Firstly, since medical applications are the purpose of such

works, using clinical MRI, widely implanted in hospitals,

seems natural. Secondly, these MRI devices can provide both

thrust for propelling therapeutic robots and also imaging

for a fine localization of the robot inside the cardiovascular

system, using multiplexing for controlling and imaging [7].

What is the optimal size for such a robot? On the one

hand –from a therapeutic viewpoint– the smaller the better,

so as to avoid embolization far from the tumor and to drive

the drugs as close as possible to the tumor. On the other

hand, since magnetic forces are volumic, they decrease in
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cubic with size. Besides, partial vessel occlusion by the

robot results in an optimal ratio between robot’s and vessel’s

radii evocated in [6]. Along the reference trajectory, from

injection point to tumor’s area, vessels radius decreases. It

is thus necessary to make the robot’s radius decrease as it

goes in smaller vasculature. This can be done if the robot is

a degradable polymer binded aggregate of magnetic particles.

This paper deals with both modeling and controlling such

a robot along a reference trajectory. This contribution mainly

relies on defining a precise forces balance (Section II),

which includes wall effects (parabolic profile of blood flow,

pulsatile arterial walls and effect of the ratio of robot’s on

vessel’s radii), wall interactions (Van der Waals, contact

and electrostatic forces) and non-Newtonian behavior of

blood. The goal is not only to describe the robot’s behavior

accurately, but also to make a link with off-line approaches

[8], without their time-consuming drawbacks. An optimal

reference trajectory is hence deduced from the nonlinear

model (Section III), in order to minimize the control efforts.

A state space representation is then inherited from the

forces balance model (Section IV), so as to synthesize a

backstepping control law (Section V). To our knowledge,

most of feedback controller schemes designed in the scope

of microrobotics facing drag are PID approaches [7], [9].

Authors report instabilities and important oscillations around

the equilibrium, especially when the blood stream is modeled

as a pulsatile flow. They also indicate a lack of robustness to

noise and unmodeled dynamics. In this paper, the control

design is based on the backstepping approach we have

recently developed in [10], which ensures Lyapunov stability.

Since backstepping can be regarded as a pre-compensation

of the model’s nonlinearities, working with a more accurate

model is a real improvement of our previous work. Some

simulations results illustrate the strengths and limitations of

the overall study (Section VI). Lastly we sum up results and

discuss prospects (Section VII).

II. MODELING: FORCES BALANCE

The purpose of this section is to present a 2D state space

model of a ferromagnetic microrobot of radius r immersed

in blood vessel. The model encompasses the different forces

that affect the robot’s motion as well as its interaction with

the vessel wall. The translational and rotational motions of

the robot are expressed by:

{

md~v
dt = ~Fm + ~Fd + ~Wa + ~Fc + ~Fvdw + ~Fe

J d~w
dt = ~Tm + ~Td + ~Mc

(1)
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where ~v and ~w are, respectively, the translational and rota-

tional velocity of the robot, m and J its mass and moment

of inertia. ~Fm, ~Fd, ~Wa, ~Fc, ~Fvdw and ~Fe respectively denote

the magnetic force produced by the MRI gradient coils (~Fm),
blood hydrodynamic drag force (~Fd), apparent weight ( ~Wa),

the robot-to-wall contact force (~Fc), the Van der Waals force

(~Fvdw) and the electrostatic force (~Fe). ~Tm, ~Td and ~Mc

denote respectively the magnetic torque, hydrodynamic drag

torque and the robot-to-wall contact moment.

In the rest of this paper, we assume that the orientation

of the robot does not change due to the magnetic torque

which tends to align the magnetization of the robot along

the external field. ~Td and ~Mc are much smaller order than
~Tm.

To determine whether statistical mechanics or continuum

mechanics formulations of fluid dynamics should be used,

we refer to the dimensionless Knudsen number:

Kn =
kbT

Pπr325/2
(2)

where T , kb and P respectively denote temperature, the

Boltzmann constant and pressure. In our case, the low value

Kn ≈ 10−13 (≪ 10−3) ensures that the robot is large

enough to neglect the effect of Brownian motion: the robot’s

motion is subjected to generic Navier-Stokes equations.

A. Magnetic force

The gradient coils of the MRI system provide magnetic

gradients which produce a magnetic force Fm on the robot:

~Fm = τmµ0V ( ~M.∇) ~H (3)

where V is the robot’s total volume, τm = Vm

V with Vm

the ferromagnetic volume, ~M is the magnetization of the

material, µ0 is the permeability of free space, ~H is the

external magnetic field and ∇ is the gradient operator.

B. Hydrodynamic drag force

The hydrodynamic drag force ~Fd exerting on a spherical

body in an infinite extent of fluid is expressed as:

~Fd = −1

2
ρf (~v − ~vf )2∞ACd∞ (4)

where ~v − ~vf denotes the relative velocity of the robot with

respect to the fluid, A is the frontal area of the core and

ρf is the density of the fluid. Cd∞ is the drag coefficient, a

dimensionless quantity used to quantify the drag or resistance

of an object in a fluid. Cd∞ is a function of the Reynolds

number Re∞ =
2rρf |~v−~vf |

∞

η ; its expression for a spherical

body in laminar flow is given by [11]:

Cd∞ =
24

Re∞
+

6

1 +
√

Re∞
+ 0.4

1) Non-Newtonian fluid: In case of blood, which exhibits

a non-Newtonian behavior, the fluid’s viscosity η is a func-

tion of vessel diameter d (in micron) and hematocrit rate hd

according to the three following empirical relationships [12]:

η =
ηplasmad2

(d − 1.1)2

[

1 +
(η0.45 − 1)d2

(d − 1.1)2
(1 − hd)

c − 1

(1 − 0.45)c − 1

]
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Fig. 1. Scheme of a blood vessel with minor bifurcations

with parameters ηplasma and η0.45 denoting respectively the

plasma’s viscosity and the relative apparent blood viscosity

for a fixed discharge hematocrit of 0.45, given by:

η0.45 = 6 e−0.085d + 3.2 − 2.44 e−0.06d0.645

The shape of the viscosity dependance on hematocrit is:

c =
1011

d12
− (0.8 + e−0.075d)

(

d12

d12 + 1011

)

2) Wall effects: For endovascular applications, influence

of the vessel walls on the velocity of the robot has to be

taken into account. In general, this wall effect is expressed

as a ratio between the terminal relative velocity of the robot

(~v − ~vf )t and its velocity (~v − ~vf )∞ in an infinite extent of

fluid [13]:

|~v − ~vf |t
|~v − ~vf |∞

=
1 +

(

λ
λ0

)α0

1 − λα0

(5)

with ratio λ = 2r/D and D denoting the vessel diameter

(in meter). Parameters α0 and λ0 are functions of Reynolds

number, but are commonly set to 1.5 and 0.29, respectively.

Thus, equation (4) is corrected as follows:

~Fd = −1

2
ρf





1 − λα0

1 +
(

λ
λ0

)α0
(~v − ~vf )t





2

ACdt
(6)

Wall effects on the fluid in the vessel traditionally result

in a parabolic profile of blood flow (see Figure 1). Besides,

to fully take into account pulsatile flow caused by heart

pumping in arteries, we consider a periodic deformation of

the vessel’s diameter D(t) synchronized with vf (t).
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Fig. 2. Model of contact forces: robot-to-wall

C. Apparent weight

In addition to the magnetic and hydrodynamic forces,

apparent weight (combined action of weight and buoyancy)

is acting on the spherical robot:

~Wa = V (ρ − ρf )~g (7)

where ρ = τmρm + (1 − τm)ρpoly with ρm and ρpoly the

magnetic material’s and polymer’s densities.

D. Contact force

The normal and tangential interaction between the robot

and the wall are expressed by a Voigt model with the spring

constant K and the decay coefficient of dashpot b, as shown

in Figure 2, where indexes ~n and ~t indicate respectively the

normal and tangential normalized vectors.

The normal component of the contact force ~Fcn acting

on the robot is given by the sum of a non-linear elastic

component and a linear viscous damping: [14]:

~Fcn = (Knδ3/2 + bnδ̇)~n (8)

where δ is the elastic deformation of the wall at the contact

point and ~n is the normal unit vector pointing from the robot

to the contact surface. The stiffness Kn can be calculated by

Hertzian contact theory [15] as follows:

Kn =
4
√

r
3

1−σ2
p

Ep
+

1−σ2
w

Ew

where Ep and Ew are the Young’s modulus of robot and wall,

and σp, σw are respectively the Poisson’s ratios of robot and

wall. The damping coefficient bn is deduced from Kn using

bn = 2
√

mKn.

The tangential component of the contact force takes part

when the robot is rotating or in case of oblique collision with

the wall:
~Fct = (Ktζ + btζ̇)~t (9)

where ζ is the displacement in the tangential direction and ~t
is the tangential unit vector. The stiffness Kt and damping

coefficient bt are given by:

Kt =
8
√

rGp

2 − σp
δ1/2 , bt = 2

√

mKt

where Gp is the shear modulus related to the Young’s

modulus Ep and Poisson ratio σp, i.e. Gp =
Ep

2(1+σp) .

E. Van der Waals and electrostatic forces

When the robot and the wall are not in contact, they

interact each other through Van der Waals and electrostatic

forces. These two interaction forces have different dominant

regimes. In fact, when the robot is close to the wall, Van

der Waals force is dominant. As the robot move away from

the wall, the Van der Waals force rapidly decrease and the

electrostatic force prevails.

The Van der Waals potential between the robot and the

wall is given by [16]:

~Vvdw = −Ah

6

(

1

H
+

1

2 + H
+ ln

h

2 + H

)

~n (10)

where Ah is the Hamaker constant and H = h/r is normal-

ized distance between the robot and the wall. Then, the Van

der Waals interaction force is given by differenciating (10)
~Fvdw = −∇~Vvdw.

The electrostatic force between the robot and the wall

considered as an uncharged surface is given by [17]:

~Fe =
q2

4πǫǫ0(r + h)2
~n (11)

with q the robot charge, ǫ the dielectric density of the

medium in which the interaction occurs and ǫ0 the vacuum

permittivity. [18] gives the expression of the maximum

allowable charge for a spherical body of radius r:

q(µC) = S × Q = 4πr2 × 30(100r)−0.3

III. MODELING: OPTIMAL TRAJECTORY

Previous forces balance gives us sufficient informations to

plan an optimal trajectory. At least two cases A and B, shown

on the Figure 1, should be considered. In the first one, the

robot is in a vertical vessel and the magnetic force ~Fm should

counter both contributions of the robot’s apparent weight ~Wa

and the drag force ~Fd when blood is flowing back (Curve

A of Figure 3). The drag force decreases when the robot

approaches the wall due to the parabolic profile of velocity.

Thus the reference trajectory should be as near as possible

to wall. In the second case, the robot is in a horizontal

vessel and the magnetic force should counter contributions of

the robot’s apparent weight, electrostatic and Van der Waals

forces, ~Fe and ~Fvdw (Curve B of Figure 3). This case shows

that near the wall, ~Fe and ~Fvdw, which point to the wall,

are dominant and the magnetic force is no more sufficient

to counter it. Nevertheless there is an optimal position

where the sum of the two forces compensates perfectly the

robot’s weight. Moreover, the curve A shows that at this

point, the magnetic force exceeds the drag force. From these

observations, we define an optimal path as an arc passing

through the point C.

IV. MODELING: STATE SPACE REPRESENTATION

Let (x, z) denote the position of the robot in the vessel

with respect to a given frame F(O,~i,~k). The state model is
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Fig. 3. Forces balances in vertical (A) and horizontal (B) artery

established from differential equation (1) defining the robot’s

dynamic behavior, projected on ~i and ~k axes:


mẍ =Fmx + Fdx + Fcnx + Fctx + Fvdwx + Fex

mz̈ =Fmz + Fdz + Wa + Fcnz + Fctz + Fvdwz + Fez

(12)

where indexes x (respectively z) denote projections on~i (~k).

Let x1, x2, x3, x4 denote respectively the particule’s

position and velocity along ~i axis, and the position and

velocity along ~k axis. Assuming that positions x1 and x3 can

be measured thanks to the MRI imaging system, let y denote

the state’s measure. Using expressions of forces given by (3),

(6), (7), (8), (9), (11) and Van der Waals interaction derivated

from potential (10), and adequate projection of local frame

along the geometry of the vessel1, system (12) can be written

in the form:

(S)































ẋ1 = x2

ẋ2 = f2(x1, x2, x3, x4) + au1

ẋ3 = x4

ẋ4 = f4(x1, x2, x3, x4) + au2

y =

(

x1

x3

)

(13)

where control inputs u1 = ∇Bx and u2 = ∇Bz are the

magnetic gradients, parameter a = τmM
ρ , and fi are highly

nonlinear functions of the full state.

V. CONTROL APPROACH

In this section, we present a control design for Lyapunov-

stabilizing trajectories for system (S). Since determination

of Lyapunov functions is generically a challenging issue,

it is preferable to use Lyapunov control functions in a

backstepping control approach [19], [20]. Since this design

requires a triangular form for the control system, we propose

the following change of coordinates:
{

X =

(

x1

x3

)

; Z =

(

x2

x4

)

; U =

(

u1

u2

)

(14)

1The drag force is not linearly distributed between ~i and ~k axis.

Fig. 4. Comsol results : Velocity profile in a blood vessel with minor
bifurcations

Thus, we obtain a new system in a triangular form:

(S ′)







Ẋ = Z

Ż = F (X,Z) + U
y = X

(15)

Denoting Xref , Ẋref and Ẍref respectively the desired

reference trajectory, velocity and acceleration, the control law

for system (S ′) can be expressed as [10]:

U = Ẍref + (k1 + k2)Ẋref + (1 + k1k2)Xref

−(1 + k1k2)X − (k1 + k2)Z − F (X,Z)
(16)

where k1 and k2 are the strictly positive backstepping gains.

VI. SIMULATIONS

The robot is made of τm = 80% NdFeB particles which

has a combination of very high remanence and coercivity,

and 20% of binding polymer. Simulations are performed

by taking into account the limitations of a clinical MRI

system. In order not to exceed the capacity of existing MRI

systems, the applied control law (16) is now corrected as
ui

k(t) , with k(t) = max
{

1, ui

ui,max

}

.

A pulsatile flow is included by imposing a time-varying

velocity. As a first approximation of a physiological pulse,

we use a time-sinusoidal profile with spatial parabolic form.

In the case of artery, such an approximation leads to:

vf (t) = 0.025(1 + 1.15 sin 2πt) ×
[

1 −
(

D/2 − h

r

)2
]

Our studies assume the presence of minor bifurcations

(see Figure 1). This geometry leads to only slight change

in the velocity’s profile and amplitude (see Figure 4).

The developed controller must be sufficiently robust to

compensate this effect which could be considered as a

disturbance. Major bifurcations will require a further study
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Fig. 5. (a) XZ trajectory : reference trajectory (red dotted) and real
trajectory (blue solid line). (b) Tracking error (blue solid line).

of velocity’s field profile.

In the following, the performances and stability of the

controller with respect to noise measurement, physiological

parameters variations and uncertainties are illustrated by

two simulations, whose parameters are given in Table I. A

first simulation is led so as to pinpoint robustness to model

errors, and the second one to study sensitivity to output noise.

Simulation of Figures 5, 6 is performed by assuming that

the blood’s viscosity is affected by uncertainty of 50% of

its nominal value and the vessel’s diameter by uncertainty

of 10%. This simulation shows that after a transient phase,

the position tracking performance is robust enough to

model’s error (subfigure of Figure 5). Even though the

optimal trajectory is computed so as to remain within MRI

limitations, the matched uncertainties cause the control

inputs to reach saturation: the MRI protection has priority

over the tracking efficiency, which results in a degradation

of the tracking error at t = 1.75s. It should be noticed

that the tracking error tends to zero as soon as the input

decreases under the saturation.

In a second simulation (Figures 7 and 8), we assume a

white gaussian noise is applied on the position measurement.

This noise is about 10% of the measured signal (about some

hundred micrometers), which is motivated by the common

precision of clinical MRI devices. Figure 7(b) illustrate that

the controller is quite stable despite the noise, and does not
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Fig. 6. Control input : magnetic field gradients on ~i-axis (dotted) and on
~k-axis (solid line)

TABLE I

SIMULATIONS DATA

Plasma’s viscosity ηplasma 5× 10−3 [Pa.s]
Blood’s density ρf 1060 [kg.m−3]
Robot’s density ρm 8000 [kg.m−3]
Robot’s radius r 300 [µm]

Vessel’s diameter D 3 [mm]
Polymer’s density ρpoly 1500 [kg.m−3]

Ferromagnetic ratio τm 0.8
Magnetization M 1.95× 106 [A.m−1]

Hematocrit hd 0.45
Robot’s Young’s modulus Ep 109 [Pa]
Wall’s Young’s modulus Ew 0.75× 106 [Pa]
Robot’s Poisson’s ratio σp 0.27
Wall’s Poisson’s ratio σw 0.30

Hamaker constant Ah 4× 10−19 [J ]
Blood’s dielectric density ε 77 [C2.N−1.m−2]

Initial condition on x x0 (0, 0, 0.0011, 0)T

Inputs saturations ui,max 45 [mT.m−1]
Controller gains k1 15

k2 30

even reach saturations (Figure 8). Nevertheless, Figure 7(a)

shows that the trajectory tracking is sensitive to noise. We

can expect that this drawback effect can be reduced using

an observer. In addition to estimate some parameters like

blood’s velocity (assumed to be known in this paper), an

observer will tend to smooth the output signals.

VII. CONCLUSION

In this paper, we have presented a highly nonlinear model

for a MRI guided microrobot in blood vessels. This model

takes into account the non-Newtonian behavior of blood, as

well as wall effects and interactions. It makes it possible

to hence deduce an optimal trajectory. Besides, we have

developed a nonlinear control law based on the backstepping

approach. Parameters uncertainties and noise effects have

been illustrated by simulations. It appears that the system

is robust to uncertain physiological parameters, but proved

quite sensitive to output noise, though remains stable.
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Fig. 7. (a) XZ trajectory : reference trajectory (red dotted) and real
trajectory (blue solid line). (b) Tracking error (blue solid line).
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Fig. 8. Control input : magnetic field gradients on ~i-axis (dotted) and on
~k-axis (solid line)

As stated in Section VI, system robustness to noise can

be improved by implementing a high gain observer based on

[10] but fitted for this more complete and complex model.

We are also working on estimating the blood’s velocity

and frequency, assumed to be known at the moment, using

Kazantis-Kravaris Luenberger observers [21]. Another

decisive point for future in-vivo experiments will concern

robustness to vessel’s motions induced by heartbeat and

respiration, which impact the geometry and position of

the vessel. These perturbations should not be considered

as noise, but rather as a matched uncertainty in a model

including these phenomena. Additionnaly, the modeling of

impact of major bifurcations on the blood’s velocity profile

is underway.
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