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Abstract— When a male silk moth senses sexual pheromone
of a female partner by using its antenna, it repeats certain series
of walking pattern and arrives to the partner. This walking
pattern is generated in Lateral Accessory Lobe (LAL) and the
ventral protocerebrum (VPC) domain which controls physical
exercise. Therefore, in this study, we elucidate the process of
this behavior by constructing a neural network model of the
LAL domain. Concretely, we build a model that treats some
numbers of neurons as one neuron and estimate strength of each
connection between 10 neuron representatives of neuron groups
with Genetic Algorithm. The estimated network is verified and
consided from engineering and biology.

I. INTRODUCTION

Male silkmoths make a certain walking pattern when they
sense sexual pheromone from females. The walking pattern
is a sequence of actions which are straight forward, zig-
zag turning and looping as shown in Fig.1. They take this
sequential actions in every sensing of sexual pheromone and
finally reach to the female in every time .

Fig. 1. A certain walking pattern with sexual pheromone[1]

This walking pattern is generated in small brain with
stimulation from antennas. The brain of silkmoth can be
easier to be analyzed than that of human brain, because
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the number of neurons of silkmoth brain is very few (about
105) compared with human brain (about 1010). Therefore,
biologists analyze relations between the neuron responses
and stimulations and between actions and stimulations[2][3].
Especially, the neuron responses are very well analyzed in
LAL-VPC regions where this sequential actions are consid-
ered to be related very much.

However, the neurons network analysis is not enough to
explain how to generate the actions by the stimulations. Not
only the neuron responses but network structure is very im-
portant to analyze the brain. The brain is too small to observe
all neuron network. Therefore, our objective of this research
is to estimate silkmoth neural network corresponding to the
flip-flop actions.

The research [4] has the same objective with the same
background using integrate-and-fire model. The research has
made important results. However, the results is not enough to
explain all silkmoth motion. We try to estimate the network
in another approach.

For the estimation of the neural network in the brain of
silkmoth, we apply engineering approach which includes
modeling, equation and optimization. In the modeling, net-
work model is constructed based on biological knowledge.
Recentry, robotics and system engineering is attracted con-
siderable attention from biology as strong methodolory for
hypothesis and verifications.

Here, the neuron response is represented in equations. And
network connection is estimated using Genetic Algorithm to
fit the silkmoths’ actions. According to the proposed method,
we can obtain a hypothesis and consider the hypothesis.

II. SILKMOTH IN BIOLOGY

In this research, the model of neural network structure and
estimation of network connections are proposed. As inputs
of the modeling, the silkmoth motion and the biological
knowladge are considered.

The motion of silkmoth is generated by motor neurons of
legs. The motor neurons of legs connect with the desecnding
interneurons (DNs) from the lateral accessory lobe (LAL)
and the ventral protocerebrum (VPC) in brain (Fig.2). The
LAL and VPC regions exist at both left side and right side
in the brain.

The DNs show a characteristic state-dependent activity
”flip-flop circuit” shown in Fig.3[5]. There is strong rela-
tionship between the motion (zigzag turn) and this response.
Therefore, we consider that the motion can be seemed to
equal the DNs activity.
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And, the stimulation of pheromone is brought from the
antennas to LAL-VPC regions with some delay. The stimu-
lation from antenna which touches pheromone is delayed 320
[msec] to the opposite side of LAL-VPC region compared
with the same side LAL-VPC region[1]. It is considered
that this delay is based on the length of transmission of the
stimulation.

Fig. 2. Brain of silkmoth[1]

Fig. 3. Flip-flop output of DNs[1]

III. ESTIMATION OF LAL-VPC NETWORK

A. 10 regions model

It seems that the motion of silkmoth is generated at
both sides of the LAL-VPC region in brain [1]. For the
analysis of the silkmoth brain, the neural connections in
LAL-VPC regions wish to know. However, estimation of the
all connections is very difficult because there are about 400
neurons and the connections are very large and complicated.

Then the model of LAL-VPC region is proposed based
on the knowledge of biology. The neurons exist in biased 5
regions in LAL-VPC region on both sides, in total 10 regions
[6][7], and the biased neurons are connected each other. The
image is shown in Fig.4 from [6].

Therefore, we proposed 10 regions model of LAL-VPC
region. The LAL-VPC region is divided to oLAL, iLAL,
oVPC, iVPC adn aiVPC. From the observation in biology,
stimulation from antenna is brought to oLAL regions and
DNs connect to aiVPC regions in both sides. The proposed
10 regions model is illustrated in Fig.5.

Fig. 4. LAL-VPC image : scale bars are 100μm[6]
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Fig. 5. 10 regions model

B. Model of neural response

Based on the proposed model, the each region has one
neuron to connect to the others. The connections are various
corresponding to the excitation or inhibition and the strength.
Figure 6 shows an example. In this example, the left oLAL
neuron connects to all the other neurons with several proper-
ties. The connection to the opposite side oVPC is very strong
inhibition and that of the opposite side iVPC is very strong
excitation.

With this model, the various representations can be ob-
tained and the estimation of the connection is described in
later.

The neural response is described with some mathematical
equations based on the equations in [1]. In the research
model, the number of neurons is just two and the variety
of the connections is not considered. Therefore, we extend
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Fig. 6. Proposed network model: red connections represent excitation ones
and blue connections represent inhibition ones. And the bold lines represent
the strength of the connection. Each region is connected to the other regions
with a certain kind and strength.

the neural response model with the consideration of the
connections.

At the extended neural model, the neuron response at each
region is represented with Ui which is the average membrane
potential of the region, Xi which is the activity ratio of
the region, si which is dynamics of the concentration of
serotonin, and hi which has the fatigue effect. The membrane
potential Ui(t) of the 10 regions neuron in our model is
shown in the equation (1) and the equation (2).

τ
dUi

dt
= −Ui(t)+

10

∑
j=1

c jiXj(t)+ si(t) (1)

Xi(t) = sigm(Ui(t),hi(t)) (2)

Where i indicates the region number. And the function
sigm(Ui,hi) depends on the membrane potential Ui and the
threshold level hi and ci j is connections between neurons
with the variety and strength(−1≤ ci j ≤ 1). The sigm(Ui,hi)
is 1, if Ui ≥ hi, otherwise the function is 0.

It is well known that the neuron is fatigued with the
excitation. For this property, hi(t) increase when the neuron
is excited. This is represented in the equation (3).

τh(Ui)
dhi

dt
= −hi(t)+ ciXi(t)+ hi0 (3)

τph =
dsi(t)

dt
= −si(t) (4)

The time constant τh is a variable dependent on the
membrane potential Ui(t), so that as the membrane potential
Ui becomes higher, the cell fatigues more quickly. Since
τh(Ui) has a low value under conditions where the Ui is
less than the static level of the threshold hi0, the threshold
hi(t) recovers to the initial static level hi0, which is constant,
quickly when the neuron becomes inactive. Si(t) is damped
slowly and the time constant τph determines this long-lasting
response. In this research, we set τph = 10.

In this model, when a neuron is excited from antenna
or the other neurons, the membrane potential increases. Or,
when a neuron is inhibited from the other neurons, the
membrane potential decreases. When the membrane potential
increases and is higher than the threshold, the neuron fires
and transmits the stimulation. When the membrane potential
has been high, the threshold increases as fatigue. When the
threshold is higher than the membrane potential, the neuron
stops firing.

Only one region in each side of brain has been proposed
in [1] with the above equations. The responses are shown
in Fig.7. Right side region and left side region are activated
like a flip-flop circuit. The detailed explanation of this figure
is in [1].

Fig. 7. Neuron response in 2 regions model

C. Estimation of neural network connection using GA

For estimation of neural network, the connections is de-
signed using Genetic Algorithm (GA), where fitness function
is defined based on turn duration of the zigzag turn (describe
in later) and we assume that the connections are symmet-
rical with respect to the right and left LAL-VPC regions.
Therefore, the number of the connections is 5 ∗ 9 = 45. In
our method, each connection is represented as 6 bit in GA,
including variety and strength. Therefore, the length of gene
is 270. Figure 8 shows the representation of the connections,
where the first bit of each segment indicate excitation or
inhibition and after 5 bit representation the strength.

The reason why GA is applied is that the relation between
connections(input) and silkmoth actions(output) is obviously
complicated and non-linear. GA is one of the strong opti-
mization methods to such a problem.
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Fig. 8. Decording to connections using GA: e.g.) first 6 bits segment
represents the connection from the right oLAL to the right iLAL. This
connection must be excitation one because first bit is 1. And the strength
of this connection must be 0.1875 because of the after 5 bit.

TABLE I
TURN DURATION TIME(AVERAGE AND STANDARD DEVIATION)[8]

1 stimulation 1st turn 2nd turn 3rd turn
Turn duration time[sec] 1.2±0.1 1.9±0.3 2.1±0.4

number 16 16 8
Every 4 sec 1st turn 2nd turn 3rd turn

Turn duration time[sec] 1.1±0.1 1.6±0.1 1.7±0.1
number 48 48 29

D. Evaluation of estimated network

For the design using GA mentioned above, the fitness
function should be defined.

Our objective is to estimate LAL-VPC region structure
which makes the zigzag turn which is the character of
silkmoth motion. The zigzag turn motion is observed and
measured in [8]. The result is shown in Table I. Here,
there is 2 experimental conditions which are one pheromone
stimulation and 0.25 [Hz] stimulation. ”1 stimulation”(upper
table) indicates former one and ”Every 4 sec” indicates later
one.

From the result, the turn duration time in ”Every 4 sec”
is shorter than those in ”1 stimulation”.

From these experiments, the fitness function of this
method is formulated.

The formulation of fitness function is as follows:

f itnessi =
3

∑
j=1

exp

(
(x j − μ j)2

2σ2
j

)
(5)

where x j is turn duration time of jth turn.
As the turn duration time of the model are close to

this experimental result, the fitness value is high and the
individual is easy to survive. The fitness of each turn is
shown in Fig.9.

The output of the proposed model is the neuron activity of
aiVPC regions in both sides, because the DNs from aiVPC
regions are connected to the motor neurons of legs.

In the both conditions, the fitness values are calculated
using the same models and networks and minimum one is
to be a fitness value of the individual in GA.

IV. EXPERIMENT
A. settings

With simulations, we verify that your proposed model and
method can be obtained a proper estimation.

As mentioned above, the fitness values are calculated
based on the comparing with aiVPC activities and turn
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Fig. 9. Fitness value of turn duration time

TABLE II
SIMULATION MACHINE

CPU Core2 Duo 2.00GHz
RAM 2046MB
OS Windows Vista

Programming Java

duration time. Therefore, the experimental conditions are as
blow.

1) 1 stimulation at init state
2) 4 stimulations from init state in every 4 second
In this simulation, the right side oLAL gets the stimulation

from the antenna at first and the left oLAL region get the
stimulation with 320 [ms] delay.

The sampling time is 10 [ms] in the simulations. The stim-
ulations between neurons are not transmitted in 1 sampling
time, but with 50 [ms] delay in the same side and 150 [ms]
delay to the opposite side. This is also based on the biological
experiments.

Settings of GA are shown in below.
• The number of individuals is 300
• The number of generations is 100
• The possibility of cross over is 0.7. The cross over is

occurred at one point.
• The possibility of mutation is 0.05.
• The selection is based on the roulette selection.
And the computational conditions are shown in Table II.

B. result

The simulation results are shown in this subsection. Figure
10 shows the activity of aiVPC regions in both sides. In each
graph, right region activity is upper and left is lower. If both
regions are active or non-active, the output is middle one. In
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both conditions, which are one stimulation and every 4 sec
stimulations, flip-flop output can be obtained.
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Fig. 10. Obtained outputs of both conditions (1 stimulation and every 4
sec stimulations) :black triangles indicate the stimulation time.

Figure 11 shows the turn duration time in each condition
and each turn comparing with experimental results. With our
modeling methodology, the turn duration time in every 4 sec
stimulations are shorter that those in 1 stimulation on all
turns. This inclination is the same in the experimental results.
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Fig. 11. The turn duration time comparing experimants and models in
each turn

The obtained network is shown in Table III. In this
table, the positive values mean excitation connections and
the negative values mean inhibition connections. The gray
cells mean that the connections do not make sense because
neurons do not fire in these regions.

The red cells indicate that the connections are excitation
ones. With these connections, the neurons fire with the stim-
ulations from the other neurons. Of cause, oLAL regions get
the stimulations from antenna and the neurons are excited.

Here, in our model, iLAL, oVPC and iVPC regions
have no different meaning. Therefore, oVPC regions (active
regions) can be alternative to iLAL or iVPC.

Figure 12 shows the transition of fitness value. It can be
seen that the fitness value is larger, as generation become

TABLE III
OBTAINED NETWORK CONNECTIONS: ”-” INDICATES INHIBITATION.

to \from L-oLAL L-iLAL L-iVPC L-oVPC L-aiVPC
L-oLAL 0 -0.875 -0.625 -0.75 -1
L-iLAL -1 0 0.875 0.125 -0.625
L-iVPC -0.625 -0.75 0 -0.25 -0.375
L-oVPC -0.375 -0.25 0 0 -0.375
L-aiVPC -0.375 -0.25 0 -0.5 0
R-oLAL -0.25 0.875 0.125 -0.625 -0.75
R-iLAL -0.75 0.375 -0.25 -0.375 -0.25
R-iVPC -0.25 0 0.625 -0.375 -0.25
R-oVPC -0.25 0 -0.5 -0.25 0.625
R-aiVPC 0.625 0.125 0.375 0.5 -0.375
to \from R-oLAL R-iLAL R-iVPC R-oVPC R-aiVPC
L-oLAL -0.25 0.875 0.125 -0.625 -0.75
L-iLAL -0.75 0.375 -0.25 -0.375 -0.25
L-iVPC -0.25 0 0.625 -0.375 -0.25
L-oVPC -0.25 0 -0.5 -0.25 0.625
L-aiVPC 0.625 0.125 0.375 0.5 -0.375
R-oLAL 0 -0.875 -0.625 -0.75 -1
R-iLAL -1 0 0.875 0.125 -0.625
R-iVPC -0.625 -0.75 0 -0.25 -0.375
R-oVPC -0.375 -0.25 0 0 -0.375
R-aiVPC -0.375 -0.25 0 -0.5 0

larger. This shows that the design process is proper.
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Fig. 12. Transition of fitness value

C. discussion

From the results of the simulations in the previous sub-
section, the connections in the active regions can be shown
in Fig.13.

From this figure, we can senn that the input region (oLAL)
make the opposite output region (aiVPC) be excited. And the
buffer region (oVPC) and the output region (aiVPC) in the
same side are excited each other. The other connections are
inhibition. Especially, the input regions are inhibited from
all the other regions.

The dynamics of this network is shown in Fig.14. It can be
seen that the right input region is activate by the stimulation
at first. And the activation transmits to the opposite output
region. Next, the excitation of the output region makes the
opposite buffer region fire. For a while, both buffer and
output regions fire because of each excitation and inhibit the
input regions at the same time. And then, the threshold of
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Fig. 13. Obtained model of LAL-VPC

both regions becomes high and both regions stop firing. The
input region can fire because of the no inhibition and transmit
the excitation to opposite output region. The flip-flop output
can be obtained by repeated this dynamics.

0 1 2 3 4 5 6 7 8
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L-oVPC

L-aiVAL

R-oVAL

R-oVPC

R-aiVAL

[sec]

12 13 14 15 16 17 18 19 20
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R-oVAL

R-oVPC

R-aiVAL

[sec]

1 stimulation

Every 4 sec

Fig. 14. All regions responses : upper one is 1 stimulation and lower one
is every 4 sec. The lower one starts at the last stimulaiton.

The reason why the turn duration times become short
at every 4 sec condition is that input region is inhibited
by the buffer and output regions and get new stimulation
from antenna. The firing input region try to excite the
opposite output region and inhibit the same side output
region. However, the transmission has delay time. Therefore,
both the input and the output regions fire and make each
other turn over. In other words, all regions are not stabilized
because of time delay.

This phenomenon is like ”chattering” and is very interest-
ing for biology because this is new hypothesis. Sikmoth may
use the time delay effectively.

V. CONCLUSIONS AND FUTURE WORKS
In this research, we proposed new model of silkmoth small

brain for the analysis of silkmoth behaviour. The model and
connection design can estimate the silkmoth inner neurons.

At the modeling, the 10 regions model of LAL-VPC region
is proposed based on the biological knowledge. The neuron
response is extended from the previous proposed method to
fit our model. And, the network connection is estimated using
Genetic Algorithm.

Our proposed method can make the flip-flop circuit by
the appropriate connections. And, in repeated stimulation, the
turn duration times can be short comparing with 1 stimulation
in the simulation. This is because of delay time of the
transmission between regions.

Using the engineering approach, the biological inspired
may be able to be obtained.

As a future work, we consider and discuss the biological
meanings of the results more and more. For example, there
are no functional difference between regions except oLAL
and aiVPC. However, there shuld be the meanigs of the
regions, as time delay may be different.

And the application of GA should be improved because
current method is a little redundant. We consider the search
space can be reduced.

With the consideration and discussion, we will try various
experiments more with and, from data of the experiments,
hypothesis of meanings of the regions will be obtained.
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