
A Platform for Networked Robotics

Eleri Cardozo, Eliane Guimarães, Lucio Rocha, Ricardo Souza, Fernando Paolieri and Fernando Pinho

Abstract— Most of the environments where mobile robots are
deployed offer a comprehensive networking infrastructure. In
order to take part of these environments, mobile robots must
enhance not only their communication capabilities, but also
their interaction capabilities. Current robotic frameworks are
oriented to gather data from the robotic sensors and to act
on the robot’s actuators. In other words, such frameworks are
oriented to perform embedded control functions. In order to
provide mobile robots with enhanced interaction capabilities
robotic applications must rely on networking solutions focus-
ing on integration, communication, and security. This paper
presents a platform for networked robotics that favors the
integration of mobile robots with other networked devices,
providing a secure and federated access to the mobile robots.

I. INTRODUCTION

Many mobile robotic frameworks such as ARIA [1],

Player [2], and Orca [3] are inherently distributed in the sense

that a client program can interact over the network with a

robot running these frameworks. Mobile robotic frameworks

employ specialized network protocols for supporting client-

server interactions, a design decision that restricts the integra-

tion of robots with the organization’s distributed applications.

The first restriction is related to software development and

integration. In order to talk specific network protocols, client-

side code must employ the API (Application Programming

Interface) supplied by the framework. As a consequence,

modern communication devices such as cell and soft phones

that do not support these APIs are hard to integrate into a

mobile robotics application. Usually this integration requires

a mediator running in between the accessing device and the

mobile robot (e.g., a Java servlet) with obvious drawbacks

in terms of performance and complexity.

The second restriction relates to the way networks operate

nowadays. A common network design employs private IP

(Internet Protocol) addresses and firewalls. A machine con-

figured with private IP address is able to communicate with

other networks only through routers configured with special-

ized forwarding functions that perform protocol and address

translations. HTTP (Hypertext Transfer Protocol) proxies and

NAT (Network Address Translation) are examples of such

functions. As proxy and NAT functions are restricted to

well known networking protocols, the specialized protocols

employed by the robotic frameworks are commonly blocked

when private IP addressing is employed. Firewalls also block

specialized protocols employing port numbers different from

E. Cardozo, L. Rocha, R. Souza and F. Pinho are with the School
of Electrical and Computer Enginnering, University of Campinas, Brazil.
eleri@dca.fee.unicamp.br

E. Guimarães and F. Paolieri are with the Information
Technology Center Renato Archer, Campinas/SP, Brazil.
eliane.guimaraes@cti.gov.br

those allowed to pass the firewall. A costly solution to cross

proxies, NAT and firewalls is to employ tunneling schemes

where protocol messages are transferred inside messages of

another protocol not blocked by these networking functions

(e.g., the Secure Shell protocol). Tunneling causes extra

overhead and loss of functionality.

Finally, a more severe restriction is related to security, a re-

quirement not addressed by the present robotic frameworks.

These frameworks are not able to distinguish access from

different users, domains, and applications; to verify if users

or applications are authenticated and authorized to access the

resource; and to secure the communication in order to avoid

security threats on the robotic resources.

This paper presents a distributed software platform that

favors interdomain communication and interaction with mo-

bile robots. The platform is built above robotic frameworks,

enlarging the robot’s communication and interaction capa-

bilities by employing open protocols, services, and security

solutions adopted by the modern distributed applications.

The paper is organized as follows. Section II presents the

architecture of the platform. Section III addresses issues

related to the design of the platform. Section IV details

the REALabs platform. Section V presents qualitative and

quantitative evaluations of the platform. Section VI presents

some related works. Finally, section VII concludes the paper.

II. PLATFORM ARCHITECTURE

Fig. 1 shows the four main packages of the platform in

the UML (Uniform Modeling Language) notation. The figure

shows the main components a network robotics platform

must provide and serves as a guideline for platform design.

The Embedded package is composed of components that run

on the mobile robots. These components are microservers

able to run on embedded processors with limited processing

power. Typically, microservers process the HTTP protocol,

and, in some cases, other protocols such as SIP (Session

Initiation Protocol) and SOAP (Simple Object Access Pro-

tocol). The microservers process the requests and act on the

robot, usually, through a robotic framework installed on the

robot.

The Protocol Handler package performs functions such

as security checking, proxying, and network address transla-

tions. The components in this package inspect the request to

the resource (robot, camera, etc), perform security checking,

and route the message to the resource’s microserver. An

example of such components is an HTTP proxy agent that

verifies if the message carries the proper security credentials,

and forwards the request to a resource placed on a private

addressed network. The proxying process may translate

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 1000

Embedded

Management

Protocol
HandlerFront−end

Fig. 1. Main packages of the proposed platform (dashed arrows model
dependencies)

protocols, for instance, an original HTTPS (HTTP Secure)

request is translated to plain HTTP before be forwarded

to the resource. In summary, the Protocol Handler package

reliefs the resources from performing functions that require

extensive computation such as data encryption/decryption,

protocol translation, and security checking.

The Front-end package holds components for supporting

interactions over the network between the robotic application

and the mobile robots. These components offer a high level

interface for robot manipulation in different programming

languages and platforms, and hide the underline interaction

protocols from the robotic application. The functionalities

provided by this package are similar to those provided by

the robotic frameworks, except that the components can run

on Web browsers, soft phones, and any device able to access

the network. Importantly, communication generated by the

Front-end components will not be blocked by NAT boxes

and firewalls.

The Management package aggregates components that

perform management actions at the level of federations,

domains, and resources. Management of federations allows

the establishment of an entity that acts as a trusted party

for the domains. Management of certificates is a typical

management function at the federation level. Management of

domains allows the creation of trusted relationships among a

set of domains through the federation. Management of users,

credentials, and certificates are typical management functions

at the domain level. Management of resources keeps track

of the resources maintained by the domain. Management

of access and resource reservations are typical management

functions at the resource level.

III. PLATFORM DESIGN ISSUES

In this section we show how the platform architecture

described above can be designed and implemented. The

division of the platform into packages helps to choose

software products able to support the packages’ components.

A. Embedded Package

The Embedded package aggregates microservers that run

on the robot’s internal processors. Although large mobile

robots have enough processing power to run full featured

servers, this is not the case of small and mid-sized robots.

For these devices the microservers must be compact enough

to execute on the robot’s internal processor. There are at least

three design decisions regarding the microservers:

1) How client applications interact with the microservers?

2) How the microservers interact with the robot hard-

ware?

3) How real time issues are addressed?

The interaction client-microserver must rely on general

purpose and widespread protocols. HTTP and SIP are nat-

ural candidates for three reasons: i. they are simple, text-

based protocols; ii. proxies simplify the processing of these

protocols at the server-side; iii. they already have powerful

client applications available, e.g., Web browsers in case of

HTTP and the internet communicators in case of SIP.

Client-microserver interactions can adopt the REST (Rep-

resentational State Transfer) interaction pattern [4]. REST

employs messages to inspect and change the state of objects

maintained by a Web server. Objects are data structures

representing logical entities (e.g., databases) or physical

entities (e.g., robots). Messages can be based on any pro-

tocol, although HTTP and SOAP are the preferred ones.

REST over HTTP employs the HTTP PUT, GET, POST, and

DELETE messages for state installation, retrieving, updating,

and dropping, respectively. In most cases the resource installs

a state during startup and never drops it (the case of robots,

for instance). In such cases, only the GET and PUT messages

are employed. We favor REST over HTTP since it simplifies

the microservers when compared to REST over SOAP.

The interaction microserver-robot hardware is usually in-

termediated by a robotic framework such as Player or ARIA.

The framework simplifies the translation of messages into

actions on the robot. For example, an HTTP POST message

carrying data indicating a new state of the robot (e.g., a new

pose) must be translated into activations performed by the

robotic framework. As usually the robotic frameworks are

called from C/C++, an HTTP microserver must be able to

call C/C++ functions during the processing of requests, a

mechanism called server-side extension.

Real time issues must be addressed in the design and

implementation of the microservers. HTTP and SIP process-

ing are fast but this is not enough. In order to favor real-

time processing, the microservers must also present some

properties such as non-blocking and preemptive operation,

priority-based request processing, and assurance of timing

constraints related to the execution of periodic tasks and

interrupt processing.

Multithreaded microservers running above real-time ker-

nels can reach near real-time performance. For example,

real-time Linux [5] extensions provide privileged execution

to critical tasks running as kernel extensions (modules). In

such kernels, a microserver implemented as a module can

run without be blocked by processes executing at user-space.

Requests are processed as threads scheduled according to the

request priority (e.g., an emergency stop request preempts

any other ongoing requests).

B. Protocol Handler Package

The Protocol Handler package must rely on a router or

server in between the client application and the microservers.

NAT and firewall functions are performed by low level kernel

modules such as iptables on Linux routers. Proxying can be

1001

performed by servers such as Apache HTTP server (httpd)

and Mobicents SIP servlets. In addition to proxying, these

servers must support extensions for authentication and autho-

rization checking. Apache httpd allows server-side extensions

that can perform extra processing before the request is

forwarded to the resource. Security checking usually demand

interactions with components of the Management package,

for instance, resource reservation and authentication services.

C. Front-end Package

The components in the Front-end package can be offered

for any programming environment able to generate HTTP re-

quests and process the reply. This is common to a wide range

of today’s programming environments. The components in

this package offer their functionalities in the form of object-

oriented APIs for programming languages supporting this

concept (C++, Java, and Python); Web components for appli-

cations running inside Web browsers; and software artifacts

particular to some specialized environments such as Matlab

functions, LabView blocks, TinyOS’s NesC components (for

sensor networks).

D. Management Package

The management functions are commonly implemented as

Web services with secure access (via HTTPS) and subject to

authentication and authorization. Such services are supported

by Web containers such as Apache Tomcat and Sun’s Glass-

fish. A common requirement for the management functions

is security. Basically, security comprises user authentication

and authorization. Authentication can rely on systems such

as Shibboleth [6] and Open SSO [7] that support federated

authentication, known as Single Sign On (SSO). SSO allows

user credentials be securely exchanged among the federated

domains.

Authorization usually comprises the verification if authen-

ticated users are allowed to access a given resource. This

verification can be based on policies. Typical authorization

policies require in advance resource reservation and a valid

access session. In these cases a reservation and access

services must be offered by the Management package. A

reservation service allows users to set a time slot for resource

manipulation. An access service checks if the access policies

(e.g., reservation) is fulfilled, and, if the case, supply the user

with an access session identifier. Each interaction with the

resource carries this identifier. The Protocol Handler package

verifies if the access session identifier is a valid one. If not

the case, the access to the resource is blocked.

IV. THE REALABS PLATFORM

REALabs is a software platform for networked robotics

in line with the architecture and design presented above.

Fig. 2 shows the components of the REALabs platform,

the software packages they require, and their placement

on processing nodes (boxes) in a loose UML deployment

diagram.

REALabs offers two HTTP multithreaded servers inter-

acting with the ARIA and Player robotic frameworks. The

Domain

Single

Sign On

Resource

Federation

Microserver

HTTP

Application

JavaSec Management

Web Service

Web Service

Management

Web Service

Management

Web Service

Open SSL

Open SAML

Robotic

Framework

Mobile Robot

Programming

Interfaces

Components

Client Computer

Web

HTTP Proxy

Access

Web Service

Reservation

Web Service

Tomcat Server

Apache Server

Session

Verifier

Fig. 2. Components of the REALabs platform

microservers run above Linux without real-time extensions.

The REST interaction style is supported. Operations that

do not change the robot’s state (e.g., sensor readings) are

performed through HTTP GET messages while operations

that change the robot’s state (e.g., movements) are performed

through HTTP POST messages. All HTTP operations return

a XML document containing the requested data (e.g., a laser

scanning), a notification (e.g., a movement completion), or an

exception (e.g., operation not supported or error). Although

XML can be transported more efficiently over UDP (User

Datagram Protocol), this solution has two main drawbacks:

control messages require a reliable protocol functionally

similar to TCP (Transfer Control Protocol, employed by

HTTP), and firewalls and NAT boxes usually block UDP

traffic.

The Protocol Handler package relies on the Apache httpd

server. HTTP proxy functions are directly supported by this

server. The REALabs platform provides an extension module

to this server that verifies if the user accessing a resource

has a valid access session already established (the Session

Verifier module). The establishment of access sessions is

subject to authentication and authorization. HTTP proxying

and session verification are independent of the message

contents as these functions inspect only the HTTP header.

The Management package employs Web services for fed-

eration, domain, and resource management. These services

are supported by the Apache Tomcat application server.

Federation management relies on certificate management

provided by JavaSec, a native Java package for XML doc-

ument signing and signature verification, and OpenSSL, an

extensive C-based security package.

The management of domains employs a secure Single Sign

1002

On service for user authentication. This service is based

on SAML (Security Assertion Markup Language) [8], a

standard for exchanging user credentials among the domains.

This implementation is very lightweight when compared

with Shibboleth or Open SSO and is fully integrated into

the platform code. Our SSO implementation employs Open

SAML, a Java-based SAML API for processing SAML

assertions, in conjunction with JavaSec for assertion signing.

The management of resources offers an access service

for session establishment, maintenance and termination. An

access session can terminate explicitly by the user, implicitly

by inactivity, or when the reservation time has expired. This

reservation service allows a single or a group of resources

be reserved on time periods that the administrator opens for

reservation.

The Front-end package in REALabs offers a set of

common functionalities found on ARIA and Player robotic

frameworks. These functionalities are grouped into cate-

gories such as rangefinder sensoring, locomotion, and im-

age acquisition. The REALabs platform offers APIs in the

following programming languages: C++, Java, Java2 ME

(Micro Edition, for cell and smart phones), Python, and

Matlab. In addition, clients in any programming language can

directly generate an HTTP requests to the robots and parse

the returned XML documents. Two key differences between

the APIs provided by the platform and those provided by the

robotic frameworks are in order:

1) The REALabs APIs generate HTTP or HTTPS re-

quests that are not blocked by NAT boxes and firewalls.

2) The return of the operation is always an agnostic XML

document.

The advantage of returning XML documents in HTTP

interactions with mobile robots is important for networked

robotics applications. XML processing is today embedded

into practically all programming languages and environ-

ments, including Web browsers.

V. PLATFORM EVALUATION

This section provides both qualitative and quantitative

evaluations of the REALabs platform.

A. Qualitative Evaluation

The REALabs platform was employed to build a mo-

bile robotics Web-accessible laboratory (WebLab) described

in [9] and in [10]. The WebLab is operated in two do-

mains: the School of Electrical and Computer Engineering

of the University of Campinas (FEEC), and the Information

Technology Center Renato Archer (CTI), both located in

Campinas, Brazil. The two domains are connected by a high

speed network (the KyaTera network) and form a federation

with the objective of sharing part of their mobile robotic

infrastructures.

The WebLab employs one MobileRobots’ Pioneer P3-DX

at each domain. Robots are equipped with laser scanner,

sonars, on-board camera, and gripper. In addition to the

mobile robots, the WebLab operates one Axis 214 PTZ

panoramic camera at each domain for enhancing the inter-

action between the user and the WebLab.

The layout of the WebLab is shown in Fig. 3. Each domain

has a server with the REALabs platform installed. Access

to the resources is performed through the public internet or

through the KyaTera network.

Internet

Private Net Private Net

Student Computer

Servers Servers
Apache & Tomcat Apache & Tomcat

ARIA

HTTP

Microserver

Pioneer P3DX Axis 214PTZ

ARIA

HTTP

Microserver

Pioneer P3DX Axis 214PTZ

FEEC CTI

KyaTera Net

Fig. 3. Layout of the WebLab built above the REALabs platform

The WebLab was employed in an introductory course on

mobile robotics. Students code their experiments employing

the APIs provided by the platform. Panoramic cameras are

accessed directly from the Web browser. Experiments on

kinematics; perception; location and mapping; and planning

and navigation were proposed according to the adopted

textbook [11]. First, the students tune the experiment code

on the simulator, then run the experiment of the real robots.

Reservation time was set to one hour per accessing session.

Fig. 4 shows an environment map built from sonar read-

ings acquired in real-time from the P3-DX mobile robot and

processed on the student’s computer. In terms of qualitative

evaluation the REALabs platform allowed the building of

a secure WebLab simply by grouping resources needed

by the experiments, subscribing the students with proper

credentials, and opening the experiments for reservation at

the appropriate periods of time. Complex issues related to

resource protection, concurrent access, and operation across

domains and firewalls are handled integrally by the platform.

Given the students the choice to develop their mobile robotic

experiments using their favorite programming environment

contributed to the positive evaluation of the platform.

B. Quantitative Evaluation

In order to evaluate the overheads imposed by the REAL-

abs platform we conducted measurements on sensor read-

ings, image gathering, and robot control. The overheads

imposed by the platform can be broken into:

• protocol overheads: caused by HTTP and XML pro-

cessing at the client and server sides;

• network overheads: caused by network latencies and

HTTP proxy operations;

1003

Fig. 4. Experiment on environment mapping

• security overheads: caused by HTTPS data encryp-

tion/decryption between the client application and the

HTTP proxy agent.

C++ code was written for performing three operations:

1) Robot control (Op1): sets an speed of the mobile robot

and returns a very small XML document with the

operation result.

2) Sensor readings (Op2): reads the 16 robot’s sonars and

returns a large XML document with sensor data.

3) Image capturing (Op3): acquires a 320x240 pixels

image from the robot’s on-board camera. OpenCV

was employed for image capturing as ARIA does not

support this operation. The operation returns a binary

JPEG image.

The series of measurements were conducted in the three

scenarios, each one exposing the overheads listed above.

One hundred measurements for each operation were taken

for each scenario. Mean, standard deviation (SD), and a

confidence interval (CI) of 90% were determined. All results

are presented in milliseconds.

1) Centralized Scenario: In this scenario the test code

runs on the robot’s on board processor (Intel Pentium M).

The protocol overhead of the REALabs platform is estimated

in this scenario by comparing its performance with the

centralized version of the ARIA robotic framework. Table I

presents the results. Operations 1 and 2 show that protocol

overheads in the REALabs platform range from 0.2 to 2

milliseconds according to the size of XML data returned.

Operation 3 shows that HTTP processing overheads is neg-

ligible when the HTTP payload is large and needs no XML

parsing (such as binary images).

TABLE I

RESULT FOR THE CENTRALIZED SCENARIO

ARIA/OpenCV REALabs
Op1 Op2 Op3 Op1 Op2 Op3

Mean 0.00087 0.01151 34.58 0.191 1.929 34.41
SD 0.00042 0.00074 12.18 0.042 0.054 10.40
CI 0.00007 0.00012 2.00 0.007 0.009 1.72

2) Distributed Scenario: In this scenario it is possible

to estimate the network overheads by accessing the robot

through the network and HTTP proxy agent. A high speed

network, the KyaTera network, was employed in the tests.

The network overhead of the REALabs platform is estimated

in this scenario by comparing its performance with the

centralized scenario above. Table II presents the results. It

can be noticed that network and proxy overheads is around 5

to 6 milliseconds for REALabs. Image transferring generate

a negligible overhead (the overhead is on image capturing

not on image transmission).

TABLE II

RESULT FOR THE DISTRIBUTED AND SECURE SCENARIOS

Distributed Secure
Op1 Op2 Op3 Op1 Op2 Op3

Mean 4.83 6.23 32.91 35.05 34.76 48.29
SD 1.64 0.44 3.91 4.09 3.37 3.08
CI 0.27 0.07 0.64 0.67 0.56 0.51

3) Secure Scenario: In this scenario it is possible to

estimate the security overheads by accessing the robot via

HTTPS. Table II presents the results. Overheads around

30 milliseconds are imposed by HTTPS. Again, overhead

imposed on image transferring is proportionally lower than

those imposed on XML documents.

4) General Comments: Due to the high overhead it im-

poses, HTTPS must be employed only when security is

a strong requirement. An overhead of 10 milliseconds for

sensing and acting via HTTP is negligible when a human

operator is in the control loop (e.g., in teleoperations).

For control schemes requiring fast responses, this overhead

may cause instabilities and high error rates. A common

approach is to embed certain functions that demand fast

control responses and low processing power (e.g., motion

control and self-protection functions) and distribute those

functions with less stringent time constraints but demanding

high processing power (e.g., tasks based on computational

intelligence techniques).

We compared the overhead obtained in the distributed

scenario with the Microsoft Robotics Studio (MSRS) [12]

performing the same sensor readings operation. We set a

.NET DSS (Descentralized Software Service) service acquir-

ing the sonar readings using the MSRS facilities and an

HTTP GET Service Handling for returning a XML document

with the range data. The server side runs on a Dell 510

notebook with Windows XP. The client program was the

same used in our tests. We obtained an average of 7.33

milliseconds with standard deviation and confidence interval

of 0.73 and 0.14, respectively. The similarity between the

REALabs and MSRS protocol overheads indicates that the

cost of distribution employing open protocols is limited to a

few milliseconds.

VI. RELATED WORKS

The control of remote devices through the internet is not

a new topic. The subject of general purpose, application-

1004

independent Web-based platforms is much more recent.

Microsoft Robotics Studio (MSRS), introduced in 2006, is

a commercial robotic framework that runs above the .NET

platform. MSRS models a mobile robot as a set RESTful

Web services accessed via SOAP or HTTP carrying XML

data. .NET and Windows are always mandatory at the server

side and at the client side too in case of interaction via

SOAP. This is a strong limitation in terms of programming

languages (C♯ is the preferred development language), per-

formance, and ability to run on small embedded processors.

Real-time issues are not addressed by MSRS. A visual pro-

gramming language composed of simple blocks is provided

by MSRS.

REALabs is related with MSRS in terms of adopting

Web protocols and the REST interaction pattern. However,

REALabs imposes no restrictions in terms of programming

languages, supporting platform, and operating system on the

client or server sides. MSRS performs access control to the

resources locally at the host level while REALabs performs

distributed access control at the federation (interdomain)

level.

Another recently published Web-based mobile robotic

platform is Robopedia [13]. This platform also employs

RESTful Web services based on HTTP. Differently of RE-

ALabs, data transferred over HTTP is not formatted in

XML. Another difference is that Robopedia employs a Web

server in between the client application and the mobile robot

while REALabs favors small footprint Web servers inside

the mobile robots. Robopedia provides no access control

mechanisms.

Web-SUN (Small Universal Navigator) [14] is another

recently published Web-based robotic platform for educa-

tional activities. As Robopedia, Web-SUN employs a Web

server for mediating the communication of the client appli-

cation with the mobile robots. Differently from REALabs

that supplies APIs, Web-SUN offer a sophisticated (but

specialized) GUI (Graphics User Interface) for performing

experimentations with the mobile robots.

ROCI (Remote Object Control Interface) [15] is a com-

ponent framework with a Web interface for human-robot

interactions. As REALabs, ROCI favors XML over HTTP

interactions according to the REST interaction pattern. ROCI

supports, via scripting, other data formats such as RSS (Re-

ally Simple Sindication), binary, and text. RSS is a publish-

subscribe protocol for notifying internet users about updated

contents. This protocol can be employed for notifying events

generated by the robot as well, e.g., energy levels and

position updating.

VII. CONCLUSIONS

As mobile robots become part of rich networked en-

vironments, most of the tasks executed on the mobile

robot’s internal processors can be executed on powerful

processors outside the robots. This allows small robots to

perform complex tasks such as image-based navigation,

3D environmental mapping, and cooperative robotics. For

such situations, this paper presented a software platform for

network robotics. The platform employs internet protocols

such as HTTP/HTTPS, XML, SAML, and XML Security.

Such protocols favor the integration of robotic application

and the already existing applications distributed across the

internet and private networks. By offering APIs in differ-

ent programming languages and environments, the platform

allows many existing robotic algorithms to drive different

mobile robots without the need to be adapted to different

robotic frameworks.

The platform was evaluated in a real world applica-

tion, a WebLab accessed by fifteen students during three

months. Tests were conducted in order to assess the platform

overheads. The overheads due to distribution, HTTP/XML

protocols, and security were estimated.

We are extending the REALabs platform in subjects

related to interdomain operations. Models for policy-based

authorization, Service Level Agreements (SLA), and Quality

of Service (QoS) are being evaluated and expected to be

incorporated in the platform soon.

VIII. ACKNOWLEDGMENTS

This research was supported by Fapesp (grant 2006/06005-

0).

REFERENCES

[1] MobileRobots, Inc. ARIA Wiki, http://robots,

mobilerobots.com/wiki/ARIA, March 2010.
[2] Player Project Web Site, http://playerstage.

sourceforge.net/, March 2010.
[3] Orca Web Site, http://orca-robotics.sourceforge.

net/, March 2010.
[4] L. Rchardson and S. Ruby, RESTful Web Services, O’Reilly, 2007.
[5] RTAI (RealTime Application Interface for Linux) Web Site, http:

//www.rtai.org, March 2010.
[6] Internet2 Middleware Initiative, Shibboleth Web Site, http://

shibboleth.internet2.edu/, March 2010.
[7] OpenSSO Web Site, https:/opensso.dev.java.net/, March

2010.
[8] S. Cantor, J. Kemp, R. Philpott and E. Maler, Assertions and Proto-

cols for the OASIS Security Assertion Markup Language (SAML)
V2.0, OASIS Standard, March 2005. Available at http://www.
oasis-open.org.p

[9] E. Cardozo, E. Guimarães, F. Paolieri and V. Pinto, REALabs-BOT:

a WebLab in Mobile Robotics Over High Speed Networks, 1st IFAC
Workshop on Networked Robotics, Golden, USA, October 2009.

[10] D. Moraes, P. Coelho, E. Cardozo, E. Guimarães, T. Johnson, F.
Atizani, A Network Architecture for Large Mobile Robotics Environ-

ments, Second International Conference on Robot Communication and
Coordination (Robocomm), Odense, Denmark, April 2009.

[11] R. Siegwart and I. Nourbakhsh, Introduction to Autonomous Mobile

Robots, The MIT Press, 2004.
[12] J. Jackson, Microsoft Robotics Studio: A Technical Introduction, IEEE

Robotics and Automation Magazine, vol. 14, no. 4, 2007, pp 82-87.
[13] R. Edwards, L. Parker and D. Resseguie, Robopedia: Leveraging Sen-

sorpedia for Web-Enabled Robot Control, 7th Intl. PerCom Workshop

on Managing Ubiquitous Communication and Services, Mannhein,
Germany, April 2009.

[14] S. Sagiroglu and N. Yilmaz, Web-based Mobile Robot Platform for

Real-time Exercices, Expert Systems with Applications, vol. 36, 2009,
pp 3153-3168.

[15] A. Cowley, H. Hsu, C. Taylor, Opening the Dialog: Robotics ad the

Internet, International Conference on Robotics and Automation (ICRA
2006), Orlando, USA, May 2006.

1005

