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Abstract— Real-time implementation of an assistive human-
machine interface system based around tongue-movement ear
pressure (TMEP) signals is presented, alongside results from
a series of simulated control tasks. The implementation of
this system into an online setting involves short-term energy
calculation, detection, segmentation and subsequent signal
classification, all of which had to be reformulated based on
previous off-line testing. This has included the formulation
of a new classification and feature extraction method. This
scheme utilises the discrete cosine transform to extract the fre-
quency features from the time domain information, a univariate
Gaussian maximum likelihood classifier and a two phase cross-
validation procedure for feature selection and extraction. The
performance of this classifier is presented alongside a real-time
implementation of the decision fusion classification algorithm,
with each achieving 96.28% and 93.12% respectively. The
system testing takes into consideration potential segmentation
of false positive signals. A simulation mapping commands to a
planar wheelchair demonstrates the capacity of the system for
assistive robotic control. These are the first real-time results
published for a tongue-based human-machine interface that
does not require a transducer to be placed within the vicinity
of the oral cavity.

Index Terms— Tongue-movement ear pressure signals, real-time
classification, assistive HMI.

I. INTRODUCTION

This paper builds on previous work by introducing initial
real-time results for a tongue-movement based communica-
tion concept to generate, detect and classify signals online
[1], [2]. The output of this classification process can then
be used for control of peripheral assistive devices, aiding in
the independence of the user. Hands-free communication and
control of assistive devices is essential if an individual who
has limited upper body mobility is to be more autonomous
and therefore less reliant on carer’s, family and society.
Beneficiaries of said devices include but are not limited
to, individuals suffering from spinal cord injury, amputa-
tion/disarticulation, stroke, congenital limb deformities and
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arthritis. The prevalence of these afflictions has been well
documented in previous papers [1], [2], as well as across the
assistive technology literature.

The user expresses their intention by impulsive actions of
the tongue, creating acoustic signals within the ear canal.
These signals have been coined as tongue-movement ear
pressure (TMEP) signals, due to the nature of their genera-
tion and evolution within the oral and auditory regions. The
tongue has been chosen to express the user’s intention due
to it rarely being affected by said afflictions, with it also
allowing for a multitude of distinct actions to be chosen
when devising the task specific instruction set. It is also
known that the tongue has rich sensory and motor cortex
representation that rivals that of fine finger control [3]. The
actions themselves involve placement of the tip of the tongue
at the base of the central incisor, left or right first molar and
flicking the tongue up (up/backward, left or right action)
and placing the tip of the tongue against the palate and
flicking down (down/forward action). The right action is
shown pictorial in Fig. 1b and the associated waveform
consisting of one second of data sampled at 8 kHz is shown
in Fig. 1a.
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Fig. 1. (a) Waveform corresponding to right action (1 sec of data sampled
at 8 kHz). (b) Pictorial representation of the right action during execution
(arrow shows trajectory of tongue tip).

Using the tongue as command input is not a new concept,
with the large number of tongue-based assistive HMI’s
testament to its functionality. An overview of the existing
assistive HMI technologies which use both the tongue and
alternative input methods are presented in [2]. The fun-
damental difference of this unique system to others being
the manner in which these tongue actions are executed and
monitored. Although the execution of these tongue actions
feel natural they are not normal movements, allowing them
to be differentiated from potentially interfering signals that
occur in everyday life. These interfering signals can be
categorized into internal artifacts such as speech, swallowing
and coughing and also external noise such as conversation
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and road noise. Initial off-line results which consider these
options are presented in [4], [5]. The benefits of this system
include the lack of intrusion whilst donning the earpiece,
simplicity in terms of execution of the natural instruction
set, cost, portability, hygienic to use and unobtrusive to don.

An overview of the real-time system is presented in
terms of its instrumentation and acquisition, preprocessing
(filtering, detection and segmentation) required and feature
extraction and classification methods. Two classification
strategies are outlined and empirical results are presented
and compared for both. The system is then shown applied
in simulation to real-time control of a wheelchair moving
through a constrained 2D environment with conclusions
drawn in Section V.

II. SYSTEM OVERVIEW

A. Instrumentation and acquisition

The hardware is centered around a small microphone
positioned comfortably within the outer ear canal (external
acoustic meatus) by an associated earpiece housing. This
housing can either be of generic stock utilising a replaceable
foam tip as seen in Fig. 2 or custom moulded from a silicon
impression of the user’s ear canal, with the moulded hollow
acrylic housing commissioned from a hearing aid manufac-
turer [6]. This work focuses on the generic earpiece which
is advantageous in terms of cost and time of manufacture
with the trade-off being decreased passive noise rejection
and microphone localization which is important due to the
sensitive nature of the signals. Fig. 2 shows the generic
earpiece both out of the ear and inserted into the ear of an
individual.

Fig. 2. Generic earpiece - showing it both out of the ear (left) and inserted
into the ear canal (right)

The hardware as a whole consists of the microphone
transducer converting TMEP signal to electrical signal, an
analogue-to-digital (AD) card converting this electrical sig-
nal to a digital signal and the processor which turns this
discretized signal into a digital output (due to the signal
processing and classification stages). This hardware can be
represented as an open loop block diagram shown in Fig. 3.

TMEP
Signal

Sensor
(Microphone)

Interface
(AD Card)

Processor
(CPU) Classification

Fig. 3. Block diagram showing the system’s required hardware.

TABLE I
CONDITIONS FOR DETECTING A TMEP SIGNAL

Condition Reason
Ep,q > TL The energy must exceed and recede a lower threshold

to inhibit segmentation of lower energy signals
Ep,q < TU The energy can’t exceed an upper threshold to inhibit

high energy signals such as coughing
q− p > DL The time to exceed and recede this lower threshold

must be greater then a lower detection duration
window to inhibit impulsive signals

q− p < DU The time to exceed and recede this lower threshold
must be less then an upper detection duration win-
dow to inhibit longer signals such as swallowing

B. Preprocessing: filtering, detection and segmentation

The main stages for processing and classifying the in-
coming digital TMEP signal and outputting a classification
class are shown in Fig. 4. This representation not only
applies to this specific system but is a generalisation to any
communication/classification system which takes an arbitrary
analogue signal as input and requires classification to 1 of
‘C’ classes. The filtering block is optional and can simply
be an anti-alias analogue filter realised in the hardware.

Before classification can proceed the continuous stream
of digital data has to be monitored so that when a TMEP
action occurs it can be detected and the signal segmented
appropriately. The segmentation process involves creating a
data segment of finite dimension that can then be processed.
The detection phase is based on similar methods used in
automatic speech recognition (ASR) systems and uses the
short-term energy (STE) of the incoming signal [7]. The STE
can be calculated causally from:

En =
n

∑
k=n−WE+1

(x[k])2

where x[k] is the incoming digital stream, En is the STE at
time index n and WE is the finite window length that the STE
is calculated in.

Due to this causality in the calculation, it is required that a
circular buffer is implemented so that historical time domain
data can be saved for the required computation, analysis and
visualisation. The STE is continually monitored and when
certain criteria outlined in Table. I are fulfilled, a TMEP
signal is detected.

The segmentation process also requires the use of the
STE, allowing very fast computation during the detection
and segmentation phases (as the STE only requires 2WE −1
operations). This is especially beneficial as the STE cal-
culation and detection checking is occurring continually
and thus faster computation will avoid any latency issues.
To segment a signal, historical STE data is required and
therefore not only is a circular buffer required for the time
domain information but also for the STE data. This second
buffer reduces computation further as a new STE value can
be updated using:

En+1 = En + x[n+1]2− x[n−WE ]2
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Fig. 4. Block diagram representing the various processing stages required, taking the digitized TMEP signal as input and outputting a classification class.

thus reducing the computation to only 6 operations. As the
STE is also essentially a moving average filter (with WE
taps), it can be calculated at a much lower frequency then
the actual sampling rate, further reducing the load on the
processor.

The signal is initially segmented using the position, t,
of maximum STE, Et , located in the range [p,q] where En
exceeds and then recedes the lower threshold TL while still
fulfilling the remaining detection conditions. Thus the initial
endpoint is given by

t = argmax
n
{Ep,Ep+1, . . . ,Eq}

The initial start point is then given by r = t −N, where
N = 0.2 f s i.e. the time a TMEP signal typically takes to
execute and it’s associated waveform to completely decay.
The signal is then shifted so that the midpoint of the 1D
distribution x[k]2/∑

t
j=r x[ j]2 is located at the centre of the

segment window. The signal is finally normalised by x̂[k] =
(x[k]− x̄[k])/σx[n] to ensure that no class dominates the
classification process.

C. Feature extraction and classification

For the initial real-time testing, two different classification
algorithms have been implemented, namely the decision
fusion classifier (DFC) and a univariate Gaussian classifier
utilising discrete cosine transform (DCT) coefficients as
input. Before classification can begin training vectors need
to be collected so that:
• A template for each action class can be created. This is

non-specific to the classification strategy.
• Any classifier or feature extraction parameters can be

estimated from the training set. This is specific to the
classification strategy.

The steps associated with the training stage are highlighted
in Fig. 4.

1) Decision fusion classification: The DFC algorithm
is based around a re-ranking of the time domain samples
in order of classification probability on the training set.
The classification metric used is a Euclidean norm nearest
mean discriminant function which takes a segmented and
aligned TMEP vector as input x[k], and outputs a scalar value
associated with each sample point for each template x̄c[k], i.e.

fc{x[k]}= x[k]x̄c[k]− (1/2)x̄c[k]2

Initial classification is then achieved by finding the argument
of the maximum of these ‘C’ scalar values across the action
set:

m∗k = argmax
c

{
fc{x[k]}

}
Initially this discriminant methodology is applied across the
entire training set and for each sample the probability of
correct and misclassification to each of the remaining classes
is aggregated over the number of training vectors in each
class. Thus a log-likelihood matrix, LN×c×c can be built
using the probability of sample k, from an action c, being
classified as class m∗k , with each element calculated using

Lk(c/m∗k) = log
(∑

Ntr
i=1 δ i

k
Ntr

)

where δ i
k is a kronecker delta function of the form:

δ
i
k =

{
1 if m∗k = c
0 if m∗k 6= c

The sample space is then ranked based on these probabilities,
with the indices which give the highest correct classification
averaged across the C-actions, given the highest ranking.

For classification of an incoming test vector, it is initially
aligned to each template and then reordered according to the
ranking stipulated within the training phase. This allows for
a number of the end ranks to be removed (post-reordering) as
these do not actually aide in the classification, with the length
D, of the remaining feature vector determined empirically
and dependant on required computational efficiencies. For
this paper, as computational speed was not being considered
and due to the fact that the probabilities inherently weight
the effect that each sample has on the classification i.e. no
over-fitting occurs, the entire re-ranked vector was used as
input into the classifier (i.e. D = N). This reordered (and
reduced) vector is then input into the Euclidean norm nearest
mean discriminant function with each template after the
associated cross-correlation alignment. The corresponding
likelihood probabilities of each of the scalar outputs for
correct classification and the misclassification to one of the
‘C−1’ remaining actions, as found in the training phase, are
concatenated at each sample to form ‘C’ probability vectors.
This allows a marginal likelihood probability to be found for
each action set, by summing down the probability vectors as
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given by

Pc{x[k]}=
D

∑
k=1

Lk(m∗k/c)

with the test vector ultimately classified to the class which
maximises this marginal likelihood value, given by

m∗D = argmax
c

{
Pc{x[k]}

}
The DFC algorithm is explained with more rigor and in finer
mathematical detail in [1].

2) Univariate Gaussian classifier with DCT features:
The second classification scheme implemented is based
around a maximum likelihood classifier assuming that each
feature is normally distributed and statistically independent.
DCT features are used as input into the classifier. This
assumption of statistical independence implies that each fea-
ture within the input vector is uncorrelated and equivalently
that the covariance matrix associated with the multivariate
case is diagonal i.e the multivariate distribution simplifies
to a univariate Gaussian. A univariate Gaussian maximum
likelihood classifier is of the form:

gc{s[k]}=−
D

∑
k=1

{ (s[k]− s̄c[k])2

2σc[k]2
+

1
2

logσc[k]2
}

where s[k] is the discrete input feature vector at sample
k, s̄c[k] is the mean of the feature vector and σc[k] is the
standard deviation of the feature vector, both estimated from
the training set for each class. Classification of an incoming
test vector is then achieved by assigning to the class which
gives the highest probability:

m∗D = argmax
c

{
gc{s[k]}

}
The input feature vector to the univariate Gaussian classi-

fier uses a DCT to transform the time domain information of
a segmented and aligned TMEP signal to a frequency domain
representation. The DCT is of the form:

s[k] =

√
2
N

C(k)
N−1

∑
n=0

x[n]cos
(

π(2n+1)k
2N

)
where x[n] is the discrete time domain signal, s[k] is a
vector containing the DCT coefficients, C(k) is a constant
dependent on whether k is at the boundary and N is the
length of the TMEP segment. The DCT was selected due to
its ability to compact more of the signal energy onto fewer
coefficients and is widely used in lossy data compression
applications due to this superior compaction capacity [8].
In this regard, it has comparable performance to principle
components analysis which is considered optimal in the least
mean error sense, with the additional benefit that its basis
matrix is independent of its training set and therefore it is
not susceptible to associated estimation, generalisation and
dimensionality issues.

The DCT can be represented as a matrix operation, S = ΦX
where S and X are column vectors and Φ is the DCT basis
matrix. This allows for rows of Φ to be discarded and thus
certain selected DCT features to be removed using a 2-phase

feature extraction procedure. This procedure incorporates
a feature ranking phase followed by a feature selection
phase, both utilising a K-fold cross-validation subroutine.
Cross-validation has been widely used in model parameter
estimation and is known to reduce over-fitting to the training
set [9]. Prior to the cross-validation procedure the training
set is split into K-disjoint subsets (folds). To distribute the
signals evenly among the folds the following equation is
used:

FK [i] =

{
bNtr

K c+1 if i≤ rem

bNtr
K c if i > rem

where
rem = Ntr−b

Ntr

K
cK

and bc represents the floor function and FK is a vector
containing the number of signals in each fold. Each fold
can then be iteratively used as separate validation sets, while
the rest are used to train the classifier. The goodness-of-
fit of the current model configuration is then the averaged
classification accuracy across the validation sets. The first
phase involves ranking the features independently based on
their individual averaged classification accuracies across the
folds. This can be calculated from

α[k] =
1

KC

C

∑
c=1

K

∑
i=1

1
FK [i]

FK [i]

∑
j=1

δ
c
i j[k]

where δ c
i j[k] is a kronecker delta function:

δ
c
i j[k] =

{
1 if m∗D = c
0 if m∗D 6= c

and is applied to the (univariate gaussian) classification of
each DCT coefficient sc

i j[k] (post cross-correlation alignment
to each template c), of each validation signal j, in each
fold i. With m∗D indicating classification of a scalar input,
as a single feature is being input into the classifier. The
N features are then ranked in order of largest α[k]. The
statistical independence assumption negates the need for a
search algorithm as the combination of features is irrelevant.

The second phase is to cross-validate the number of
features, D, that is to be input into the classifier using this
previously found feature ranking. This allows the optimal
number of features to also be selected based on the same
cross validation criterion. This is done in a similar manner
as the first phase except the input to the classifier is no
longer an individual feature but a vector containing the best
k features. The number of features D is then selected based
on the value which gives the highest α . The corresponding D
rows can be pulled from the DCT basis matrix creating a new
transformation matrix Φ∗D×N . For fast calibration, a training
set of Ntr = 30 was used. [9] provides further details as to
the impact of varying the number of folds and its impact on
training.

III. REAL-TIME RESULTS

Preliminary real-time results are presented from one indi-
vidual for three tongue actions, namely a left, right and up
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movement. These three actions have been chosen as these
readily map to the wheelchair control scheme outlined in the
adjoining section, with the individual familiar with making
the actions prior to testing. The empirical procedure has been
rigorously designed to allow not just for the segmentation
and classification of TMEP signals but also equal opportunity
of interfering non-TMEP signals to be classified. A sampling
rate of 8 kHz was chosen due to interfering signals such
as speech and coughing being in the frequency range of 0-
4 kHz, with future interference rejection schemes requiring
this higher frequency content to differentiate it from the
controlled TMEP actions. Initially a short calibration period
was necessary so that the various segmentation thresholds
which are unique to the individual could be selected.

A. Testing procedure

A training ensemble is necessary from the individual
which involved the collection and storage of 30 of each
action for later processing. The testing was carried out in
a normal office environment with no restriction on the user
to swallowing or coughing. Also gentle head movement was
permitted but sudden motions could be detected as false
positives due to vibrations along the connecting cable and
were kept to a minimum. These issues are to be addressed
fully in the future with the introduction of interference
rejection and a wireless earpiece.

B. Potential outcomes

There are a variety of potential outcomes (PO) which can
occur when a TMEP action is intended or not intended. These
are highlighted in Fig. 5 as a confusion matrix alongside
corresponding explanations.

TP
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FN+ FP

TP

TP FP

FP

FN-FN-FN-

FN+

FN+

FN+

FN+

FN+

INCOMING

O
U
TP

U
T

1

2

3

2 0

0

1
3

PO Explanation
TP Controlled TMEP signal cor-

rectly classified
TN Un-intended TMEP signal

classified as interference
FN- User intention but no classifi-

cation
FN+ Controlled TMEP signal incor-

rectly classified
FP Interfering signal classified as

controlled action

Fig. 5. Confusion matrix highlighting potential outcomes (PO) alongside
associated explanations

The columns represent the intention (incoming/input) and
the rows represent the classifier output. The input zero
column represents the total number of interfering signals that
were segmented and classified as action 1, 2 or 3, while the
output zero row represents the total number of missed vectors
which should have been classified as 1, 2 or 3

C. Empirical data

Results for one subject using a generic earpiece are
presented in Tables II and III. Included are results of 4 test
runs for the two classification schemes outlined earlier. Each
run associated with a classifier uses the same training set
as the corresponding run of the other classification scheme,

TABLE II
CONFUSION MATRIX FOR THE DECISION FUSION CLASSIFIER FOR ONE

SUBJECT SUMMATED OVER 4 RUNS

m∗D/c 1 2 3 0
1 88.43 0.93 1.67 4
2 1.37 93.02 0.42 6
3 9.72 4.65 97.91 4
0 0.46 1.40 0 0

total 216 215 240 14
Classifier Acc. = 93.12%

TABLE III
CONFUSION MATRIX FOR THE DCT UNIVARIATE GAUSSIAN

CLASSIFIER FOR ONE SUBJECT SUMMATED OVER 4 RUNS

m∗D/c 1 2 3 0
1 95.87 1.84 2.14 3
2 1.65 97.24 0.85 2
3 0.46 0.92 95.72 1
0 2.07 0 1.28 0

total 242 217 234 6
Classifier Acc. = 96.28%

implying that only 4 training sets were required for the 8
test sets. This allows for a more direct comparison to be
made between the two classification schemes. The results are
presented in confusion matrices (based on Fig. 5), showing
the average accuracy of class c classified as class m across the
4 runs. Also included is the total number of signals classified
and the average classification accuracy for the three actions.

The initial results show that the TMEP signals can be
classified online accurately with an average classification
accuracy of 96.28% for the DCT univariate gaussian clas-
sification and 93.12% for the DFC classification. For a
more direct comparison between the classifiers, the FP and
FN- values can be ignored, increasing the classification
accuracies to 97.37% and 93.70%. Even though the DFC
has a higher number of FP’s and FN-’s, its classification
accuracy increases by a smaller amount when these effects
are ignored. The total number of FP’s across the eight trials
was 20 and the total number of FN-’s was only 12. The total
time for all eight trials was 5893.28 seconds (≈100 minutes),
implying the false positive rate was approximately one every
5 mins and a missed action approximately every 8 minutes.

IV. CASE STUDY: REAL-TIME SIMULATION AND
CONTROL OF A WHEELCHAIR MOVING THROUGH A

CONSTRAINED 2D ENVIRONMENT

To highlight the feasibility of this HMI integrated within
an assistive system in real-time, a simulation has been de-
signed and tested which allows for initial quantitative results
in terms of misclassification of TMEP signals, false positives
and missed tongue signals and how these relate to actual
control of an assistive device. The scenario devised involves
the control of a wheelchair moving through a constrained 2D
environment, with the user having to navigate through a set
of obstacles between a start and endpoint. The layout of the
environment, shown in Fig. 6 is meant to mimic an average
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Fig. 6. Plan view of the constrained wheelchair simulation environment

TABLE IV
WHEELCHAIR SIMULATION RESULTS

Run Classifier Classification Accuracy # Total Total
1 2 3 Avg Cols # Moves Time (s)

1 DFC 80 100 98.15 95.83 0 71 212.84
DCT 100 100 100 100 0 67 199.76

2 DFC 100 72.73 92.98 91.14 2 79 226.51
DCT 100 93.75 84.13 86.36 0 87 246.85

3 DFC 78.57 57.14 98.18 88.46 0 77 228.86
DCT 90 100 100 98.53 0 67 202.75

4 DFC 100 100 88.33 91.34 0 77 219.02
DCT 76.92 100 98.15 94.56 0 73 216.53

room topology, as seen from above. The optimal path of the
wheelchair is shown with the red dotted line and involves the
wheelchair moving to a way-point represented by the square
in the top left of the figure. This can be considered as the
user collecting an item e.g. a book, before leaving the room.

The chosen control scheme involves a top or down tongue
motion (preference given to the user) to move the wheelchair
forward one grid space and a left or right action to rotate the
wheelchair by 90 in that direction. Thus the control scheme
co-ordinate system is local to the wheelchair rather than
global to the environment and means that only 3 actions need
to be defined for this particular task. If a collision occurs it is
recorded and the wheelchair is located back at the previous
node. Table. IV presents results in terms of accuracy, number
of collisions, total number of actions required and total time
to complete the simulation run.

As can be seen from the table only two collisions oc-
curred in total and was probably due to the topology of
the environment, i.e. at specific locations a single mis-
classification would cause a collision. The DCT univariate
Gaussian classifier had one perfect run and another near
perfect run reinforcing it’s previous results. Overall the DCT
univariate Gaussian classifier outperformed the DFC in terms
of classification accuracy, number of collisions, total number
of moves and time to finish the course.

V. CONCLUSION

This paper has presented online implementation of a
tongue based communication system, for use within an
assistive technology setting. The detection, segmentation and
classification processes have been outlined for realisation
within an real-time human-machine interface. This includes
the presentation of efficient algorithms for computation of

the short-term energy of the signal and implementation of
additional detection parameters for increased artifact rejec-
tion. A new algorithm is presented which combines the DCT
for feature extraction as input into a univariate Gaussian
maximum likelihood classifier alongside a 2-phase cross-
validation procedure for feature selection and dimensionality
reduction. This work will act as a platform for future study’s
that will be carried out in this area, allowing for a wider
subject base to be gathered and tested.

Future work aims to unite this research with other work
being carried out in the area of interference rejection.
Current work on interference rejection utilises a wavelet
packet transform to separate rhythmic bursting activity from
sustained tonic activity (babble) and has helped to increase
the classification rate when experiencing a decrease in signal-
to-noise ratio due to external interferences [4], [5]. Also work
is being carried out on internal artifact rejection (e.g. speech,
coughing and other physiological signals), these signals can
potentially pass through the initial detection block and would
therefore otherwise be classified as a FP. Once the systems
have been combined, it will allow for a rigorous test program
to be devised to test for classification and misclassification
rates, false positive and true negative rates, computational
speed and robustness.
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