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Abstract— Software for autonomous robots solving challeng-
ing tasks in research or application is becoming increasingly
complex. System integration has to deal with various different
functional components. To decouple those components from
each other and to enable a modular and reuseable software
architecture a robot middleware is typically used. But this
intermediate layer introduces significant additional overhead
during run-time. In this work a methodology is described to
utilize specific application characteristics to improve commu-
nication efficiency between different robot software modules.
By composing several components in a single thread memory
copying or locking operations can be avoided, when data
is exchanged between those parts. The optimization can be
achieved without compromising the advantages of a commu-
nication layer. Still the modifications are transparent to the
maybe already existing components. Experimental results in
the scenario of autonomous soccer-playing humanoid robots are
presented and exhibit remarkable reduction in communication
overhead. Furthermore this approach can be implemented in
or on-top of other communication layers.

I. INTRODUCTION

In the past software developed for robotic systems was
often tightly coupled with a single hardware and focused
on a single task or scenario. It was mainly build for proof
of concept of developed algorithms or designed hardware.
Therefore a clear separation and reuse of different parts of
the software was not mandatory.

But in the last years robotic applications are targeting a
new domain. As the technology should be used in industrial
applications, the goal is shifting towards developing inte-
grated systems.

There are many ongoing projects in various different areas.
For the DARPA Grand Challenges [1] vehicles are developed
which are capable of autonomously driving in traffic and
performing complex maneuvers. Other projects are the robot
PR2 developed by Willow Garage [2] and the Care-O-
bot developed by Fraunhofer IPA [3]. These mobile robots
should be used in human environment and take over com-
plex manipulation and transportation tasks. The international
research and education initiative RoboCup introduced the
concept of autonomous soccer-playing robots. This scenario
works as an environment for providing standardized bench-
marks for autonomous robots to foster artificial intelligence
and robotics research where a wide range of methodologies
technologies can be examined and integrated. The ultimate
goal of RoboCup is to develop a team of fully autonomous

D. Thomas and O. v. Stryk are with the Simulation, Sys-
tems Optimization and Robotics Group, Computer Science, Tech-
nische Universit”at” Darmstadt, Darmstadt, Germany {dthomas,
stryk}@sim.tu-darmstadt.de

humanoid robots that can win against the human world
champion team in soccer.

All of these scenarios have several aspects in common:
The developed robot software applications integrate several
different domain specific algorithms and functionality and
provide an integrated overall system. The functional compo-
nents vary based on the targeted objectives but cover different
approaches for processing and filtering sensor data, self lo-
calization and mapping and behavior [4] and motion control.
Each scenario has its own focus but since the requirements
are continuously increasing the robot application software
become more and more complex.

The combination of so many different parts in an inte-
grated robot application software is a significant challenge.
The effort of integrating, testing and debugging the overall
system is tremendous. Thus the application design and gen-
eral concepts from software engineering become increasingly
important.

The software to connect those various components is
typically called a robot middleware [5] as it shares similar
functionality as typical middleware by providing methods for
software components to interact with each other by exchange
of data or function calls. On the one hand such a middleware
eases the development of complex robot application software
but on the other hand it is accompanied with an overhead
especially during run-time. Also, a number of different
requirements for robot software must be considered.

A. Communication layer

The middleware works as an intermediate layer - aka com-
munication layer - and provides functionality to efficiently
integrate components into a single application. The usage of
such a layer should lead to a clear separation between the
different parts of an application by explicitly declaring any
interface between each other. An interface description allows
an easier reuse and recombination of separate components
for different tasks or in different scenarios. Sometimes when
the interface definition is modeled in an abstract way it
also supports connecting different components developed
in different program languages. Additionally the explicit
definition of interface among the components ease testing
and debugging since replacing not-to-be tested components
with stub implementations becomes simple.

Before continuing, the terminology of a component should
be specified. A component is a piece of software which
provides a specific functionality to fulfill the application’s
tasks. To foster a later reuse in a different context it should be
as small as possible. Since commonly any algorithm depends
on some input or output each component is coupled with a
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set of incoming or outgoing data. But on the other hand it
should be fully decoupled from any other component.

The usage of a communication layer completely separates
the components from each other. Therefore changes in some
components or executing those on distinct hardware can be
made transparent to others as long as the exchanged data
stays the same.

Some of the most widely used tools are Player [6], Orocos
[7], MSRS [8] and ROS [9]. Another approach named
RoboFrame [10], [11] was developed in the authors’ group.
The majority of communication layers are founded on a
message-based communication concepts [12].

In a message-based communication messages correspond
to what interfaces are in an object-oriented language. There-
fore to decouple components from each other, a set of
messages for exchanging data must be defined. The inter-
action between components is only handled through those
messages and never directly. This way the components are
only coupled with the messages they receive and send, but no
more with other components. This approach allows flexible
recombination of components — of course only when the
message are well designed.

Another task of a middleware beside the communication is
the execution of the functional components. Commonly the
components can be triggered both on incoming messages
and on a timer event. For some solutions this is done by
the components itself. But the decision when to trigger
each component can be different based on the concrete
application it is used in. Therefore the execution order and
interval should not be specified in the component itself, but
be defined in the concrete application consisting of several
components.

B. Overhead due to separation

The abstraction and flexibility provided by a communi-
cation layer comes with an additional expense. There are
two main aspects were a middleware brings overhead along:
copied memory and mutual exclusion.

When messages are exchanged between components the
data must be copied in many cases since each component
may be executed concurrently or may run on a separate
computer. This may involve a plain copy of an object’s
memory or even a serialize/deserialize cycle. E.g. when using
Player or ROS each component is running as a separate
process and therefore any exchanged message must be copied
for every receiver. Neither of the common tools currently
provides a copy-on-write semantic. The overhead for these
memory operations are scaling with the amount of exchanged
data, so large amount of data results in a large overhead due
to the communication layer.

Additionally since the middleware has to deal with mul-
tiple processes and/or threads and synchronize sharing of
global resource it requires mechanisms for mutual exclusion.
The overhead for those locking operations increases with the
frequency of communicated data, so for high repeat rates this
aspect become more severe.

Even when a communication layer tends to keep these
overheads low there, the provided gain of abstraction and
flexibility will inevitably increase the overall resource con-
sumption of the middleware.

C. Requirement for efficiency for mobile robots

When looking to the domain of mobile robots the require-
ments for efficiency are crucial. The lower the payload of a
hardware platform is, the more restricted are the resources.
Many mobile robots have therefore quite limited resources
in terms of CPU power. Such a scenario demands for as few
overhead as possible.

But creating single monolithic applications without clear
separation and interfaces just for the sake of minimal over-
head would not be beneficially either. The benefits of a
communication layer are still meaningful.

A good solution should therefore bring the best of both ap-
proaches together. It should foster the flexibility advantages
of a middleware, but whenever possible minimize additional
overhead. Any possible optimization to improve performance
should be transparent to not undermine the reusability and
decoupling of components.

II. EXAMPLE SCENARIOS

As example scenarios for the later described optimization
two different scenarios from the authors’ group are described.
Both originate from the context of RoboCup. Currently the
authors’ group is participating in two leagues: the humanoid
soccer and the rescue league.

Fig. 1. Darmstadt Dribblers (in the foreground, magenta jerseys) playing
a 3-on-3 soccer game during RoboCup 2009 [13].

The humanoid robot team of the Darmstadt Dribblers [14]
is the RoboCup 2009 and 2010 champion. Dynamic walking,
kicking the ball while maintaining balance, localization and
team coordination are among the basic research issue in
this league. Furthermore visual perception of the ball, other
players, and the field, self-localization and team play are
investigated in the Humanoid League. Since the field of view
is restricted by rule to human-like 180 degrees the modeling
of recently seen objects is an important requirement. The
robots play fully autonomously in three-on-three matches (cf.
Fig. 1).

While at first glance playing soccer may not appear as
a too difficult task as it seems not to be too sophisticated
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for humans, the required skills to act in such a dynamic
environment are fairly complex. For a rough comparison the
required behavior control of the soccer-playing autonomous
humanoid robots requires more than 120 hierarchically orga-
nized state machines (realized in XABSL [4]). By contrast
the behavior of an autonomous car participating in the
DARPA Urban Challenge typically consisted of only a dozen
state-machines. Indeed the involved sensors and algorithms
for sensor processing are not comparable.

The other team Hector was founded in 2009 and is reusing
some of the already developed components while adjoining
several other domain specific components. Since the rescue
team is a joint team of several different groups the aspect
of a clear separation between the different domain specific
algorithms was mandatory.

In both scenarios the mobile robots act fully au-
tonomously. In the soccer league the aspect of playing with
multiple robots per team further increases the complexity of
the robot application software. Both projects are based on
RoboFrame and share a common code base and therefore
many components.

A. Components and execution order
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Fig. 2. Application layout of Humanoid RoboCup team. Rectangles
illustrate the components, ellipses the exchanged messages.

To give a detailed look to the overall application layout
Figure 2 depicts the most important components and there
exchanged messages.

As depicted in the figure the application consists of several
components which all focus on a single functionality. E.g.
one component – the ImageProvider – has the only task
to provide images. Those images could be acquired from
a real camera, provided by a simulator or loaded from a log
file. Afterwards they are processed by the ImageProcessor
component which outputs some messages with information
about the detected objects in the image – called Percepts. To
determine the position of detected objects in robot coordi-
nates the image processor additionally requires the position
and orientation of the camera when the images was taken.
These data – called transformation matrix – is provided from
the TransformationMatrixProvider which itself requires the
current joint values to determine the cameras position and
orientation.

The execution order of the various components is mostly
defined by the incoming data. Some of the components do
process the incoming data when certain criteria match. E.g.
the image processing is only executed for new images but
not for new transformation matrices.

B. Amount of exchanged data
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Fig. 3. Number of published messages (solid) and the size of serialized
data in bytes (shaded) for some components.

While some of the shown messages only contain small
amount of data others are quite large, e.g. the images
from the camera. Notably each single image is about 600
KB and is getting fetched and processed with about 20
Hz (for the described measurements). Copying these large
amount of data inside of the communication layer means
a significant overhead. To identify the messages and their
sizes some statistics have been collected during a ten minute
half time of a soccer test game as seen in Figure 3. This
gives a rough overview how many messages and data are
exchanged in such modular applications. In the measured
scenario about 500 messages were exchanged with a payload
of approximately 14.5 MB per second.

Since each component is running in a separate thread – as
it is done for all of the above mentioned communication
layers – the whole data must be copied (at least once).
The overhead of those memory copy operations is highly
dependent on the hardware platform used. In this example
an AMD Geode processor with 500 MHz is used.
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Fig. 4. Size of serialized data in bytes (shaded) and the elapsed time to
serialize these messages (solid).

The overhead in terms of time spend for serializing these
messages is shown in Figure 4. Neither any locking overhead
nor the deserialization is taken into account. The required
time need not be proportional to the size of the data, since
different kind of data may require different serialization
strategies. E.g. the data of an image can be copied on block
while complex objects have to be serialized member by
member.

For the described scenario the overhead just for serializing
the messages is a significant amount of approximately 15
percent of the overall application run-time.

III. UTILIZE APPLICATION SPECIFIC
CHARACTERISTICS
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(a) Messages getting copied between components
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(b) Messages passed as references inside a single thread

Fig. 5. Message exchange with/without copying memory.

When looking at the execution order of the various com-
ponents as shown in Figure 2 they are not at all arbitrary.
E.g. the ImageProcessor is executed if and only if the Image-
Provider component has been executed before and provided
a new image. The order of execution is application specific,
but defined through the set of component communicating
with each other.

Usually the execution order of the components is resolved
by the middleware during run-time depending on exchanged
messages between the components. But in many cases the
execution order does not change during run-time. This ap-
plication specific characteristics can be utilized to improve
the efficiency of the communication layer.

When the order of execution of components is preassigned
based on the application specific flow of data, then some

components could be executed one after another in a single
thread (cf. Fig. 5 (a) and (b)). As long as the messages are
not requested by any other component outside that thread,
memory copyiny and locking operations are not required at
all. E.g. the ImageProvider passes the image as a references
to the ImageProcessor which can use them without worrying
about the data being modified by another components con-
currently. And due to the reference passing any overhead for
copying the data is circumvented.

The communication layer may use a shared memory to
pass the data from one component to another. But even when
the memory copying is avoided locking mechanisms are
required due to the concurrent execution of each component.
In this case the described approach of executing multiple
components in a single thread makes even the locking
overhead obsolete.

A. Composite pattern

The described optimization equates to the composite pat-
tern [15], which is a partitioning design pattern known in
software engineering. It allows a group of components nested
in a composite to be treated in the same way as a single
instance of a component.

In this context multiple components (called leafs according
to the terminology of the pattern) are composed in a meta-
component (called composite). The composite implements
the same interface as the Leafs and can therefore be treated
homogeneously.
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(a) Components directly interacting with the communcation layer
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(b) Composite composing multiple leafs in a single meta-component

Fig. 6. Interaction of components with the communication layer.

When using a common publish/subscriber messaging
paradigm the composite would ”take over” all publications
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and subscriptions of its leafs (cf. Fig. 6 (a) and (b)). When
message are received from the composite they are stored
in the composite and references are relayed to the corre-
sponding leafs. Since no concurrency can take place inside
a composite and it’s leafs passing references is possible and
no copying or locking is required.

Obviously the API must assure that a subscriber can not
manipulate the received message since it may be used by
multiple leafs. This is achieved by only making constant
references to the messages available for the receiving com-
ponents.

For publications the same relaying is done. The message
can again be passed by reference to other leafs. The data
must only be send to the middleware and therefore serialized
/ copied when other components beyond the composite have
subscribed to the message.

The approach should be transparent to the functional
components so that no modifications have to be done to apply
the described optimization. But to implement this pattern the
used communication layer must be designed to support such
an approach of dependency injection between the middleware
and the components.

E.g. when looking to ROS any node implements the
interaction with the publish/subscriber infrastructure itself.
Therefore a potential composite would not have any chance
to intercept these calls and redirect them through the com-
posite itself. Any kind of dependency injection is therefore
inhibited.

B. Implementation in RoboFrame

In RoboFrame the interface between the communication
layer and the components is therefore especially designed
to allow the usage of composites. Every component consists
of member variables which act as proxies to the real data
which can be used to either send or receive messages. These
proxies are named InBuffer for received and OutBuffer for
sent messages.

During the initialization phase of the application the
published and subscribed messages are queried from the
components using a method defined in the interface for
components. For every component the framework allocates
the memory for the set of messages specified. References
to these data are than handed over to the proxies inside the
components.

With the described interface applying the composite pat-
tern is easy (cf. Fig. 7). A composite component encapsulates
a set of other components in a single thread. When the
framework queries for published and subscribed messages
the composite dispatches this call to all subcomponents and
returns the aggregated set of subscribtions and publishments
to the middleware. This approach is transparent for the
components as well as for the framework. Neither of both
sides is aware that a composite is in between. But effectively
all components inside a composite share the same message
references as illustrated in the last figure.

One very important aspect is, that every received message
can only be read but not modified. Therefore the proxies for
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Fig. 7. The composite pattern applied in RoboFrame. Dotted lines describe
access to messages by reference instead of copying.

received messages provide only constant references to the
data. Furthermore the sender of a message should not keep
a reference to the sent data or rather is not allowed to modify
it after publishing.

Obviously since all components inside a composite are
executed sequentially, locking operations are obsolete. Like-
wise no serialization/deserialization or memory copy is
required since all components share the same referenced
messages using their own proxy member.

IV. RESULTS

Due to the characteristics of the application used in
RoboCup all components are split into only two different
composites. One first encapsulates the components which
read the sensors and control the actuators - this thread
is called Motion. The second composite - which is called
Cognition - encapsulates all other components which perform
image acquisition, transformations matrix calculation, image
processing, self localization, modeling of balls, obstacles and
roles and finally the behavior control. All these components
can be executed sequentially in our scenario because a) the
CPU has only one core and b) it would not make much sense
to run the behavior decision step again if no new image is
available, since this is the only external sensor.

The capability to group components in which each is
executed sequentially is obviously highly dependent on the
application. But even if it is not possible to group as many
components together as in the described scenario it is always
applicable to at least group components for e.g. sensor data
acquisition and processing. Since the raw sensor data often
cover the major amount of exchanged data the advantage is in
particular valid for grouping these components and therefore
applicable to most other scenarios and applications.

Since in the described scenario only few messages are
exchanged between the two composites most of the data
exchange is done using references. The impact on the num-
ber of copied messages and therefore serialized/deserialized
bytes is therefore quite significant (cf. Fig. 8(a)). The amount
of data is reduced by over 97 percent compared to exchange
all data between independent components. As expected the
CPU time required to handle the communication drops
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(a) Most messages are passed internally, only a small fraction is
communicated to external components
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(b) Any time for serialization is omitted for internal messages

Fig. 8. Messages exchanges for the Cognition composite.

approximately about the same ratio (cf. Fig. 8(b)). Only a
fractional amount of time is spend for serialization when
the composites handle most of the exchanged messages by
passing references.

Using the described optimization the communication over-
head in the example scenario was reduced from over 100
ms to only one ms per second. This is achieved withpout
changing the components and therefore without compromis-
ing most of the advantages of the communication layer.

One disadvantage should also be noted: this solution is
obviously not applicable across language boundaries. This
limitation originates directly from the concept of passing
references of objects between components.

V. CONCLUSIONS AND OUTLOOK

In this paper an approach has been described to enhance
the efficiency of the communication layer used in complex
application of autonomous robot software. Therefore the ap-
plication specific characteristics have been utilized to reduce
the communication overhead. The composite pattern is ap-
plied to nest components in a single-threaded composite and
thus eliminating any need to serialize, deserialize, copy data
or use locking operations as required by other approaches.
It has been demonstrated that in the described scenarios

the gained improvements in communication efficiency are
significant. Additionally the basic principles for an API
have been described, which supports the usage of composite
components without altering existing components.

Depending on the specific scenario the concept of com-
position may be useful for other applications as well. The
described optimization should be considered for future (re-)
design of communication layer APIs. Other existing robot
middleware can examine how to integrate the concept of
composition into their software and estimate the efficiency
improvements coming along.

In the future, it would be fruitful to adopt the concept
of modified interfaces for other common robot middleware.
The possibility of using composite components is only one
kind of dependency injection between the middleware and
the components.

ROS [9] is most likely the best candidate for such an
adoption, since its publish-subscriber concept is quite similar
to RoboFrame. Additionally its growth and adoption by
several groups in the last years makes it a sustainable
platform for the future.

In an ongoing work other patterns besides the composite
are applied to inject different kind of functionality between
those two layers. Some of the applied patterns are filter, gate-
way and strategy. Each of those can provide a specific kind
of functionality which is either more efficient if provided
by the middleware or even not achievable without such a
dependency injection mechanism.
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[4] M. Lötzsch, M. Risler, M. Jüngel, XABSL – A Pragmatic Approach

to Behavior Engineering, Proc. of IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), 2006, Beijing, China, pp. 5124-5129,

[5] Definition of middleware, http://en.wikipedia.org/wiki/Middleware
[6] B. P. Gerkey and R. T. Vaughan and A. Howard, The Player/Stage

Project: Tools for Multi-Robot and Distributed Sensor Systems, Intl.
Conf. on Advanced Robotics (ICAR), Portugal, 2003.

[7] H. Bruyninckx, Open robot control software: the Orocos project, In:
IEEE International Conference on Robotics and Automation (ICRA),
pages 2523-2528. IEEE Press, 2001.

[8] Microsoft, Microsoft robotics studio, http://msdn2.microsoft.com/en-
us/robotics/default.aspx

[9] ROS, open-source meta-operating system for robots,
http://www.ros.org/

[10] S. Petters, D. Thomas, O. von Stryk, RoboFrame - A Modular Software
Framework for Lightweight Autonomous Robots, Proc. Workshop on
Measures and Procedures for the Evaluation of Robot Architectures
and Middleware of the 2007 IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, 2007.

[11] S. Petters, D. Thomas, M. Friedmann, O. von Stryk, Multilevel Testing
of Control Software for Teams of Autonomous Mobile Robots, Simula-
tion, Modeling and Programming for Autonomous Robots (SIMPAR
2008) 2008, pp 183-194.

[12] Message-oriented middleware, http://en.wikipedia.org/wiki/Message-
Oriented-Middleware

[13] Photography by David Kriesel, http://www.dkriesel.com.
[14] Darmstadt Dribblers, Humanoid Kid-size league, RoboCup,

http://www.dribblers.de
[15] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design patterns:

abstraction and reuse of object-oriented design, 2002, pp 701-717.

1011




