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We are interested in understanding how babies learn

to recognize facial expressions without having a teaching

signal allowing to associate a facial expression to a given

abstract label (i.e the name of the facial expression ’sadness’,

’happiness’...). Our starting point was a mathematical model

showing that if the baby uses a sensory motor architecture

for the recognition of the facial expression then the parents

must imitate the baby facial expression to allow the on-line

learning. In this paper, a first series of robotics experiments

showing that a simple neural network model can control

the robot head and learn on-line to recognize the facial

expressions (the human partner imitates the robot proto-

typical facial expressions) is presented. We emphasize the

importance of the emotions as a mechanism to ensure the

dynamical coupling between individuals allowing to learn

more complex tasks.

I. INTRODUCTION

Since several years, the subject of Human/Robot inter-

actions is became an important area of research. Yet, the

proposed architectures use mainly an ad hoc engineering

strategy allowing to show some impressive results but even

if learning technics are used most of them use a-priori infor-

mation. In the case of complex interactions, we believe the

behavior must be understood in a developmental perspective

to avoid the symbol grounding problem [10] (a human expert

must provide knowledge to the system). We can obtain really

autonomous systems as the result of the interaction between

human and robot. Understanding how emotional interactions

with a social partner can bootstrap increasingly complex

behaviors, which is important both for robotics application

and understanding the human development. Gathering infor-

mation through emotional interaction seems to be a fast and

efficient way to trigger learning. This is especially evident

in early stages of human cognitive development, but also

evident in other primates [23]. The emotion can be provided

by a variety of modalities of emotional expressions, such

as facial expressions, sound, gestures, etc. We choose to

explore the facial expressions since they are an excellent

way to communicate important information in ambiguous

situations [3] but also because we can show that learning

to recognize facial expression can be autonomous and very

fast [2] which was not evident at first. For this purpose,

we were interested in understanding how babies learn to

recognize facial expressions without having a teaching signal

allowing to associate for instance the vision of an “happy

face” with their own internal emotional state of happiness [7].

Our starting point was motivated by the question of how a

“naive” system can learn to respond correctly to other’s ex-

pressions during a natural interaction. ”Natural” here means

that the interaction should be the less constrained as possible,

without explicit reward or ad-hoc detection mechanism or

formated teaching technique. In this case, a good inspiration

is given by the baby-mother interaction, where the newborn

or the very young baby, has a set of expressions linked with

his/her own emotions. Yet, the link with the expressions of

others still needs to be built. How does the link between his

own emotions and the expression of others can emerge from

non-verbal interactions?

Using the cognitive system algebra [8], we showed a

simple sensory-motor architecture based on a classical con-

ditioning paradigm could learn online to recognize facial

expressions if and only if we suppose that the robot or the

baby produces first facial expressions according to his/her

internal emotional state and that next the parents imitate

the facial expression of their robot/baby allowing in return

the robot/baby to associate these expressions with his/her

internal state [20]. Imitation is used as a communication tool

instead of learning tool: the caregiver communicates with

the robot through imitation. Psychological experiments [18]

have shown that humans ”reproduce” involuntary the facial

expression of our robot face. This low level resonance to the

facial expression of the other could be a bootstrap for the

robot learning (”empathy” for the robot head).

Using a minimal robotic set-up (Figure 1), is interesting

first to avoid the problems linked to the uncanny valley [16]

and next to test which are the really important features for

the recognition of a given facial expression. The robot is

considered as a baby and the human partner as a parent.

Originally, the robot knows nothing about the environment

but it starts to learn as it interacts with the environment.

Using a physical device instead of a virtual face brings

several difficulties but induces a visible ”pleasure” linked

to the ”presence” of the robot for the human partner. The

robot head is also very useful because the control of the

gaze direction (pan/tilt camera) that can be used both as a

active perception and communication tool.

In this paper, we summarize first our formal model for the

online learning the facial expressions. Next the implementa-

tion of this theoretical model without a face detection will
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be presented and the constraints due to the online learning

will be studied.

II. MATERIAL & METHOD: ON LINE LEARNING OF

FACIAL EXPRESSION RECOGNITION, AN INTERACTIVE

MODEL

a) b) c)

d)

Fig. 1. Examples of robot facial expressions: a) sadness, b) surprise, c)
happiness. d) Example of a typical human / robot interaction game (here
the human imitating the robot).

A very simple robotic expressive head was developed as

a tool for researches in cognitive sciences involving both

psychological experiments and computational modelling[19].

The head was designed to be a minimal system allowing to

display some prototypical basic emotions [5]. In this work,

we will only use: happiness, sadness, hunger and surprise

(Figure 1). The validity of this choice could be discussed but,

for our purpose, all we need is a small set of emotions that

can be associated to internal signals that should be present

in the human or animal brain.

Our robot head is composed of 13 servo motors which

are controlled by a mini SSC3 servomotor controller card

allowing to maintain the servo motors in a given position

(control in position) and control the different parts of the

face. 4 motors control the eyebrows (bending), 1 motor

controls the forehead (to move up and move down), 5 motors

control the mouth (opening and bending). At last, 3 motors

control the orientation of the 2 cameras located in the robot

”eyes” : 1 motor controls the vertical plane (pan movement)

and 2 motors control the horizontal plane (1 servos for each

camera and independent tilt movement). The robot head

has been programmed to display the 4 facial expressions

plus a neutral pattern. Each of the four facial expressions

have been controlled by FACS experts [5]. The program

controlling the robot head is able to reproduce prototypical

facial expressions, in other words, all the servo will move

in parallel, each unit executing the position command given

by the controller. This results in a dynamic and homogenous

process where all the parts of the face change to form a given

expression. One change of facial expression is achieved in

approximately 200-400 ms depending of the distance in the

joint space between two particular facial expressions. Thanks

to the servo dynamics, the robot head is able to produce a

infinity of facial expressions. In this paper, we want test our

model with simply 5 prototypical facial expressions.

To test our paradigm, we propose to develop a neural

network architecture and to adopt the following experimental

protocol: In a first phase of interaction, the robot produces a

random facial expression (sadness, happy, anger, surprised)

plus the neutral face during 2s, then returns to a neutral

face to avoid human misinterpretations of the robot facial

expression during 2s. The human subject is asked to mimic

the robot head. After this first phase lasting between 2 to

3min according to the subject ”patience”. The generator

of random emotional states is stopped. If the N.N has

learned correctly, the robot must be able to mimic the facial

expression of the human partener.

The computional architecture (Figure 2) allows to recognize

the visual features of the people interacting with the robot

head and to learn if these features are correlated with its own

facial expression.

III. FACIAL EXPRESSION RECOGNITION

A. Model

Fig. 2. The global architecture to recognize facial expression and imitate.
A visual processing allows to extract sequentially the local views. The V F
(Visual features: local view recognition) group learns the local views. The
ISP (internal state prediction)learns the association between IS (internal
state) and V F . STM is a short term memory in order to obtain more
robustness. Each group of neuron IS, ISP , STM and FE contains 5
neurons corresponding to the 4 facial expressions plus the neutral face.

Our initial approach followed classical algorithms: (1)

face localization using for instance [22] or [25], then (2)

face framing, and (3) facial expression recognition of the

normalized image. In this case the quality of the results is

highly dependant on the accuracy on the frame of the face

(the generalization capability of the N.N can be affected).

Moreover, the robot head cannot be really autonomous

because of the offline learning of the face/non face. Sur-

prisingly, an online learning of the face/non face recognition

is not as easy as the online learning of the facial expressions

in the case of our mimicing paradigm since we do not

have a ”simple” internal signal to trigger a speficic face/non

face reaction of the human partner. In the perspective

of an autonomous learning avoiding any ad hoc framing

mechanism appeared as an important feature. Our solution
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Fig. 3. Visual processing: This visual system is based on a sequential
exploration of the image focus points. The input image (256x192 pixels)
is performed the gradient extraction, convolution with a Difference Of
Gaussian (DOG) providing the focus points, the focus points extraction,
local views extraction around each focus points.

Fig. 4. Visual features: a) The local polar transform increases the robustness
of the extracted local views to small rotations and scale variations (log polar
transform centered on the focus point is performed to obtain an image more
robust to small rotations and distance variations and his radius is 20 pixels).
b) gabor filters are performed to obtain an image more robust to rotations
and distance variations (the gabor filters are 60x60), the features extract for
each convolution with a gabor filter are the mean and the standard deviation.

uses a visual system independent from face framing. The

visual system is based on a sequential exploration of the

image focus points (Figure 3). The focus points are the result

of a DOG filter convolved with the gradient of the input

image. This process allows the system to focus more on the

corners and end of lines in the image for example eyebrows,

corners of the lips, but also distractors (hair, background).

Its main advantages over the SIFT (Scale Invariant Feature

Transform) [15] method are its computational speed and a

fewer extracted focus points (the intensity of the point is

directly its level of interest). One after the other, the most

Fig. 5. The robot is able to recognize the facial expressions when the
human’s partner is at a distance of 2 m.

active focus points of the same image are used to compute

local views: either a log polar 1 transform centered on the

focus point is performed to obtain an image more robust to

small rotations and distance variations and his radius is 20

1The local polar transform increases the robustness of the extracted local
views to small rotations and scale variations

pixels, and gabor filters are performed (robust to rotations

and distance variations) (Figure 4). The features extract for

the convolution between the gabor filter and the focus point

are the mean and the standard deviation. This collection of

local views is learned by the recrutement of new neurons

in the visual features (V F ) group using a k-means variant

allowing online learning and real time functions [12]:

V Fj = netj .Hmax(γ,net+σnet)
(netj) (1)

netj = 1−
1

N

N∑

i=1

|Wij − Ii| (2)

V Fj is the activity of neuron j in the group V F . I is a visual

input. Hθ(x) is the Heaviside function 2. γ is the vigilance

(threshold of recognition, if the prototype recognition is

below γ then a new neuron is recruited). net is the average

of the output, σnet is the standard deviation. The learning

rule allows both one shot learning and long term averaging.

The modification of the weights is computed as follow:

∆Wij = δj
k(aj(t)Ii + ǫ(Ii −Wij)(1− V Fj)) (3)

with k = ArgMax(aj), aj(t) = 1 only when a new neuron

is recruited otherwise aj(t) = 0. δj
k is the Kronecker symbol

3 and ε is the constant in order to average the prototypes.

When a new neuron is recruited, the weights are modified to

match the input (term aj(t)Ii). The other part of the learning

rule ε(Ii − Wij)(1 − V Fj) averages the already learned

prototypes (if the neuron was previously recruited). The more

the input will be close to the weights, the less the weights

are modified. Conversely the less the inputs will be close to

the weights, the more they are averaged. If ε is chosen too

small then it will have a small impact. Conversely, if ε is

too big, the previously learned prototypes can be unlearned.

Thanks to this learning rule, the neurons in the V F group

learn to average prototypes of face features (for instance, a

mean lip for an happy face).

Of course, there is no constraint on the selection of the

local views (no framing mechanism). This means that numer-

ous distractors can be present (local views in the background,

or inexpressive parts of the head). It also means that any

of these distractors can be learned on V F . Nevertheless,

the architecture will tend to learn and reinforce only the

expressive features of the face (Figure 2). In our face to

face situation, the distractors are present for all the facial

expressions so their correlation with an emotional state tends

toward zero.

The internal state prediction (ISP ) associates the activity

of V F with the current IS (internal state) of the robot (sim-

ple conditioning mechanism using the Least Mean Square

2Heaviside function:

Hθ(x) =

{

1 if θ < x
0 otherwise

3Kronecker function:

δj
k =

{

1 if j = k
0 otherwise
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(LMS) rule [26]):

∆wij = ǫ.V Fi.(ISj − ISPj) (4)

STM is Short Term Memory used to sum and filter on

a short period (N iterations) the emotional states ISPi(t)
associated with each explored local view:

STMi(t+ 1) =
1

N
.ISPi(t+ 1) +

N − 1

N
STMi(t) (5)

i is the indice of the neurons, for instance ISPi corresponds

to the ith emotional state (0 < i ≤ 5).

Arbitrary, a limited amount of time is fixed for the visual

exploration of one image. The system succeeds to analyse

10 local views on each image. It is a quite small number of

points but since the system usually succeeds to take 3 to 4

relevant points on the face (mouth, eyebrow).Yet, it is enough

in most cases and it allows to maintain real time interaction

(3 to 5 images/second) in order to test our model.

FE triggers the facial expression of the robot, the FEi

highest activity triggers the ith facial expression thanks to a

WTA.

B. Experiment results

After learning, the associations between the view recogni-

tion (V F ) and the emotional state (ISP ) are strong enough

to bypass the low level reflex activity coming from the

internal state IS. In this case, the facial expression FE

will result from the temporal integration of the emotional

state associated to the different visual features analyzed by

the system (features will have an emotional value if they

are correlated with the robot facial expression, basically the

expressive features of the human head). The robot head can

imitate the human’s facial expression and the focus points

are associated to each facial expression i.e these focus points

vote for the recognition of a given facial expression. Each

facial expression is mainly characterized by a specific set

of focal points corresponding to local areas on the face

which are relevant for the recognition of that expression. For

example, some local view around the mouth (lip) characterize

the “happyness” facial expressions, some others around the

eyebrows characterize the anger facial expression. After

learning of the N.N, Figure 5 shows that the robot recognizes

the facial expressions even when the interaction distance

is important (2m of distance). In this case, we can see

the system learns to discriminate background informations

(distractors in the image) from the visual features on the

face, really relevant for our interaction game (local views

associated to an emotional content).

Figure 6 shows that the interaction with the robot head

during 2 min can be enough in order to learn the facial

expressions before the robot can imitate the human partner.

This incremental learning is robust although the number of

human partners increases and that the expressivity between

the humans (for example the sadness facial expression) is

very different. Figure 7 shows that the model can generalize

to people who were not present during the learning phase. A

possible explanation for the bad result concerning sadness is

Fig. 6. The success rate of each facial expression (sadness, neutral face,
happyness, anger, surprise). These results are obtained during the natural
interaction with the robot head. 10 persons interacted with the robot head
(32 images by facial expression by person). During the learning phase (2
minutes), these humans imitate the robot, then the robot imitates them.
In order to build statistics, each image was annotated with the response
of the robot head. The annotated images were analyzed and the correct
correspondance was checked by a human. On line robot performances are
far better but more difficult to analyze.

Fig. 7. Generalisation to new faces: After 20 persons interacted with the
robot head (learning phase), the robot had to imitate new persons never
seen. The false positive rate and true positive rate of each facial expression
(sadness, neutral face, happiness, anger, surprise) with the visual process
fusion (log polar transform and gabor filters). Here, we don’t use a WTA,
but a threshold function is used to enable all neurons above the threshold.
A true positive is a correctly categorized positive instance and false positive
is a negative instance which is categorized positive.

that the people have difficulties to display sadness without a

context. Each partner imitating the robot displays the sadness

in a different way. Nevertheless, the on line learning can

involve problems because the human reaction time to the

robot facial expressions is not immediate (Figure 8a). First,

150 ms are required to recognize an object [24], hence

the minimal duration to recognize the facial expression for

a human is not negligible. The minimal period T of an

interaction loop is the sum of t1 the delay for the robot

to perform a facial expression plus t2 the delay for the
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human to recognize the facial expression plus t3 the delay

for the human subject to mimic the recognized expression

(T = t1 + t2 + t3). When the robot is only an automata

producing facial expressions, we measure a minimal period

T around 800ms for expert subjects and 1.6 s for a novice

subject. This time lag can pertubate the learning because if

a)

b)

Fig. 8. a) phase shifting between the human facial expression and the
robot facial expression during an imitation game (the human imitating the
robot). b) Temporal activity of the neurons associated to the triggering of
the different facial expressions when the robot imitates the human (after
learning).

the robot learns the first images which are still associated

to the human previous facial expression then the previous

expression is unlearned. The presentation time of a given

expression must be long enough to neglect the first images.

Figure 8.b shows the neural activity during the test phase. In

this figure, we can see that the robot reacts correctly for the

different facial expressions excepted the neutral face.

In this section, we showed that the robot head is able

to learn and recognize autonomously facial expressions if

during the learning the robot head does facial expressions

and the human partner mimicks it.

IV. DISCUSSION & CONCLUSION

Many existing researches focus on the building of a robust

system to recognize the facial expressions but they are

not interested in understanding how this learning could be

performed autonomously. Some methods are based on the

Principal Component Analysis (PCA) for example the LLE

(Locally Linear Embedding) [14]. Neuronal methods have

also been developed for facial expression recognition. In

Franco and Treves[6] network uses a multi layer network

using a classical supervised learning rule. Others methods

are based on face models which try to match the face

(appearance model[1]). Yu[29] uses a support vector machine

(SVM) to categorize the facial expressions. Wiskott[27] uses

Gabor wavelets to code the face features as ’jets’. All these

technics used an offline learning and try to introduce a lot of a

priori to improve the performances of the system. Moreover,

all these methods need to access the whole learning database

thus they can’t be accepted for a realistic model of the baby

learning.

These methods have better results (above 80%) but they

use databases without “noise” (database clean) where the

face are framed (only the face in the image), the facial

expressions are checked by human experts and the problems

of the brightness are controlled. The question about how a

robot can learn the facial expressions without supervision is

not essential for them. Moreover, our model has abilities of

adaptation thanks to the neural network and the on line learn-

ing . The ”database” is built through emotional interactions,

as a consequence the robot can start to reproduce the facial

expressions even if the database is incomplete (incremental

learning).

Breazeal[4] designed Kismet, a robot head that can rec-

ognize human’s facial expressions. Thanks to an interaction

game between the human and the robot, kismet learns to

mimic the human’s facial expressions. In this work, there

is a strong a priori about what is a human face. Important

focus points such as the eyes, the eye brows, the nose,

the mouth, ..., are pre-specified and thus expected. These

strong expectations lead to a lack autonomy because the

robot must have a specific knowledge (what is a human face)

in order to learn the facial expressions. On the contrary,

in our model, facial expressions can be learned without

any prior knowledge about what is a face. Moreover, facial

expressions recognition, instead of needing a face model to

be usable, can bootstrap face/non-face discrimination. Others

robot heads as Einstein’s robot [28] explores the process of

self-guided learning of realistic facial expression production

by a robotic head (31 degrees of freedom). Facial motor

parameters were learned using feedback from real-time facial

expression recognition from video. Their work interested to

how learning to make the facial expressions (fit very well

with our theoretical framework and will be useful for motor

control of more complex robot head).

Our robot learns thanks to the interaction with a human

partner, so several difficulties occur. First, the on-line learn-

ing can involve problems because the human reaction time

can be long. This point is crucial in order to improve the

results. In classical image processing system, this problem

is avoided because the learning database is labelled by human

experts. Moreover, some human partners are not expressive

therefore the robot has difficulties to categorize the facial

expressions. What is interesting is that the robot makes

mistakes but if a person checks the facial expressions that

these human partners do then this person make the same

mistakes.

Our theorical model [20] has allowed us to show that in

order to learn on line to recognize the facial expressions,

the learner must produce facial expressions first and be

mimicked by his/her caregiver. The system proposed had no
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real interaction capability during the learning phase since this

phase was completely predefined. The attentional strategy

(using focus points) presented in this paper corresponds to a

sequential and time consuming analysis of the image. It could

be seen as a simple implementation of the thalamo-cortico-

amygdala pathway in the mammal brain [13]. In previous

works [9], we tested simpler and faster architectures using the

whole image. They could correspond to the short thalamo-

amygdala pathway [21], [13] implied in rapid emotional

reactions. In conclusion, this work suggests the baby/parents

Fig. 9. Experimental set-up for social referencing. We rely upon the use
of a robotic head which is able to recognize facial expressions. A robotic
arm will reach the positive object and avert the negative object as a result
of the interaction with a human partner.

system is an autopoietic social system [17] in which the emo-

tional signal and the empathy are important elements of the

network to maintain the interaction and to allow the learning

of more and more complex skills as the social referencing4.

Figure 9 presents new experiments in which a robotic arm

learns to reach positive objects or avoid negative objects as

a result of the emotional interaction with a human partner.

The emotional interaction provides an emotional value to the

objects (the objects have a meaning: a dangereous object or a

interested object). This work emphasizes that the recognition

of others agents and objects can be built through interactions.
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VIDEO

http://www.etis.ensea.fr/˜sofibouc/social referencing v2.avi

http://www.etis.ensea.fr/˜sofibouc/feelix interaction emotionnel.avi
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