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Abstract— Rodents are optimal real-world foragers that can
smoothly regulate behaviors like homing and exploration com-
bined with more elaborate abilities as food source localization.
Here we investigate a robot based model that implements
the self-regulatory processes that underly optimal foraging of
rodents in unknown environments and is also able to combine it
with goal directed behaviors. Behavior is decomposed into min-
imal homeostatic subsystems that regulate themselves through
the local perception/detection of a gradient. On a higher level,
the allostatic control orchestrates the interaction of the different
homeostatic modules allowing it to dynamically manage the
interactions between the desired values of each subsystem to
achieve stability on a meta behavioral level. In this case, we
show that overall behavioral stability can be achieved. We
validate our model by comparing the behavior of both simulated
and real robots with that of rodents. Our next step is then
to justify gradients as a valid biological assumption by giving
a biologically plausible process for generating them from a
cognitive map, in this case, a set of approximated hippocampal
place cells. We finally formulate path planning (used for goal
reaching, e.g. food source localization) in the same context of
a gradient map generation that can be then inserted as an
additional subsystem of the higher meta level allostatic control.

I. INTRODUCTION

Behavior is motivated by the needs of the agent defined
by internal variables such as hunger, thirst, temperature,
security, etc. Indeed a number of psychological theories of
learning and behavior, ranging from psychoanalysis to cogni-
tive behaviorism of the 1930’s, propose that drive reduction
underlies experience and behavior. A classic example of such
a perspective is hierarchy of needs proposed by Maslow
[1]. In general this perspective proposes that behavior results
from processes that generate behavior in order to maintain a
number of drive states, or essential variables, that support the
integrity of the organism within certain specific predefined
limits. A typical example would be the regulation of fight or
flight behaviors with respect to the distance to a threatening
stimulus [2]. The concept of self-regulation goes back to the
study of sleep regulation of Walter Cannon and has been
further explored in the notions of feedback, explored in cog-
nitive behaviorism and cybernetics [3]. Indeed more recently
it has been argued that any process trying to approximate
animal behavior should be derived from this ability of self-
regulation and self-generated internal motivation (e.g. [4]).
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Here, we are interested in the complexity of rodent behavior
originating from self-regulation and how to emulate it with
a computational neuronal model. For this purpose, behavior
is then decomposed into minimal homeostatic subsystems
that regulate themselves through a local perception of a
gradient map. Homeostasis is a useful concept to apply to
individual drive systems but it does not generalize to the
control of behavior in case multiple drive systems need to
interact. We argue that the process of achieving stability
between an organism and its environment must involve
an additional higher layer of regulation that controls the
different objectives of each homeostatic subprocess and is
able to integrate and weight its outputs.

We propose that each of these systems is not static but
that the parameters that control its dynamics such as gain
and threshold can be dynamically adjusted consistent with
the physiological notion of allostasis [5]. We augment these
individual control loops with a regulatory system that adjusts
the individual control systems dependent on the dominant
drive state of the animal. In order to design such a modular
allostatic control system (in which other subsystems can
be added or suppressed without affecting the fundamental
properties of achieving stability), each subsystem operates
on a gradient (or vector field). Thus we envision a nested
structure where homeostasis acts in a closed loop that
regulates the actual value of each subsystem to bring it
to stability, that is, close to its desired value in the gra-
dient. At the next level, allostatic control changes the set
points and gains of individual homeostatic loops, while the
integrative loop orchestrates the interaction of the different
allostatic modules and allowing to dynamically manage the
interactions between the desired values of each subsystem
to achieve stability at a meta level that ultimately defines
the relationship between the organism and its environment.
Thus where homeostasis achieves stability through constancy
inside a closed loop and allostasis achieves stability through
change [5], we propose that in order to achieve dynamic
stability in the coordination of drive based behavior a third
level of integration among allostatic sub-systems must be
considered.

The idea of using gradient maps or vector fields as a way
of combining forces to drive an agent through an unknown
environment is not new, neither from the pure robotics side
([6], [7], [8], [9], [10]), nor from the neurobotic perspective
where usually some kind of reinforcement learning is em-
ployed to associate some preferred directions to a place cell
system ([11], [12], [13], [14], [15], [16]).
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We make three new contributions. The first is the design
of a meta-control represented by the allostatic regulation able
to dynamically change the desired values of each subsystem
(section II-B) and dynamically change the gradients them-
selves (section II) and we prove that stability at this meta-
level can be achieved. The second one is that we present
a biological and plausible way to generate these gradients
by a neural optimization process that could give insights in
how place cells are used in the hippocampus to compute
spatial properties of the environment. In this sense it is really
innovative as place cells (approximated here by Gaussians)
take an active role and are used to compute properties of
the environment (section III). The third contribution is that
we formulate path planning in terms of gradient learning.
Subsequent activations of place cells of a cognitive map are
used to generate a gradient driving to a goal. We describe a
procedure that exploits the fact that certain place cells play
a special role in path planning (like the ones representing
corners or bifurcations) and is able to actively use them to
speed up path planning (section IV).

Each of these three contributions are tested either using a
simulated or real robot with the general aim of approximating
certain characteristics of rodent behavior: free exploration
of different types of arenas (for this purpose we present a
novel mixed reality robot arena in section V), goal directed
behavior driven by visual cues and path planning. In [17]
we focus on the comparison of the model (without the path
planning component) to several different rodent experimental
setups.

II. THE BASIS OF ALLOSTATIC CONTROL

Animals are driven by internal variables such as hunger,
temperature, security, etc. which have to be maintained
within certain limits in order to be stable and predictive over
changing environments. The first issue that we tackle is to
decompose self-regulation into a minimal set of homeostatic
subsystems (such as arousal, security, energy, etc.) that can
be plugged together orchestrated by what we call allostatic
control. In figure 1 we show the schematic view of a
minimal allostatic control including two subsystems, each
one including a gradient (or vector field), the actual value aV
of the agent in that gradient and a desired value dV in that
gradient. The regulator works as a gradient ascent/descent
given a local view of the gradient around the agent.

The main contributions of the allostatic control as a
meta-level self-regulation are depicted in figure 1 as the
connections labeled (a), (b) and (c). Connection (a) is the re-
sponsible of manipulating the gradients of each sub-system.
In the present work, the main manipulation of the gradients
is for learning them, for example, to represent the open
space map of an environment (see section III). Connection
(b) controls the desired values of each subsystem and is
able to change the valence of each gradient from appetitive
to aversive, making the regulator to ascend or descend the
corresponding gradient (see section II-B). Connection (c)
controls the integration of the gradients that in our case is a
weighted sum (see section II-A).

Fig. 1. A minimal allostatic control integrating two homeostatic subsys-
tems. These subsystems can be related to a security subsystem (on bottom)
with a preferred location on the top left corner and an arousal subsystem
with its maximum in the center and dropping to zero close to the walls.

A. Gradient integration

We explain here how the gradient integration is done and
how this integration is mapped to the motor commands of the
robot. Each gradient is sensed locally as a matrix of values
between 0 and 1. In figure 2 we show a representation of
this local view. q0, q1, q2, q3 are the mean values of the four
quadrants of the local view.

The actual gradient value aV corresponds to the mean
of the whole local view. hSign controls for the sign of the
difference between the upper horizontal quadrants, it controls
for the direction of increase or decrease of the gradient.
When the right upper quadrant is greater than the left one
(above a threshold th), hSign is set to 1, on the opposite
case it is set to −1:

hSigni =

⎧⎨
⎩

1 if q0i < q1i − th
−1 if q0i > q1i + th
0 otherwise

adSign controls for the sign of the direction of increase
or decrease between the actual and desired values aV and
dV also in a similar way than hSign:

adSigni =

⎧⎨
⎩

1 if aVi < dVi − th
−1 if aVi > dVi + th
0 otherwise

So the mapping is done by summing up the contribution
for all the gradients to the left and right motors. In the
horizontal case, for example, if hSign is 1, means that the
gradient increases from left to right. If adSign is 1, means
that dV is greater than aV , that is, there is an intention to
increase the actual value. Concluding, if we want to increase
the dV and this increase is from left to right we should then
turn right (positive contribution in the left motor and negative
in the right one). The formulas used for this integration
follow:
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lefth = c+ (

numGrad∑
i=1

hSigni ∗ adSigni ∗ fi) ∗ 1

activeGrad

righth = c− (

numGrad∑
i=1

hSigni ∗ adSigni ∗ fi) ∗ 1

activeGrad

c is a constant that assures the default action of going
forward. fi is the total force for every gradient i. It is
computed integrating a weighting factor ki, different for
every gradient and ranging from 0 to 1 to weight the
contribution of every gradient, the speed and the difference
between the actual value and the desired one:

fi = ki ∗ speed ∗ |aVi − dVi|

The last term of the motors integration, 1
activeGrad , is a

normalization factor that takes into account the number of
gradients that are active (that is, the counting of subsystems
with ki > 0). A randomized factor can also be added besides
the constant c to the left and right contributions to assure
some variability and tie breaking. Summarizing, the robot,
having a default action of going forward (constant c) is
influenced by each gradient to turn left or right depending
on wether this turn brings the actual value closer to the
desired one. The influence of this turn is weighted by a
factor ki that can be different for every gradient and also
the difference between the actual and desired values. If the
total contribution is then normalized by the sum of all ki the
controller makes the robot move forward at constant speed
affecting only the turns.

Until now the motor integration only includes the, so
called, horizontal contribution. The left and right motor
integration can also include a vertical correction of each
gradient (the difference between the upper quadrants q0,q1

and the lower ones q2,q3). In a similar way than hSign, a
vSign correction can be defined using quadrants q0 and q2,
or the sum of q0 + q1 compared to q2 + q3. We are not
going to detail the formulas because they look very similar
than the previous case. Including the vertical correction
vSign, we now can have an influence on the backward and
forward speed of the robot. Consider leftv , rightv to be the
forces for stabilizing the gradient with respect to the vertical
correction (like in previous case).

Now the robot varies its speed and stops at particular
positions of equilibrium of the desired and actual values for
a gradient. This is a way of adding variations of speed in the
model that correlates with the speed maps of a rat in a square
arena. If now a gradient can attract the robot up to the point
of balancing the motors to stop it when the desired value
dV is similar to the actual one aV it becomes necessary to
include a mechanism to change the desired values over time.

B. Regulating desired values

Conventionally the desired value in a homeostatic system
is seen as being constant. Yet, this does not need to be so;
the desired value can change over time in a cyclic fashion

Fig. 2. Gradient Local Sensing. Left: Notation when referring to the
local sensing of each gradient. Right: When regulating desired values two
probabilities come into play: p<i as the probability the dV will lower and
p>i as the probability the dV will get higher.

(circadian rhythm [18]), subject to habituation if the differ-
ence between actual and desired value is too large over an
extended period of time, or influenced by other homeostatic
systems. The dynamic regulation of the desired values is
one of the key elements of allostasis. Stability in allostasis
lies one level above homeostasis and is considered to be
achieved through change, dynamicity and not constancy. For
regulating the desired values we put in place the simplest
probabilistic automata that defines a probabilistic switching
mechanism. Two probabilities are involved for each gradient
for regulating the changes of its associated desired value.
Let’s assume the simplest case where both probabilities
are 1, for a particular gradient. This setting generates an
intermittent behavior that switches the behavior once the
homeostatic objective is achieved. If one of the probabilities
is lower than 1 the robot can accept to stay a bit longer in a
state of equilibrium before changing its desired value. Each
of these probabilities is tested throwing dice at each time step
whenever the actual value and the desired value are close
enough. Two probabilities are involved for each gradient for
regulating the changes of the desired values. When the aV
is close to the dV (that is, |aVi − dVi| < th) if the desired
value is low there is a probability p>i of changing it to a
higher value. If the desired value is higher then there is a
probability p<i of changing it to a lower value. Figure 2
illustrates this mechanism. The switching happens between
a cutting point, cuti, that divides the aV scale in two states.
This cutting point can be estimated from the histograms of
aVi temporal series of a rat (see figure 3) as we will suggest
in the following case study. We are seeing the problem of
achieving stability as a multi-objective optimization problem
in the landscape of the dynamic weighted (signed by vSign
and adSign) sum of the different involved gradients.

C. Case study: free exploration

As a specific case study of this minimal system, we pose
the following question: is it possible, with this minimal
allostatic control, to generate a similar behavior than the one
elicited by rodents in free exploration of a squared arena?
We choose these subsystems to be related to the variables
security and arousal (also taking inspiration from [19]) as
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the behavior of a rat in a squared arena may be driven by the
constant equilibrium of its feeling of security (the distance
to the home base) and the need for exploration modulated by
its arousal and motivation (exposure to open space) [20]. In
figure 3 we show the trajectory of a rat when freely exploring
a square arena. We observe that the rat moves around the
walls establishing a preferred top left corner, also called
home base. The rat does also many traversals of the center
of the arena, indicative of its aroused state. It seems feasible
to approximate this behavior with the previous described
model (section II-A) using only two subsystems: security and
arousal. We define their two gradients: the security gradient
will have its maximum at the top left corner (home base)
and the arousal gradient, representing the open space, with
a flat maximum in the whole central area of the arena and
dropping to zero towards the borders. The surfaces showed
in the schema of figure 1 are representing these gradients
(top is arousal, bottom is security). Once the gradients are
defined (notice that in section III we describe a method for
learning them) we can extract from the trajectory of the rat
the temporal series of the actual values (shown in figure
3(b)). Two main series will be involved: aVaro series (for
arousal, plotted in red) and aVsec (for security, plotted in
green). From the rat aV series we extract several facts: the
rat spends most of the time in a low aroused state (aVaro’s
have a mean of 0.18) and it seldom does traversals of the
arena (red peaks of the aVaro series). The green peaks of
the security aVsec series show regular trips to the home base
with sometimes longer stays (around time step 6000 of the
rat’s aVsec plot in figure 1, the rat spends a long time at the
home base).

We will then fit the model using the horizontal and vertical
correction (lefth, righth and leftv ,rightv , see section II-A)
thus being obliged to fix a policy for dynamically changing
the desired values. Let p>aro and p<aro be the probabilities of
changing the arousal desired values as described in section
II-B and p>sec and p<sec the same probabilities for security.

We set p<aro = 1 because the probability of going to a
lower desired arousal, once a high arousal is reached, is one
(the traversals of the arena are instantaneous). We set p>aro =
0.21 in concordance with the number of occurred traversals
in the rat aVaro temporal series. Similarly we set p>sec = 0.95
and p<sec = 0.5.

Figure 3 compares the rat and robot behavior: observed
trajectories (figure 3(a)), the aV time series (figure 3(b))
and region analysis of the occupancy maps of the rat and
the robot (figure 3(c)). We observed experimentally that the
robot behavior can be fitted to the one elicited by the rat
quite accurately. The mean of the aV series can be made
similar (arousal is also low in the robot, having a lower mean
of aVaro = 0.15). The region histograms are conceptually
similar with a longer stay in region 2 (the home base) and
a relative small stay in the center of the arena (region 3).

D. Case study: a cue following task

We now modify the allostatic control to perform a cue
following task in a y-maze, also taking inspiration from a

Fig. 3. Left Column: Rat 20 minutes session in a squared arena. (a)
trajectory of the rat (b) arousal(red)/security(green) actual values over time.
The arousal/security actual values are extracted from the gradients using the
rat trajectory and they range from 0 to 1 (y axis). The x axis plots 7000 time
steps. (c) histogram of the region occupancy. Region numbers are indicated
in the robot trajectory plot. The region histograms are normalized to 1. Right
Column: The same plots for a robot simulation.

rat setup. The details of the original rat experiment together
with a complete analysis of how to approximate the exact rat
behavior in this task, are out of the scope of this paper. Three
reward ports are placed in each of the arms of the y-maze
with a blue light above each. When a blue cue is delivered
if the rat reaches it on time, it is rewarded and a new cue
lights up. Rats are able to learn the task and approach the
ports very efficiently.

We just prove that the allostatic control can be modified
to perform the cue following task together with the needed
navigation capabilities. We now involve also two subsystems:
arousal and cue subsystems. The arousal gradient (as in
previous case) has a maximum in the center and drops to
zero towards the walls. The cue gradient, can now change
dynamically, and is setup with a Gaussian centered on the
port that has its light turned on.

We then fit the model using only the horizontal correction
(lefth, righth of section II-A). In this case, the robot is
forced to move forward and can only correct its left and right
turn. We permanently set the desired values to dVcue = 1,
dVaro = 0.8 and we set a lower strength influence for the
arousal gradient: karo = 0.4 and kcue = 1. The desired
values are static, p> = 0 and p< = 0 for both subsystems.
This simplified setting allows the robot to navigate towards
the cue while also being able to use the arousal gradient to
help following the middle of the alleys. To strongly prove that
in such a simple control both gradients are needed, we apply
the same control to a t-maze where the cues are delivered
at the end of the arms, thus preventing the robot to follow a
straight line when a cue lights up. In the snapshots of figure
4 we show the e-puck robot in the mixed reality robot setup
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Fig. 4. Allostatic Control for an e-puck robot performing a cue following
task in a y-maze. Left: e-puck navigating towards a blue cue. The open
space gradient is being showed in the surface of the mixed reality robot
arena. For being able to visually identify high values of the gradient, the
color scale was set to black when the gradient was greater than 0.9: this fact
explains the black spot in the middle of the image. Usually, gradients are
shown in another color scale like the t-maze in figure 5. Right: the gradient
of the blue cue is showed.

(see section V). The blue gradient corresponds to the cue
and the yellow and red gradient to the open space. The task
performed by an epuck robot is also showed in the online
video [?] in both the y-maze and the t-maze.

In this section we simplified the allostatic control to only
take into account the horizontal correction having also a
static policy of desired values to perform a cue following
task. Nevertheless, for fulfilling the task, we had to control
for the integration weight of the considered gradients (kcue
and karo). These weights refer to connection labeled (c) in
figure 1. In the previous section we demonstrated the allo-
static control in a more general framework: both vertical and
horizontal corrections where considered and thus obliging to
setup a dynamic policy of desired values. The desired value
policy of the allostatic control is captured by the connection
labeled (b) in figure 1, which controls for changing the dV s.
In the next section we deal with the last connection labeled
(a) in figure 1 dealing with the dynamic manipulation of the
gradients themselves.

III. LEARNING GRADIENTS FROM A COGNITIVE MAP

The different gradients that are used by each homeostatic
subsystem (home base, open space, cue, reward, visited,...)
can be learned or generated. We show in this section how
this is done. A gradient will be generated by a sum of two
dimensional Gaussians:

gσ,x0,y0(x, y) = e
−(

(x−x0)2

2σ2 +
(y−y0)2

2σ2 )

where (x0, y0) is the position and σ the standard deviation.
The security subsystem gradient of figure 1 was generated
adding a single Gaussian in the top left corner of a 120x90
matrix. All the entries of the matrix were initially set to zero.
We address now the issue of how can we generate the open
space gradient in a biologically plausible way. We present a
simple algorithm to generate the open space gradient denoted
by the n ∗m matrix Maro:

The algorithm 1 loops until convergence of the gradient
adding Gaussians to the Maro matrix. The loop in line
labeled 1 assures that the generated Gaussian is a valid one,
representing a valid possible Gaussian area inside the arena.
In practice the function isV alidP laceCell(g) can be easily

Algorithm 1: Generate open space gradient.
while convergenceV alue > 0.1 do

1 while not isV alidP laceCell(g) do
g ← random(gσ,x0,y0)

Maro ← Maro + g

2 convergenceV alue =
∑

i,j | −→Mske(i, j)−−→
Maro(i, j) |

implemented by testing that the center of the Gaussian is
inside the maze by a standard inside polygonal test. An arrow
in

−→
M indicates that the gradient is normalized, that is, divided

by its maximum value. It is worth noting that instead of
randomly generating Gaussians and testing its validity one
could generate place cells from sensory inputs as in [21].

A way of assessing convergence is comparing the re-
sulting gradient with a skeletonization computed with the
straightforward method of considering the minimum distance
of every point to the closest wall. Let Mske be a matrix
representing the skeleton of the environment where each
position (i, j) is set to the minimum distance to the closest
wall. This last method gives as result an skeleton with abrupt
changes, so the comparison is restricted where the value of
the skeleton with this method is greater than a certain value.
Thus the sum

∑
i,j in previous algorithm is restricted to

values where Mske > 0.8 and convergenceV alue is finally
normalized by all the elements of the sum. This computation
is the one performed in line labeled 2 in the algorithm.

In figure 5 we show the plot of the evolution of this
convergence value while Gaussians are added into Maro for
different values of σ. Not surprisingly, with bigger σ we
converge much rapidly to the skeleton, but with less accuracy.
Figure 5 shows that the algorithm converges to the skeleton
but the real underlying theoretical proof of this is related
with the central limit theorem which states that if one sums
a sufficiently large number of Gaussians randomly distributed
in a circular region of a two dimensional space the resulting
surface will also have the shape of a Gaussian centered in
the center of the circle. We consider that the learning process
has converged when the convergenceV alue is below a
predefined significant level.

A. Towards an hippocampal model

Are gradients relevant in biological terms? [22] discusses
how pigeons that elicit homing behavior after being released
far away from the home base, could be using and integrat-
ing gradient maps of different kinds to navigate: geomag-
netic field, visual landscape, coriolis force, sun, atmospheric
chemosignals, infrasounds, ... It could also be the case that
gradients are computed from joint activity of place cells. We
discuss in this section how close is the gradient learning
approach to an hippocampal model. Place cells [23] have
taken a main role in trying to understand how a cognitive
map could be operating in the hippocampus. What we call
here a cognitive map is a pool of place cells representing the
environment. Place cells where first discovered in rats and
are neurons that are recruited during the exploration of a new
environment and acquire rapidly a directional independent
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Fig. 5. Convergence of the open space gradient of a t-maze shaped
environment. Different values of σ are used (the standard deviation of the
added Gaussian). (a,b) show different stages of the gradient being learned for
a t-maze σ = 3.5. (c,d) show different stages of the gradient for σ = 9.5.
(e) corresponds to an advance stage of σ = 6.5.

activity that correlates with a particular spatial position. Once
acquired, the correlation is observed for long periods of
time. The global characteristics of this new recruited cell
population are not known: how many cells encode the new
environment?, is their overlapping important?, what are their
scale distributions? We also don’t know if place cells are used
for something else than encoding the current position in a
new environment. [24] show that place cell activity can also
encode paths forward of the rat in decision points. Similar
type of result is found in [25], [26], [27]. These evidences
prove that place cells are actively used to compute at least
highly localized possible forward paths. Whether place cell
activity is used to compute other spatial computations is not
known. Several neuronal based computational models exist
that can acquire place cells from sensory input [21] and that
make use of place cells for spatial navigation system [11],
[12], [13], [14], [15], [16]. In these works, it is common to
approximate place cells by Gaussians.

IV. PATH PLANNING

Our problem formulation is as follows: we have as input
an arbitrarily large graph of cells (that can change over time)
whose activity is correlated with different positions of an en-
vironment covering it all. The environment can dynamically
change and this will be reflected in the cells. Neighboring
cells are connected to each other if their activity overlaps in
the spatial correlation. Cells can be arbitrarily small and have
a maximum space coverage corresponding to the biggest area
in the environment. The graph of place cells provides us a
discretization in the wanted scale of the continuous space
represented by the spatial characteristics of the environment.
We then specify a starting cell and a destination one, the aim
being to learn a path that connects both. A path between cells
could be computed by reinforcing the synapses between the

corresponding cells using a hebbian-like learning rule (like
in [28]). We will compute such a path, learning a gradient
between the covered regions of the two cells.

A big gap exists between the cited biological approaches
(section III-A) and the pure robotic ones in what refers to
path planning. Probabilistic approaches (like the sampling
methods) have lead to efficient solutions for complex con-
figurations spaces and robots with many degrees of freedom,
sometimes biassing the sampling towards the obstacles or the
medial axis [29], a solution that is similar to the method pre-
sented here. The main difference is that we base our method
in a biological plausible solution, linking path planning with
a self-regulation model. All the computation is reduced to
learn a gradient that is constituted by Gaussians. The learned
open space map (see previous section III) is the perfect
candidate to guide both the optimization process and reduce
space dimensionality. A second novelty is that Gaussians are
used to interpret the semantics of the environment, giving
a special role to corners and bifurcations which will be
probabilistically detected to drive the search. Doing so, the
efficiency of a search becomes independent of the size of
the environment (a property called abstraction in incremental
search algorithms [30]).

Algorithm 2: Generate a single forward path of Gaussians.
Mbif ← Mbif + gσ,xrobot,yrobot

3 〈x0, y0〉 ← randomPosIn(
−→
Mbif > 0.1)

while (notfound) and (ngaussians(Mpath) < nGauss) do
4 〈x′

0, y
′
0〉 ← 〈x0 ± rand(range), y0 ± rand(range)〉

5 if isV alidP laceCell(gσ,x′
0,y

′
0
) and

−→
Maro(x

′
0, y

′
0) > 0.8

6 and
−→
Mvis(x

′
0, y

′
0) < 0.5 and

−→
Mpath(x

′
0, y

′
0) = 0 then

Mpath = Mpath + gσ,x′
0,y

′
0〈x0, y0〉 ← 〈x′

0, y
′
0〉

seq ← seq ∪ 〈x0, y0〉
Mvis ← Mvis +Mpath

7 if dirChange(seq) then
8 〈x0, y0〉 ← pointOfDirChange(seq)

Mbif ← Mbif + gσ,x0,y0

found ← isGoalIn(Mvis > 0)

Algorithm 2, called forward paths in inspiration from [24],
corresponds to a single generation of a path of Gaussians.
The algorithm can be iteratively used until a feasible path is
found. Mpath is the gradient that accumulates the Gaussians
of the generated path and is initialized to 0 at each single path
generation. Mvis accumulates all the generated Gaussians,
thus acts as a mark of the visited paths. Mbif is the gradient
that accumulates the evidence of special locations like cor-
ners and bifurcations. Mbif is used to initiate the search (see
labeled line 3). The function randomPosIn just selects a
position at random where Mbif is greater than 0.1. When the
search starts it contains no suggested corners or bifurcations,
Mbif is then initialized with the robot position (first line
of the algorithm). We then activate at random neighboring
Gaussians (line 4) and filter them by several conditions: the
Gaussian must be a valid place cell (as in previous algorithm
1), the Gaussian must be in a high area of the open map
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gradient (line 5), the Gaussian must be in a low visited area
(line 6) and it must not fall into the current generated path
(line 6). If all the conditions are fulfilled we add the Gaussian
in the path Mpath and we retain the sequence. When we
reached a desired number of generated Gaussians (variable
nGauss) we check if the generated sequence (variable seq)
contains an abrupt angle change (this is done by checking a
change greater than 85 degrees in 4 consecutive Gaussians),
thus being a candidate for a corner or a bifurcation (line 7).
If it is the case we accumulate this evidence in the point of
change (label 8). A possible generated path of Gaussians by
a forward path iteration is shown in figure 6(d).

In figure 6 we show the results of the forward paths
algorithm 2. As in [28], the time to reach the target is
plotted against the optimal length of the path in grid units
(computed using Dijkstra algorithm in the underlying grid).
The target is proven to be always reached, which is not the
case if we don’t apply the restart strategy guided by Mbif .
The algorithm has a number of free parameters: the range
(variable range controlling the randomized distance to the
next Gaussian), the thresholds of the conditions in lines 5 and
6, the threshold angle in dirChange(seq) for accumulating
Mbif . Our belief is that we can setup those to find the optimal
configuration to make the solving time more dependant on
the number of bifurcations instead of the optimal distance.
The majority of solving times in figure 6 follow a linear
increase with respect to the shortest path distance. This fact
supports the assumption that recognizing the semantics that
some Gaussians have because of its localization (corners,
bifurcations) is important.

From the biological side, the forward-paths algorithm
presents a new ingredient for interpreting path planning using
a cognitive map. This fact is adding abstraction capabilities
to the algorithm presented in [28] and also to other Rein-
forcement Learning (RL) approaches to solve this problem
[12], [14]. Usually, these suffer from the handicap of starting
from a predefined state space representation and also from
the inability to operate in different state space granularity
or resolution: state space representation matters and can
lead to a combinatorial explosion. A recent work exists
that uses RL [15] and addresses this problem by indexing
the continuous spatial environment using the place cells
representation and associating to each place cell a weighting
of eight possible direction cells. [15] solves the combinatorial
explosion associated to the spatial states by indexing space
with the place cells but then introduces another discretization
in the space of possible directions. Our algorithm solves
this problem by sequentially activating neighboring place
cells to generate another gradient towards the goal, thus not
representing the directions explicitly.

V. MIXED REALITY ROBOT ARENA

Mixed Reality Robot Arena is a mixed real/virtual environ-
ment for epuck robots. The system is able to track the robots
and deliver to them real and virtual stimulus. It consists of a
retro projected surface on top of which a real robot navigates.
It is equipped with an infrared camera and tracking system.

Fig. 6. Path finding results. The time to reach a randomized target is plotted
against the optimal path (in grid units) computed with a standard Dijkstra
algorithm. Labels (a,b) are example gradients after reaching a target location
placed at 250 grid units distance (denoted by a green star). The position of
the robot is indicated in (a) with a miniature photo of the epuck. In (a) we
show the Mbif gradient superimposed to the maze. The gradient is stronger
in bifurcations and corners. (b) corresponds to the Mvis gradient. (c) Maro

after convergence. (d) a possible generated single path of Gaussians, Mpath.

Its main purpose is to be able to generate dynamic cues to
the robot without much effort. With a click of the mouse
we can displace the robot into a different arena. We can also
display information relative to the solving process (see figure
4 and the delivered video 1. We place the robot in half the
way between reality and a simulated environment.

VI. CONCLUSIONS

We have described a computational model able to ap-
proximate certain characteristics of rodent behavior: free
exploration, goal directed behavior driven by visual cues
and path planning towards a target destination. The main
principle of the model is based on decomposing behavior
into different homeostatic subsystems, orchestrated by the
allostatic control achieving stability at a meta-level. Each
subsystem receives local input of a gradient and regulates
itself according to the difference between the actual value
and the desired one. These gradients are then combined
and weighted by the internal relevance. The meta-control
dynamically changes the desired values of each subsystem
and the gradients themselves. In this sense we go one step
further than the potential field approaches [6], [7], [10].
More specifically, in the context of the motor schemas based
behaviors a schema-based homeostatic control has been
described in [7]. Compared to the motor schemas approach,
we are contributing in several aspects: firstly due to the
nature of the meta-control a gradient can change its valence
(from appetitive to aversive, and vice versa) via the desired
value. Moreover from the fact that gradients can be learned
we make much less assumptions about the environment.
Specifying the capabilities of the meta-control we gain

1Video material is available at http://specs.upf.edu/sf/
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scalability and we are able to include more subsystems to
account for more complex behaviors as proven in the jump
from the square arena task II-D to the y-maze II-D.

We then describe a biological plausible process to dynam-
ically learn, generate and modify the gradients. This dynam-
ical process may have an impact in explaining how place
cells are used in the hippocampus to compute properties of
the environment, or for explaining how they can be used to
goal directed navigation. With respect to place cells neuronal
models used for navigation [11], [12], [13], [14], [15], [16]
our contribution is to make use of place cells in a way
that is new to our knowledge, computing properties of the
environment.

A third contribution is that we formulate path planning in
terms of gradient learning. Subsequent activations of place
cells of a cognitive map are used to generate a gradient
driving to a goal. We have described a procedure that exploits
the fact that certain place cells play a special role in path
planning (like the ones representing corners or bifurcations)
and is able to actively use them to speed up path planning.
In this sense, we give new insights to approaches like
[28], making the time to reach the goal dependant on the
number of bifurcations rather than the size of the maze, thus
accounting for abstraction of the environment.

We believe that the latter contributions generalize, can
be applied to other kind of robots than the epuck, and
remain fundamental to understand how a cognitive map
can be exploited at a higher cognitive level to compute
properties of the environment and perform path planning.
These contributions, together with the fact that we combine
them with self-regulation, achieved by the principles of
allostasis, give certainly insights on how to implement an
artificial rat.
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