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Abstract— In this paper, we present a visual object tracker
for mobile systems that is able to specialize to individual objects
during tracking. The core of our method is a novel observation
model and the way it is automatically adapted to a changing
object and background appearance over time. The model is inte-
grated into the well known Condensation algorithm (SIR filter)
for statistical inference, and it consists of a boosted ensemble of
simple threshold classifiers built upon center-surround Haar-
like features, which the filter continuously updates based on
the images perceived. We present optimizations and reasonable
approximations to limit the computational costs. Thus, the
final algorithms are capable of processing video input at real-
time. To experimentally investigate the gain of adapting the
observation model we compare two different approaches with
a non-adapting version of our observation model: maintaining
a single observation model for all particles, and maintaining
individual observation models for each particle. In addition,
experiments were conducted to compare system performances
between the proposed algorithms and two other state of the art
Condensation based tracking approaches.

I. INTRODUCTION

To track arbitrary objects is a key ability for autonomous

agents to fulfill many different tasks like surveillance, guid-

ing or following as well as interacting with and learning

from humans. Many successful and accurate object tracking

approaches have been proposed in recent years (see survey in

[1]). However, many of them are not applicable for the tasks

of mobile robots, because the domain violates several of the

underlying assumptions. There is no static background and

no fixed target appearance and the image quality can be bad

due to insufficient illumination or glare. In some applications

one cannot build a complex target model off-line, because the

kind of object to track is not known in advance. Generally,

one does not have a set of calibrated cameras for 3D-

reconstruction. And finally, the computational power is very

limited because of small form factors and the available

energy, but at the same time quick reactions are needed when

interacting with a rapidly changing environment.

For these reasons, feature based kernel tracking ap-

proaches are mostly applied in the domain of mobile

robotics. These techniques either build a pixel-wise or a

spatial model of the target’s characteristics from different

features such as intensity and color cues or corners and

edges. Statistical inference methods like Kalman filtering,

Mean Shift [2] or particle filters [3] are applied to evaluate
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the temporal evolution of the probability density function of

the state of the target object.

The main challenge is to build an accurate model of the

target’s appearance that also generalizes to possible future

appearances. One way to achieve this for spatial models is

to prefer features that best discriminate the target from the

background [4], for example by learning a binary classifier

on features. Another way is to integrate discriminability

already into the feature computation, as cognitive observation

models do [5][6]. Compared to spatial models, pixel-wise

models are said to deal better with non-rigid objects like

persons [7]. As they do not rely on fixed spatial properties,

they generalize better to target transformations. However,

shape transformations are only one source for changes of

the object and background appearance over time. To keep up

with the various changes possibly occurring in a real-world

scenario, we believe it is best not to rely on a fixed target

model, but to adapt the model over time. This way, spatial

target properties can be updated as well and strengthen the

significance of features.

Adapting the observation model during tracking is not

straightforward, because to ensure the correct adaption the

exact target location within a training image needs to be

known. Otherwise the model may diverge from the real target

over time. Several groups investigate in how to adapt the tar-

get appearance model. Han et al. [8] introduced a sequential

kernel density approximation technique based on mean-shift,

that is used to update a target appearance model on-line. Lei

et al. [9] try to adapt an off-line learned ensemble classifier

of a particular object class to the changing appearance of

a tracked instance of such class. Avidan [7] presents an

algorithm to adapt the constituent parts and combination of

an ensemble of classifiers itself to new appearances. Grabner

et al. [10] demonstrated a semi-supervised on-line learning

scheme to tackle the problem of uncertain class assignments

of training examples collected while tracking the object.

Instead, we present a classifier-based approach that trains

threshold classifiers on spatially distributed Haar-like center-

surround features which are boosted to select and combine

the most discriminative ones into a strong classifier. The

initial target appearance model is quickly learned from a

single frame and the resulting classifier is used to detect

the most likely target position in the following frame. For

this purpose, the confidence of the classifier is converted

to a likelihood function of the target state that is used as

the observation model within a Condensation-based tracker.

Subsequently the classifier is adapted to the object and

background appearance in the new frame via fast re-learning,

where robustness is achieved by taking the different loca-
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tion hypotheses of condensation filter into account during

this process. This approach leads to a precise and flexible

tracker that is quickly applicable to track arbitrary objects

in unknown environments in real-time. Currently, the system

works on video data from a freely moving hand-held camera.

Thus, it is also ready to be mounted on a mobile robot.

In our experiments we compare two different adaptation

schemes, one that adapts a single observation model based

on the expected target state provided by the Condensation

filter, and a second one that maintains individual models

for each particle conditioned on the particles’ unique state

histories. We evaluated the approach in different settings

to demonstrate the advantage of the adaptation techniques

in comparison to our own classifier-based non-adaptive

approach, but also in comparison to other non-adaptive

tracking methods. We tested the ability of the methods to

deal with perspective transformations, background changes,

occlusions, illumination changes and more. It shows that the

performances of the adapting approaches are considerably

superior to the other, non-adapting tracking approaches.

In the following, we first give an overview on the particle

filter based visual tracking system (Sec. II). In Section III,

we explain our classifier-based observation model and how

it is adapted. Section IV presents experimental results. We

finally conclude in Section V.

II. THE VISUAL TRACKING SYSTEM

The visual tracking system is based on the Condensation

algorithm [3], a sequential Monte Carlo method also known

as particle filter or Sampling Importance Resampling (SIR)

filter. A distribution p (X) of the state of the tracked object

is approximated by maintaining a set of weighted particles

(samples) St = {sj
t}, j ∈ {1 . . . J} over time, where each

particle s
j
t = (xj

t , π
j
t ) consists of its state vector x

j
t and an

importance weight π
j
t . The set of particles is updated from

one frame to the next by the following recursive procedure:

first, a new sample set St is drawn with replacement from

the previous set St−1, where a sample si
t−1

from the old set

is chosen with probability proportional to its weight πi
t−1

.

Second, for each sample a new state x
j
t is determined by

sampling from the motion model p(Xt|Xt−1 = x
i
t−1

), and

finally the measurement of the new frame Zt is integrated by

updating the importance weights π
j
t with the likelihood of

the observation, i.e. π
j
t = p(Zt|Xt = x

j
t , Z0, Z1 . . . Zt−1).

The likelihood depends on all frames Z0, . . . , Zt−1 because

the observation model is adapted over time. In case of a static

model we have π
j
t = p(Zt|Xt = x

j
t , Z0).

The observation model is the core of our approach. Before

we present it in detail in Sec. III, we will first briefly describe

the remaining parts of the algorithm.

A. The Object State Space

The state of a particle is modeled as vector

x = (x, y, w, h, vx, vy, C)
T

,

in which x, y is the position of the tracked object in the

image with its respective first moments vx, vy and w, h are

the dimensions of the target rectangle. C is the particle’s

object classifier (to be described in Sec. III) that determines

its observation model.

B. Initialization

In the beginning, the target rectangle x, y, w, h in the first

frame must be given to the system. For instance a gesture

recognition module could pass the information about the

object of interest to the system, or, like in our case, the user

marks the target rectangle manually. A single binary classifier

C is learned from the initial target and background to initial-

ize the observation models of all particles. While x, y, w, h

and C are identical for all J particles, their velocities vx, vy

are sampled randomly from Gaussian distributions modeling

the error in the different dimensions according to the motion

model. The particle weights are initialized to π
j
0

= 1

J
.

C. Motion Model

We apply a first order autoregressive motion model to

predict particle positions. The estimate of the new state of

a particle is a linear extrapolation of the previous state plus

white Gaussian noise. In other words we calculate

vi,t = vi,t−1 + G
(

0, σ2

i

)

, i ∈ {x, y},

xt = xt−1 + vx,t,

yt = yt−1 + vy,t,

wt = wt−1 + G
(

0, σ2

w

)

,

ht = ht−1 + G
(

0, σ2

h

)

. (1)

Within our experiments (cf. Sec. IV) we used

σx = σy = 6.4 and σw = σh = 0.64 .

To recover the state of the tracked object, the current state

of the target is estimated as the weighted average over the

states of the particles, hence

(x̄, ȳ, w̄, h̄)T =
J

∑

j=1

π
j
t · (x

j
t , y

j
t , w

j
t , h

j
t )

T . (2)

D. Observation Likelihoods

For the weighting of the particles we need to compute

the likelihood p(Zt|Xt = x
j
t , Z0, Z1 . . . Zt−1). In our case,

we determine this value for each particle based on its binary

classifier C
j
t . This classifier decides between background and

target at a given image location. It is a continuous function

of a target rectangle (x, y, w, h) and an image Z that returns

values between 0 and 1. We employ an exponential function

to convert the classifier responses to observation likelihoods,

i.e. we compute

π
j
t = p(Zt|Xt = x

j
t , Z0, Z1 . . . Zt−1) (3)

= c · exp
(

λ · Cj
t (xj

t , y
j
t , w

j
t , h

j
t , Zt)

)

. (4)

Here, c is a normalization constant which ensures that the

new particle weights add up to 1. In Eq. 4 it is assumed that

that the classifier C
j
t is sufficient statistics for the images (and

the objects state history). The exponential weighting function

was proposed in [11]; it emphasizes the reward of a classifier

result with high confidence in comparison to a lower one with
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lower confidence. The influence of exponential weighting is

adjusted by λ. We chose λ = 20 as suggested in [11].

The observation model is the most important component

since it assesses which hypotheses should be followed and

which ones will die out. We will now explain, how the

classifier-based model operates and how it is adapted over

time.

III. THE ENSEMBLE CLASSIFIER BASED OBSERVATION

MODEL

Ensemble techniques like boosting have become popular

for classification during the last years, because it was shown

that such classifiers can be precise and operate very fast

[12][13]. To adapt these techniques to real-time tracking they

must be optimized for very short learning times as well.

A. The Initial Classifier

Gentle AdaBoost [14] is used to build a strong classifier

consisting of a weighted linear combination of n weak

classifiers. In our case, weak classifiers are simple threshold

classifiers on Haar-like center-surround features varying in

size, relative position and RGB color channels. Because the

representation of the tracked object is a rectangle flexible

in position, size and aspect ratio, we define features relative

to an object coordinate system that is transformed to image

coordinates for feature computation as illustrated in Fig. 1.

These kind of features based on differences of average inten-

sities in upright rectangular regions can be computed in con-

stant time using integral images [13]. Results from queries

located between image pixels are interpolated bilinearly. We

restrict the number of possible features to choose from to a

pool of 539 in order to speed up the learning process. In our

case, AdaBoost iteratively picks out the n = 32 best features

based on a weighted set of training examples. For the initial

classifier, the only positive example is given by the user and

the negative examples are then randomly sampled from the

remainder of the first frame. This way the observation model

incorporates target and background information.

We introduce a new spatial constraint to the normal

boosting algorithm and force AdaBoost to choose a spatially

distributed set of weak classifiers. Therefore, we enforce

that each quarter of the object window (top left, top right,

bottom left, bottom right) is covered by one quarter of the

weak classifiers chosen by the algorithm. To distribute the

weak classifiers in this way during the iterative selection

process, we reduce the pool of candidate classifiers to the

ones centered in the quarters that have not yet reached their

limit of n
4

weak classifiers. Although this constraint can

prevent AdaBoost from selecting the optimal combination

of weak classifiers for a given training set, we think that this

spatial spreading strengthens the classifiers robustness and

precision. For the same reason we prevent AdaBoost from

choosing the same feature twice within one classifier.

B. Adapting the Observation Model

To adapt the observation model of a particle, we re-train

its classifier from frame t− 1 to t based on updated training

Fig. 1. The observation model is an ensemble of boosted weak classifiers
on center-surround features.

sets. Because it would be inefficient to store the image data

of all past frames and always calculate the feature results

again when needed, we represent training examples as the

set of all its feature results directly. Note that this is only

possible because our pool of features is rather small. After

the first frame particles start to evolve differently. However,

at every step t in time the current particles will have some

common ancestors due to resampling. Like in a pedigree,

the further one looks back in time, the more of the current

particles share common ancestors. We utilize this fact by

sharing the past training data of akin particles if possible.

From the current frame, we treat the estimate of the

system or respectively the state of the particle as new positive

training example and the remainder of the frame as source

for new negative examples. Every observation model has a

maximum capacity for positive and negative examples (we

used posmax = 20 and negmax = 100). Until posmax

positive examples are obtained, we simply add the new

ones. Thereafter, we always discard the positive example,

the observation model from t − 1 is most certain about,

and keep all others. This approach has two positive effects:

first, we introduce new object appearances to the classifier

fast, this way. Second, the diversity of training examples

will be increased for particles, whose target prediction is

largely wrong. A rather inconsistent and diverse training set

will produce less confident classifiers. This way, particles

with the most self-similar history of positive examples will

receive a higher rating from their classifiers and will have

more successors after resampling.

As a special case, we always keep the positive example

from the first frame given by the user in order to avoid the

template drift problem [15][10]. Additionally, we always ini-

tialize this given first positive example with a higher weight

when (re-)learning the classifier. The negative examples are

treated differently. We replace the oldest ⌈negmax

50
⌉ ones

with randomly generated strong negative examples from the

current background. This way the classifier is adapted to
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new backgrounds. Note that in general it would be better to

keep more training examples and to replace more negative

examples for every new frame, but this is the maximal

adjustment we are currently able to compute in real-time

when using the per particle observation model.

Once the training sets are updated, they are used to adjust

the observation model. Inspired by [7] a simplified boosting

is conducted to select the optimal n − k (we used k = 1)

weak classifiers out of the n weak classifiers of the strong

classifier from t − 1 and adapt their confidences. This is

very fast because the set of possible features is small and

it is done without re-learning the threshold of the chosen

weak classifiers. Note that if the training set has changed in

such a way that we cannot find n−k weak classifiers with a

still meaningful threshold, we update less. We continue with

the constrained boosting algorithm we used for the initial

classifier to select the remaining k optimally complementing

weak classifiers from the whole pool of features.

Adapting the observation model is the most costly part of

the algorithm. Because we cannot update every particle that

survived the resampling in real-time, we concentrate on the

up to ten best rated particles. This is still influential, because

of their high weights those ten particles are the ancestors

of more than 50% of the next generation of particles most

of the times. Additionally we stop adapting the observation

model if the confidence of the classifier on the new positive

example is below a threshold θ, in order to handle temporary

occlusions of the target object.

IV. EXPERIMENTS AND RESULTS

In this section we present a qualitative comparison of five

tracking approaches. All of them are based on particle filter

techniques. We use the same particle filter implementation

for all approaches and change only the observation model.

The first approach is the well known color histogram tracking

as described in [11]. The second is a more recent approach

namely component-based tracking [6]. It computes center-

surround feature maps from color and intensity and builds

an object description from the relative positions of multiple

local maxima and their circumference within these maps.

The others are our Haar-like center-surround feature based

classifiers. The first of these does not adapt its observation

model after the first frame, the second holds and adapts only

one observation model for all particles, and the third holds

and adapts one observation model per particle.

We recorded nine test sequences with a total of 5485

frames (320×240 at 25fps) and manually marked the small-

est rectangle containing the whole target object in each

frame. Between this ground truth and the results of the

approaches we measure the fraction of the intersection to

the union. This measure is more precise than the distance of

the centers of the rectangles, because it incorporates not only

differences in position but also in size. For better comparison

to other groups’ results an overlap below 33.33% in a frame

can be considered as a miss. We provide this data on our

webpage1 and kindly invite everyone to evaluate their own

1http://www.iai.uni-bonn.de/˜kleind/tracking/

Seq. # Fr. average score [%]
Histo-
gram

Multi-
Comp.

n. ad.
H.-cs

adapt.
H.-cs

adapt.
p. part.
H.-cs

A. 601 70.73 63.24 38.35 65.06 59.35
B. 628 67.02 50.73 6.02 79.01 77.38
C. 403 47.58 63.71 89.33 90.66 91.33

D. 946 63.35 76.39 62.78 71.12 75.21
E. 304 78.21 77.42 83.12 84.49 86.32

F. 452 44.43 40.02 63.99 60.82 68.32

G. 715 46.27 49.62 34.34 77.30 71.16
H. 411 62.19 86.50 95.79 94.41 94.47
I. 1016 68.94 47.63 48.97 75.02 56.33
av. 60.97 61.70 58.08 77.54 75.54

TABLE I

COMPARISON OF THE FIVE TRACKING METHODS BASED ON COLOR

HISTOGRAMS, MULTI-COMPONENT-DESCRIPTOR, NON ADAPTIVE AND

(PER PARTICLE) ADAPTIVE HAAR-LIKE CENTER-SURROUND FEATURES.

approaches with it.

The parameters are chosen to meet the demands for

real-time tracking (not less than 25fps) on a modern CPU

(Intel Q9550) with our slowest approach and are not altered

between sequences. We used J = 2000 particles for the

experiments.

In the following we describe the test sequences (cf. Fig. 2)

and explain the results shown in Fig. 3 and subsumed in

Table I.

A. Rapidly Changing Object Appearance (Ball)

A red ball with white spots is kicked back and forth. While

the histogram representation is well suited in this case and

performs best, our approach is struggling a little to keep track

of the locations of the white spots. However, the advantage

of adapting our classifier is clearly visible.

B. Challenging Background Alterations (Cup 1)

A blue cup moves along a heavily cluttered background.

The component-based model and our non-adaptive classifier

lose the object when the background becomes mainly blue.

The component-based model manages to recover afterwards.

Our adaptive classifier models are able to learn the new

background appearances and perform best.

C. Fast Moving Object and Size Changes (Juice)

A juice box stands on a table. The camera pans very

fast. This results in quick object motion without bigger

appearance changes. Thus our adaptive and non adaptive ap-

proaches differ very little. In the middle of the sequence the

camera zooms out. Because of that the histogram degrades

most, the component-based model also worsens whereas this

has no effect on our Haar-like center-surround feature based

approaches.

D. Non-rigid Object in an Outdoor Scene (Person 1)

A person is walking and turning around multiple times.

All approaches successfully estimate the person’s position,

but the component-based model and our per particle adaptive
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Fig. 2. The test sequences A. - I. . First row: each first frame with the region that was given the algorithms for initialization (green rectangles). Second
row: an example frame with manually marked ground truth used for evaluation. See also the accompanying video.
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Fig. 3. Results on tracking the target object with four different observation models on the test sequences A. - I. . Plotted against the y-axis is the fraction
of the intersection to the union between the rectangular area of the manually marked ground truth and the estimates of the systems. For better comparison
to other group’s results one can consider a score above 1/3 as correct match and below as miss.

classifier are a little bit more precise in following the

variation of the size of the person in the images.

E. Partial Occlusion (Person 2)

The person is stationary, but the camera moves so that the

person gets half occluded and visible again. The noticeable

valley in the graph is caused by this partial occlusion of

the person. We marked only the visible parts of the person

as ground truth, while all approaches tend to estimate the

person’s position and size behind the occluding object.

F. Full Occlusion of a Non-rigid Object (Person 3)

A person walks along a corridor and becomes fully

occluded by a pillar three times. In these situations it is

important to stop adapting the models if the object is not

visible. Fortunately, it turned out that a simple confidence

threshold on the classifier response is sufficient to handle

such situations for our adaptive approaches (cf. Fig. 4). Note

that the short oscillation in Fig. 4 between the first two full

occlusions is caused by another person crossing. Interest-

ingly, our non-adaptive approach is also very precise and

superior to color histogram and component-based tracking.

Likely this is because the person is seen from the side during

the whole sequence and his upper part of the body appears

constantly the same. The regular spike pattern shown by all

approaches is because the ground truth width pulsates with

every step of the person. The per particle adaptive classifier

again is best to imitate this transformations.

G. Appreciable Viewpoint Changes (Rubik’s Cube)

The camera pans around a Rubik’s Cube from left to right

and then flies over it. This causes heavy changes in shape

and color of the object. Before the camera starts to move,

adaptive and non-adaptive Haar-like center-surround feature

based classifiers perform equally well and are superior to

the other approaches. While our non-adaptive classifier starts

to fail when viewpoint changes become larger, the adapting

ones retain a good performance. Thanks to the rather uniform

background, color histogram and component-based tracking
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Fig. 4. Green: confidence of best particle. Red: adaption threshold θ = 0.6 .
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are also able to identify the object, but with a loss of

precision.

H. Illumination and Backlight Changes (Panda)

During the sequence the sun-blinds are opened/closed

and the artificial light is switched on and off, while the

camera is not moving. The histogram is confused most,

but recovers very quickly. The other approaches are robust

against changes in lightening, while the component-based

approach in general is less exact than our Haar-like center-

surround feature based classifier.

I. Real-world Person Following Scenario (Person 4)

The camera follows a person walking outdoor while

other persons cross him 13 times. Our global adaptive

observation model is the only approach able to differentiate

the persons and track the correct one all the time. Color

histogram tracking performs also very well on this sequence.

In summary, one can say that the three non-adaptive

approaches on average all perform similarly, but it depends

strongly on the type of sequence which approach performs

best (compare also the results in [6] and [16] for other

types of sequences in which the component-based approach

outperforms the histogram tracking clearly). The histogram

tracking is the most general and is therefore not affected

much by deformations of the target, even without adaption.

On the other hand, it generally has problems with illu-

mination changes which is often a problem in real-world

robotic settings (cf. [16]). The component-based approach is

currently not able to deal with rotations of the object, but it

is mainly robust against illumination change and transforma-

tions in size. At the beginning of every sequence one can see

that our Haar-like center-surround feature based classifier is

the most exact observation model. This is an advantage if

the scene does not change a lot. However, without adaption

it does not generalize sufficiently well to deal with bigger

changes. When adapting the model to new appearances this

effect is compensated. Our global adaptive observation model

turned out to be the most exact and most robust model as

it was the only approach that was able to keep track of

the targets in all test sequences. In theory, a per particle

adapting observation model should be able to better deal with

multi-modal distributions. But experiments showed that the

classifier is so reliable that such situations are very rare. The

advantages of the global adaptive observation model, speed

and robustness, weigh more heavily, so we recommend this

approach. Note that for an adaptive observation model it is

beneficial if the different object appearances are introduced

rather slowly to the model for the first time to enable a more

proper adaption.

Please see the accompanying video for a visualization of

the results of our proposed new visual tracking system.

V. CONCLUSION

In this paper we presented a new particle filter based

approach for real-time video tracking of arbitrary objects.

The heart of this new approach is the adapting observation

model. For this, a strong classifier composed of an ensemble

of Haar-like center-surround features is learned from a single

positive training example with Gentle AdaBoost and quickly

updated to new object and background appearances in every

frame. The system deals with different objects and settings

and is robust to perspective transformations, rotations and

lightening conditions. Thus, it is disposed to the deployment

on a mobile platform. In experiments we found that it

considerably outperforms other methods.
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