
An Experimental Comparison of State Observers for the Control of a
Parallel Manipulator Without Velocity Measurements

G. Sartori Natal and A. Chemori and F. Pierrot and O. Company

Abstract— This paper deals with the problem of unavailabil-
ity of velocity measurements for the control of parallel ma-
nipulators for pick-and-place applications. As most controllers
require the measurement of the joint positions as well as joint
velocities, the latter need to be estimated. Three observers have
been implemented while keeping the same nonlinear controller:
a Lead-lag filter based observer, an Alpha-beta-gamma observer
and a High-gain observer. The resulting performances obtained
in Real-time experiments by each observer have been detailed
and compared.

I. INTRODUCTION

Over the years, mechanical systems have served as an
interesting benchmark for the design and validation of novel
nonlinear control strategies. One problem that has attracted
a good deal of interest is the output feedback control of
mechanical systems. This problem is of practical importance
since many commercially-available mechanical systems are
not commonly equipped with velocity sensors (e.g., industrial
robots) [1], which is our case with the two degree-of-freedom
(dof) parallel robot Par2 [2], that can reach accelerations
above 40G. The main reasons for the absence of velocity
sensors on these mechanical systems are: (i) Signals deliv-
ered by tachometers might be contaminated with noise; (ii)
Increased costs when more sensors are used in the plant [3].

It is well known that in most control algorithms it is
assumed that the joint velocities are available. For this
reason, they need to be calculated/estimated. The easiest
way to compute the joint velocities consists in a numerical
derivative of the measured joint positions. However, if the
measured positions are noisy or do not have a good enough
resolution, this technique will amplify the noise/quantization
effect. An estimation of the joint velocities by means of
observer-based techniques should then be considered.

The choice of the estimation mechanism is strongly influ-
enced by the existence of uncertainty in the system model.
Whereas model-based observers are usually restricted to
cases where the model is exactly known, filters can provide
model-independent means of estimating velocity [1].

Model-based schemes were presented in [4], where an
exact knowledge based observer-controller was designed,
which yielded a semi-global asymptotic tracking result, while
in [5] and [6] the controlled system yielded semi-global
exponential link position tracking. Reduced order observers
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were designed for the case of exact knowledge-based con-
troller [7] and adaptive controller [8]. For the case where the
system was considered uncertain, variable structure model-
based observers for the design of adaptive [9] and robust
[10] controllers were proposed. For more details about the
control of PKMs, the user is referred to [11].

Filter-based control schemes were designed in [12], [13],
[14], [15]. In [12], a simple first order filter was proposed
to estimate the velocity for the force-position regulation of
robotic manipulators through a PI2D controller. A filter on
the position signal was used to create a velocity signal which
was used to design a robust controller with feedforward
terms with fixed parameter estimates and a linear feedback
term was proposed in [14]. In [13], a filter-based observer
was used with an adaptive output feedback controller which
yielded semi-global asymptotic link position tracking. In
[15], a filter was implemented to obtain the velocity error
in an adaptive controller which was shown to guarantee
global asymptotic trajectory tracking. A detailed comparison
between three different methods of adaptive output feedback
control for robotic manipulators (the first one with a High-
gain observer (HGO), the second one with a linear second-
order observer and the third one with an Extended Kalman
Filter (EKF)) was presented in [16].

While in [11] an experimental comparison between two
controllers was made using the same velocity estimator
(HGO), in the present work three velocity estimators have
been implemented experimentally on Par2 parallel manipu-
lator with the Dual Mode (DM) controller [17]: The Lead-
lag (LL) [18] based observer, the Alpha-beta-gamma (ABG)
observer [19] and the High-gain observer [20]. The control
performance obtained with each observer will be detailed and
compared. It is important to emphasize that the parameters of
the controller were not changed, as the main objective of this
study is to evaluate the performance improvements obtained
by using different observers with the same controller.

This paper is organized as follows. Section II introduces
briefly the proposed control algorithm. In section III, the im-
plemented observers are described. In section IV, the appli-
cation is described. Section V is devoted to the experimental
results, being the performances of the proposed observers
compared and commented. In section VI, a conclusion about
the current results is made.

II. PROPOSED CONTROL SCHEME: A
NONLINEAR DUAL MODE CONTROLER

The control method proposed in this work is a nonlinear
Dual Mode controller [17] (originally referred as ’binary’),
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derived from the nonlinear adaptive controller proposed in
[21], with the addition of the projection on the law of the
parametric adaptation. It consists basically in the utilization
of a high adaptation gain together with a projection of the
estimated parameters. Then, to large tracking errors in the
transitory stage, the controller behaves approximately as a
sliding mode controller, generating an exponential conver-
gence to a residual domain arbitrarily small, and to smaller
errors, it behaves as a parametric adaptation law. Other
important advantages of the adaptation law in dual mode
with respect to other adaptive controllers or known robust
control algorithms are the generation of continuous control
signals, the improvement of the robustness of the system
and the limitation of the values of the estimated parameters
thanks to the projection, which has the effect of reducing
the effective gain of the controller when the tracking error
increases (reducing the sensitivity to measuring noises).

This control law is given by:

τ = Y â+K.s+ d̄Sat(αs) (1)

where s = ˙̃q+λ q̃, being q̃ = qd −q, ˙̃q = q̇d − q̇ (q, q̇ and q̈
∈Rn are the vectors of positions, velocities and accelerations
and qd , q̇d and q̈d ∈ Rn are their desired trajectories,
respectively); λ , d̄, α and K are positive constants, Sat(αs)=

αs
||αs||+1 is a smooth and continuous saturation function with
respect to its argument (with continuous partial derivatives
and components limited to the interval [−1,+1]). The mx1
vector â represents an estimate of the unknown parameters
of the system given by the vector a, and Y (q, q̇, q̈) ∈ Rn×m

is the regressor vector (based on the dynamic model of the
system). The reader is referred to [11] for more details about
this controller.

According to equation (1), it is possible to notice that
the proposed control scheme needs the measured positions
and velocities. As mentioned before, it is assumed that the
velocity measurements are not available, so an estimator
must be proposed and implemented. In the present work,
three estimators have been implemented and compared. They
are described in the following section.

III. IMPLEMENTED OBSERVERS

To deal with the unavailability of velocity measurements,
three estimation techniques have been implemented. They
are presented in the sequel:

A. LEAD-LAG BASED OBSERVER

The Lead-lag filter [18] has the following modified struc-
ture:

Gll(p) =
p

τ1 p+1
(2)

where p is the Laplace variable. So, the smaller τ1 is chosen,
the more accurate the velocity estimation will be, but the
more noise the estimated velocity will have. Its basic idea is
to approximately derivate the input signals (in our case, the
joint positions), as shown in Eq. (3):

˙̂q(t) = gll(t)∗q(t) (3)

where ˙̂q(t) is the estimated joint velocity, gll(t) is the inverse
Laplace transform of Gll(p), i.e, gll(t) = L −1[Gll(p)] and
the operator * denotes the convolution between the two
functions.

The main advantages of this method are its simplicity and
computational efficiency, but its main drawbacks are:

1) If τ1 is given a big value, a delay will be generated
and it will cause an inaccurate velocity estimation;

2) If τ1 is given a small value, there may be a considerable
amplification of the noise/quantization effect.

Then, τ1 must be chosen such that a compromise between
1) and 2) is achieved.

B. ALPHA-BETA-GAMMA OBSERVER

The Alpha-beta (or Alpha-beta-gamma) observer [19]
consists in a simplified form of Kalman Filter [22] for
mechanical systems that have as states the positions and
velocities. Its main idea consists in estimating the next
step’s states of the system according to the usual equations
of kinematics and to correct these estimations through the
multiplication of the positions’ estimation errors by constant
gains. The structure of this observer is detailed as follows:
• Estimation of the next step’s positions and velocities:{

xprev(k+1) = xinnov(k)+T vinnov(k)+ 1
2 T 2ainnov(k)

vprev(k+1) = vinnov(k)+Tainnov(k)
(4)

where xprev(k+1) and vprev(k+1) are the estimated positions
and velocities for the next step, xinnov(k), vinnov(k) and
ainnov(k) are respectively the updated positions, velocities
and accelerations obtained through a correction based on the
estimation error of the position, detailed as follows,
• Update of the estimated positions and velocities (also

called innovation) based on the position measurement:
xinnov(k) = xprev(k)+α(xmeas(k)− xprev(k))
vinnov(k) = vprev(k)+

β

T (xmeas(k)− xprev(k))
ainnov(k) =

γ

T 2 (xmeas(k)− xprev(k))
(5)

being α , β and γ the update gains, xmeas the measured
positions and T the sampling time.

In our case, the initial joint positions are known and the
initial joint velocities are equal to zero, since the robot
starts its movements from rest. So, xprev(1) and vprev(1)
are initialized with these values, respectively. On the next
step, based on the new measured joint positions, there is
the innovation process, in which xinnov, vinnov and ainnov are
computed and then used to compute the new estimated states
of the system (xprev and vprev) for the next step.

As the Lead-lag based observer, this observer has also the
advantage of being very computationally efficient and simple
to implement, but it can provide a better performance and
robustness (cf. experimental results in section V). One of its
main disadvantages is that its gains must be chosen such that
a considerable amplification of the noises/quantization effect
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is avoided, but even with less aggressive gains, fairly decent
performances can be achieved.

C. HIGH-GAIN OBSERVER

The High-gain observer (HGO) is a model-based observer
that was proposed in [20]. The main characteristic of this
observer is that it takes into account the model of the system,
so it can generate a very good performance if a precise
model is available. However, even if this is not the case,
this observer is robust because at each step a correction of
the estimated states is made according to the comparison
between the estimated positions and the measured ones. Its
description is given as follows:{ ˙̂x1 = x̂2 +

1
ε

αHGO1(x1− x̂1)
˙̂x2 =

1
ε2 αHGO2(x1− x̂1)− q̈d + F̂(x̂,qd , q̇d)+ Ĥ(x̂1,qd)τ

s

(6)
where
• x1 represents the position error (x1 = q̃) and x2, its first

derivative (x2 = ˙̃q),
• x̂ = [x̂1 x̂2]

T represents the vector of estimated states,
• ε , αHGO1 and αHGO2 are positive gains,
• F̂(x̂,qd , q̇d) and Ĥ(x̂1,qd) are terms that depend on the

dynamic model of the system,
• τs is the saturated torque (to avoid the ’peaking phe-

nomena’).
Its main characteristics are:
1) It is robust to uncertainties on the model of the system,

although a precise model is needed in order to obtain
better performances;

2) It is more complex (computationally and also con-
cerning its implementation) than the two previously
described observers;

3) If the gain is selected high enough, it becomes very
sensitive to the noise in the position measurement.

IV. APPLICATION: PAR2 PARALLEL
MANIPULATOR

The three proposed observers, complied with the proposed
nonlinear controller, were applied on the Par2 parallel ma-
nipulator illustrated in Fig. 1. Its main characteristics are:
• the platform 6© is a rigid body,
• only the two inner arms 3© are actuated,
• the two other arms 4© are linked to the frame 1© through

passive revolute joints,
• inner arms 3© and 4© are connected to 6© with pairs of

rods 5© mounted on ball joints 7©,
• the rotations of the arms 4© are coupled in order to

guarantee planar motions along x and z axes.
For more details about the prototype Par2, the reader is

referred to [2].

V. REAL-TIME EXPERIMENTAL RESULTS

The objective of this section is to present and discuss real-
time experimental results obtained by the application of the
three proposed observers described in section III associated
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Fig. 1. The two-dof parallel manipulator Par2: view of the robot (left),
schematic view of its mechanical structure (right)

with the control scheme described in section II to the Par2
parallel manipulator described in section IV. The Real-time
experimental setup is displayed in Fig. 2.

Fig. 2. Par2 parallel manipulator experimental setup

The platform of the robot evolves in the XOZ plane (cf.
figure 1). The desired Cartesian trajectory to be tracked by
Par2 is a usual ’pick-and-place’ trajectory (which has an
S-curve profile, being the reader referred to [23] for more
details). Its parameters are described in table I.

The parameters of the proposed control approach are
summarized in table II and the parameters of the three pro-
posed observers are described in table III. These parameters
were tuned such that each observer could provide its best
performance.

TABLE I
PARAMETERS OF THE CARTESIAN REFERENCE TRAJECTORY

Parameter Description Value
(xdi ,zdi ) Initial desired Cartesian position

in the plane XOZ
(-0.35 m,-0.95 m)

(xd f ,zd f ) Final desired Cartesian position
in the plane XOZ

(0.35 m,-0.95 m)

ẋmax
d Maximum Cartesian velocity 7m/s

ẍmax
d Maximum Cartesian acceleration 15G

The proposed experimental scenario deals with the control
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TABLE II
PARAMETERS OF THE CONTROL APPROACH

Parameter Description
Kp = 94.5 Proportional gain
Kd = 2.1 Derivative gain
λ = 25 Positive constant
K = 2I Matrix gain
d̄ = 2.5 Smooth variable structure gain

α = 0.05 Smooth variable structure slope
Mθ = 0.25 Max. adaptative parameters’ error
γ = 0.3345 Adaptive gain
Ts = 0.0005 Sampling time (s)

n = 3 Number of cycles

TABLE III
PARAMETERS OF THE PROPOSED OBSERVERS

τ1 = 0.001 LL time constant
ε = 0.002, αHGO1 = αHGO2 = 1 HGO gains
αabg = 0.95, βabg = γabg = 0.5 ABG gains

of the Par2 parallel manipulator for one cycle of a pick-
and-place trajectory, that is, the robot’s platform has to go
(as illustrated in Fig. 3) from the desired ’pick’ Cartesian
position (xdi ,zdi) to the desired ’place’ Cartesian position
(xd f ,zd f ) and then return to the initial one (xdi ,zdi). The cor-
responding Cartesian reference trajectory and the illustration
of the robots movements are shown in Fig. 3.

x

z
(xdi,zdi) (xdf,zdf)

Fig. 3. Illustration of the robot’s movements

The desired joint trajectory denoted by qd(t) is supposed
uniformly bounded, twice continuously differentiable with its
two first derivatives q̇d(t) and q̈d(t) also uniformly bounded.

The trajectory tracking obtained by the DM controller
with the three proposed observers for 15G of maximum
acceleration is shown in Figs. 4 and 5, and the corresponding
tracking errors are shown in Fig. 6. The velocity tracking
is presented in Fig. 7 and the estimated velocity errors are
presented in Figs. 8 and 9. The control inputs are shown
in Figs. 10 and 11. The real-time implementation of these
observers was made with a sampling time of 0.5 msec.

It is worth to notice that the experimental testbed does
not include a sensor to measure the Cartesian position of
the platform [2]. In addition, because of the high frequency
rate (which requires a small computing time), other methods
such as vision-based control have not been implemented.

By analyzing figures 5 and 6, it is possible to notice that
the best tracking performance was obtained with the ABG
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Fig. 4. One cycle pick-and-place trajectory trackings for 15G obtained by
using the ABG (dots), the HGO (dashed) and the LL (dash-dots) observers
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Fig. 5. Zoom on the trajectory tracking around stop points for 15G

observer. With this observer, the tracking errors were kept
inside the limits of [−0.2◦,0.55◦] during all the trajecto-
ries, while the LL observer kept them inside the limits of
[−0.5◦,0.7◦] and the HGO kept them inside the limits of
[−0.6◦,1.2◦] (peak-to-peak improvement of approximately
37.5% and 58.3%, respectively). For further analysis, their
Root Mean Square Error (RMSE) have also been calculated.
With the ABG observer, a RMSE of 0.212◦ was obtained,
while 0.291◦ and 0.518◦ were obtained with the LL and the
HGO, respectively. This means an improvement of 27.15%
in comparison with the LL observer and approximately 50%
in comparison with the HGO.

As for the main reasons why the Alpha-beta-gamma
observer was able to generate a better tracking performance
than the Lead-lag based observer and the High-gain observer,
one can mention that:

1) For the implementation of the HGO, important simpli-
fications on the model of the system were made (when
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Fig. 6. Tracking errors for 15G obtained by using the HGO (solid), for
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Fig. 7. One cycle velocity trackings obtained by using the ABG (dots),
the HGO (dashed) and the LL (dash-dots) observers
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Fig. 8. One cycle estimated velocity errors (peak errors inside limit of 5%
of the velocity amplitudes) obtained by using each observer (Motor 1)
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Fig. 9. One cycle estimated velocity errors (peak errors inside limit of 5%
of the velocity amplitudes) obtained by using each observer (Motor 2)
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Fig. 10. One cycle torques obtained by using each observer (Motor 1)
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Fig. 11. One cycle torques obtained by using each observer (Motor 2)

2305



neglecting the mass of the platform) such that it would
be possible to represent it on the Lagrangian form. As
this observer is model-dependent, this may have caused
a considerable loss of performance;

2) The ABG observer is naturally more performant than
the LL based observer because the last one consists
only in a transfer function that will generate an approx-
imate value of the velocity, while the ABG observer
not only estimates the velocity but also corrects its
estimation at each step time according to the estimation
of the position error.

From figure 7, it is difficult to distinguish the curves
of reference velocities from those of the estimated ones.
It is only possible to adequately analyze their estimation
performances through the estimated velocity errors in Fig. 8
(for motor 1) and figure 9 (for motor 2). These figures show
that the velocity estimation of the ABG observer was the
one that, in average, kept the smaller errors for the longest
time during the trajectories, while the velocity estimation
of the HGO was the one that kept the smaller errors for
the shortest time. It is also possible to notice that the ABG
observer generated the most noisy velocity signals, while the
LL generated smaller noises but bigger oscillations and the
HGO generated nearly no noise and small oscillations.

As for the control signals (figure 10 for motor 1 and figure
11 for motor 2), a similar conclusion can be made. The ABG
observer generated the most noisy control signals with small
vibrations, the HGO generated the smoothest signals with
small vibrations and the LL observer generated the signals
with the biggest oscilations. The control signals generated
by the three observers showed roughly similar amplitudes
and remained inside the admissible limits of each actuator
(500 N.m) by a large margin.

The performance details of the three observers are sum-
marized on table IV.

TABLE IV
PERFORMANCE COMPARISON BETWEEN THE OBSERVERS

Performance ABG LL HGO
Error peaks [−0.2◦,0.55◦] [−0.5◦,0.7◦] [−0.6◦,1.2◦]

RMSE 0.212◦ 0.291◦ 0.518◦

More noisy More oscillating SmootherControl signals
Roughly similar amplitude values

VI. CONCLUSIONS

This paper deals with the problem of unavailability of ve-
locity measurements for the control of parallel manipulators.
Three state observers have been proposed and implemented,
namely the Alpha-beta-gamma (ABG) observer, the High-
gain observer (HGO) and a Lead-lag (LL) based observer. A
detailed comparison between the trajectory tracking perfor-
mances obtained by these observers associated with a non-
linear Dual Mode (DM) controller for a parallel manipulator
(Par2) has been presented, for a maximum acceleration of
15G. By analyzing the obtained results, it was possible to
notice that all observers generated a good estimation of the

velocities, which made it possible for the DM controller to
have a good tracking performance in all cases. However, the
ABG observer generated the best tracking performance.
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