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Abstract— This paper presents our work towards a decen-
tralized reconfiguration strategy for self-reconfiguring modular
robots, assembling furniture-like structures from Roombots
(RB) metamodules. We explore how reconfiguration by loco-
motion from a configuration A to a configuration B can be
controlled in a distributed fashion. This is done using Roombots
metamodules—two Roombots modules connected serially—that
use broadcast signals, lookup tables of their movement space,
assumptions about their neighborhood, and connections to
a structured surface to collectively build desired structures
without the need of a centralized planner.

I. INTRODUCTION

Self-reconfiguring modular robots (SRMR) are modular

robots (MR) extended by an active connection mechanism

(ACM). The ability to autonomously attach modular robot

units with each other enables the creation of almost arbitrary

robot structures. Single modular robotic units are designed

with a low degree of freedom, usually between one and

three. This restricts a single modular robot in its locomotion

and reconfiguration abilities. To overcome an obstacle or

to manipulate an object the modular robot collective is

needed. It is the idea of SRMR systems that units can

attach with each other task-dependently, i.e. a goal structure

is chosen and executed that is most suitable for a given

situation. This criteria might for example be the resulting

robot shape, type and number of degrees of freedom, joint

torque limit, or the overall number of modules. We are

developing a homogeneous, self-reconfiguring modular robot

system named Roombots (RB). Roombots are designed as

building blocks for furniture that moves, self-assembles, self-

reconfigures, and self-repairs. Reconfiguring RB modules

into furniture-like structures can be described as a sub-

problem of general modular robot reconfiguration. Several

approaches for centralized or distributed reconfiguration have

been proposed so far. Depending on the level of abstraction

and the assumptions made, those methods partially or even

completely solve modular robot reconfiguration. It is useful

to design a general reconfiguration strategy such that it can

be applied to a number of modular robot systems with

different characteristics. Usually a layer of abstraction is

needed. One very intuitive example is the “sliding cube”

model, which uses simple translational motions of individual
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Fig. 1: Rendered vision of the Roombots project: a Roombots metamodule
(left, two Roombots module connected serially) is attached at its foot
hemisphere (black segment, very left) to the ground, and is in the process
of coupling to a single Roombots module (back). The ground is “struc-
tured”, i.e. passive connectors with the same patterns as Roombots’ active
connectors are embedded in the environment.

modules and is the basis for a number reconfiguration

strategies (discussed in more detail in Section II). If the

derived strategy using the above simplified representation

can be implemented on a hardware modular robot system,

the task of reconfiguration is actually solved. However often

assumptions concerning collision between modules, asyn-

chronous movement, communication, sensor range and type,

or consensus based decision making are violated with the

transfer to the real robot system. In this work we design a

largely decentralized reconfiguration strategy which guides

RB metamodules during a reconfiguration sequence into an

adaptive structure, e.g. a stool or a chair or RB modules.

RB metamodules use an inch-worm type of locomotion in a

structured environment (i.e. the floor has passive connectors

embedded) for reconfiguration. This work does not invent a

new strategy but rather uses a number of existing strategies

not only from the modular robot community. We are aiming

at a largely distributed method (for scalability reasons) which

takes into account the kinematic constraints of the Roombots

modules, as well as restricted sensing, communication and

computational aspects. We are addressing the three following

questions: (i) Four possible metamodule configurations exist

(Fig. 3). We are interested whether one of them shows

better reconfiguration performance. (ii) We are applying three

different strategies to force-field guide the reconfiguration of

RB metamodules. In other words we want to know how much

repelling force between metamodules is needed/optimal to

avoid collision while moving towards a goal position. (iii)
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In our current framework a human operator (ideally a lay

user) is providing the blueprint for the structure to be built

(e.g. a chair). We would like to see the influence of the

building order, that is which positions of a given structure

should be filled first by metamodules to avoid dead-locks

and collisions.

The paper is structured as follows. In Section II we

describe shortly the concept of modular robots, and the

most common reconfiguration strategies applied to modular

robots. We present the Roombots hardware in Section III. We

explain our reconfiguration strategy in detail (Section IV),

results are discussed in Section V. A conclusion sums up

the work (Section VII).

II. RELATED WORK

With the Roombots project we wish to extend but also test

a future scenario, where technology is being merged into ev-

ery day environment, ranging from tables to walls, from fur-

niture like shelves to tangible or interactive “roomware” [1].

Ultimately adaptive Roombots furniture will be able to

transform and merge from one shape, e.g. two chairs into

another, e.g. a table. We use the concept and the ideas of self-
configuration modular robots (SRMR) or Dynamically Re-
configurable Robotic Systems [2] as physical building blocks

for our adaptive furniture. The field of self-reconfiguring

modular robots, which are modular robot units that can

actively attach and detach themselves with each other and

the environment, is a more recent robotic concept which was

firstly implemented with CEBOT (“cell structured robot”) [2]

in the late 90’s. Depending on the capabilities of a single

modular unit, almost arbitrary shapes can be created by

remote control [3]. This is especially helpful if the task

is initially unknown. If a quadruped-shaped modular robot

locates a hole in the wall it can change shape into a

caterpillar-like structure, and go through. As many different

robotic shapes can be created with the same set of units,

transport is easy and less costly, e.g. to remote locations.

Units are interchangeable such that modular robotic cells

can be replaced in case of failure, what potentially makes

these systems robust. However these advantages come with a

price. Implementing autonomy in modular robots, equipping

each of the units with a connection mechanisms, actuators,

and electronics makes them heavy, expensive, and hard to

design. A robotic configuration built from modular robots

will normally perform less well compared to a monolithic

robot as the abilities and dynamics of a monolithic robot

can be optimized—it serves a smaller number of dedicated,

pre-known tasks.

The usefulness of a modular or monolithic approach

therefore depends on the application. Research in modular

robots aims towards applications at disaster sites, remote or

hazardous environments, where their shape changing char-

acteristics and robustness are crucial. A number of modular

robot projects are working at micro-scale modular robots,

i.e. they aim for rapid prototyping-like technologies [4]. For

the Roombots project we chose self-reconfiguring modular

robots for their abilities in building arbitrary, adaptive furni-

ture.

Finding and applying an automated controller to change

shape is one of the main topics in reconfigurable robotics,

where decentralized strategies outweigh centralized strate-

gies. The latter often use a graph-based approach, describing

the combined modular robot structure using graph theory,

where actions are represented by insertion and deletion of

edges and vertices [5]. Connector actions and joint rotations

are the result of an optimization process attempting to morph

the graph representing the initial structure, into the goal

configuration. This allows for a very precise reconfigura-

tion process, however graph methods do not scale well

with increasing numbers of joints, connectors and modules.

Common approaches for decentralized reconfiguration are

“cluster flow” [6] locomotion or “water flow-like loco-

motion algorithms” [7] and describe locomotion by self-

reconfiguration (or vice versa). They facilitate large numbers

of, usually abstracted modular units moving or changing

shape through the environment, where units are simulated

as a cubes or spheres which slide along planes and around

edges, or rotate around edges [8]. Movements of single

units can be guided by a global gradient [9] or triggered by

hormone-like messages [10]. Cellular automata [11] oriented

methods use distributed, reinforcement learning algorithms

to optimize the behaviour of single units task dependent,

and with only partial world-knowledge [12]. Such strategies

enable enormously scalable systems [13]. Using a simplified

modular robot unit presentation, like the above “sliding cube”

model is helpful to derive a reconfiguration strategy on an

abstracted level. To implement the strategy on a low-level,

i.e. on an actual modular robotic systems, the notion of

metamodules is formulated. Metamodules are local, clustered

assemblies of modular robot units which are combined for

the purpose of moving just as their sliding-model counterpart

cubes, however by using the actual degrees of freedom

available from the hardware units. Butler and colleagues [7,

cf. page 7] mention the usefulness of such metamodules

(Molecule’s tile [14] and Atom’s grain [15]). Dewey and

colleagues [16] cluster the entire modular robot assembly

in equal, non-dense generalized metamodules, which enables

them to apply a very simple planner for module movement

through the structure.

Roombots are similar in their degrees of freedom (DOFs)

to the 3D Molecubes [17], and have inherited some of

their main movement characteristics. Roombots feature one

additional DOF, and we combine two Roombots (RB) mod-

ules serially into one RB metamodule. We are interested

in building furniture-shaped structures with metamodules in

the centimeter-scale, hence we can settle with medium-large

number of modules. Also we can make use of connectors

embedded in the environment and broadcast communication

for our application, and are able to omit some of the

hard constraints such as constant connectivity, and local

communication. We are still interested in a distributed system

with low demands on communication bandwidth. A strong

constraint of our Roombots system is the movement space of
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a single Roombots module—six DOF connected serially are

very powerful, in terms of being able to overcome concave

or convex obstacle edges. However a Roombots metamodule

requires a rather large space around itself to move which

needs to be considered in advance of the movement.

(a) Outside plate ACM. (b) PCB plate ACM.

Fig. 2: Active connection mechanism (ACM) of the RB. Four mechanical
latching fingers grab synchronously into the neighbouring module or the
structured surface. The mechanism is actuated with a mini-DC motor,
position of the grippers is sensed with a potentiometer (Fig. 2b at the center).
The ACMs are designed to be mechanically autonomous, any other type of
connector could be plugged into the corresponding RB sockets.

(a) (b)

Fig. 3: (a) Four different possibilities for RB metamodules exist by (semi)
locking two RB modules serially together. We use the relative orientation
of the center axis of the two ACM-connected hemispheres for naming:
(from left to right) parallel PAR, perpendicular PER, shear-S SRS and
shear-Z SRZ. The orientation of the lower RB unit is kept fixed in all
pictures. (b) Shape-transition of a metamodule, from I-shape configuration
(bluish, horizontal) to L-shape. Red boxes indicate the collision cloud a
metamodule transition is producing, where every touched cube in the 3D
grid is being recorded. RB movements are in 3D, this figure shows only a
frontal projection of the cloud.

III. HARDWARE

Similar to other modular robotic systems Roombots (RB)

units [18] are fitted into a regular cubic grid. We are using

a grid size with 110mm edge length. We connect two RB

modules serially into a RB metamodule (Fig. 3), four combi-

nations are possible. Each resulting metamodule has its own

range of motion and movement characteristics. Any of the

three joints (Fig. 4c) of an RB unit delivers sufficient torque

to rotate a metamodule in the “worst case scenario situation”,

i.e. out of a horizontal stretched position. RB modules are

fabricated mostly from 3D printed ABS plastics pieces,

plate-elements are milled out of glass-fibre sheet material.

An RB module weights about 1.4kg, that includes battery

power for an estimated 30min of continuous actuation, and

the weight for electronic boards1. Joints are equipped with

high gear ratio gearboxes (∼ 366 : 1 and ∼ 305 : 1), actuated

by strong DC motors which results in 5Nm and 7Nm

1The electronic hardware for RB is under development.

torques for middle and outer joints, respectively. Any of the

three joints is continuously rotational, i.e. can turn without

mechanical stop. Electrical power and communication are

transmitted with slip rings within the unit. The two outer

DOFs of an RB unit (Fig. 4c, red) are of the same type

as in the Molecube modules [17],[19]. RB units have an

additional actuated swivel joint (Fig. 4c, blue) in-between.

The high torque demands and the resulting high gearbox

ratio values limit RB’ maximum rotational speed, the center

joint needs 3sec to rotate 360◦, both outer joints roughly

2sec. RB’s active connection mechanism (ACM) is gen-

derless, four-way symmetric, with four mechanical latching

fingers (Fig. 2a) which are completely retractable inside the

body. Connector units are roughly 65mm in diameter and

fit into any of ten dedicated sockets of an RB unit. In

many ways the connector design is similar to the AMAS

connection mechanism [20], although we use a different

trajectory for the movement of the latching fingers [21].

Initial connector tests indicate a passive tolerance against

alignment errors of roughly 2mm between modules, we

have also good first results for detaching under load. We

are in the process of finishing the RB hardware, hence all

the experiments are implemented in Webots [22], a physics-

based simulation environment. The simulation takes available

joint torques, velocity limits, weight, the geometry including

active connection mechanisms, axes, and hemispheres shapes

into account.

(a) (b) (c) (d)

Fig. 4: An RB module is made of four (a) hemispheres. (b) Half a RB
metamodule has the same dof as a Molecube [19], two such spheres are
connected with a swiveling joint into a full RB module (c) with three DOF.
All joints are continuously rotational, that is they turn without a mechanical
stop. (d) shows the picture of a hardware RB unit. The reconfiguration
method proposed in this work requires only two ACMs, always one is
located in the most outer hemisphere of a RB module. The remaining 8
sockets of the RB module are filled with passive connector plates.

IV. DISTRIBUTED RECONFIGURATION

This section describes our initial, currently simulated,

approach to reconfiguration by locomotion on a structured

surface, i.e. in a 3D environment with embedded connectors

to which units can attach. RB metamodules are the moving

units, and their movements are guided towards the next active

seeding position by a force field. Metamodules send and

receive broadcasts among each other to gather knowledge of

their nearest neighbourhood. A set of shape-transitions and

corresponding collision-clouds (Fig. 3b) stored in a look-up
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table enables each metamodule to largely avoid collision,

with itself, other metamodules and the environment. We

finish the section with initial results characterizing Room-

bots (RB) metamodules for this type of reconfiguration by

locomotion.

A. Strategy

We will explain the distributed reconfiguration mechanism

with RB metamodules on the example of building a chair-

like structure, e.g. Fig. 7.

a) Metamodule initialization: RB metamodules are ini-

tially placed in our structured environment (see the connec-

tors in Fig. 1). A metamodule starts by being attached to

a connector with its foot hemisphere. It then determines its

initial position and orientation (on the real units this will be

done by local communication with the connector or reading

out a tag on the connector’s surface). RB also have the ability

to sense their own shape, by reading out internal joint angle

sensor values.

b) Seeding recipe and metamodule shapes: The meta-

module now receives information about its environment, e.g.

obstacles or walls, but most importantly the seeding recipe of

the goal structure. The seeding recipe is the, currently hand-

coded, “blueprint” for the structure which will be assembled

from all the metamodules around, e.g. a chair-like structure

(Fig. 7). It will be provided by a human operator. The seeding

recipe includes the position and the order of the seeding
cubes, which are attachment points for a metamodule within

the goal structure. Metamodules are not assigned to a specific

seeding cube, but the first arriving metamodule will fill the

active position, and send a broadcast telling the seeding cube

is taken. Remaining metamodules will switch and go towards

the next seeding cube in the seeding recipe. The recipe

also includes the information of what type of metamodule-

shapes the structure will be built from. Metamodules can take

five possible shapes: I,L,S,U and 3D− S (please see [18]

for details). Fig. 3b shows an I-shaped metamodule being

rotated into an L-shaped metamodule, Fig. 8 an L-to-L shape

transition, and a L-to-3D-S shape transition highlighted.

c) Messages and locomotion: Metamodules use shape-

to-shape transition for a slinky-toy like walking in 3D. Before

a shape-transition, a metamodule sends a broadcast status

message which contains its foot position and its ID. The

broadcast messaging is meant as a replacement for close-

range sensing of other metamodules, and serves to avoid

colliding with them. This requires the knowledge of absolute

coordinate points for all metamodules and the goal shape,

which is possible in our semi-large environment.2 A module

can derive its neighbourhood from those status messages by

comparing the senders position against its own. It will store

this information for one step, and only for modules in close

range.

2Implementing reliable proximity sensing at the hardware level is very
complicated, global communication will exist also for other purposes, and
can be re-used here.

d) Force-field guidance: The metamodule now knows

its own absolute position �D f oot = [Dx Dy Dz] in the 3D grid,

the position of k number of current seeds �Dseed , and the

positions �Dmeta of n number of neighboring metamodules in

range. It calculates a force vector �Vf by summing up the

distance vector from the active seeds (attracting “sinks”).

Depending on the strategy, neighboring metamodules are

included in this calculation. They represent “sources” and

emit a repelling force field, with a negative sign. At last the

metamodule reaches for the next closest connector in the

direction of �Vf . Once the metamodule head is connected to

its new position, the module unlocks the foot, sends a new

status message and repeats the cycle.

�Vf =
k

∑
i=1

�D f oot −�Dseedi

|�D f oot −�Dseedi |

−
n

∑
j=1

α(�D f oot ,�Dmeta j)
�D f oot −�Dmeta j

|�D f oot −�Dmeta j |
(1)

⎧⎪⎨
⎪⎩

α(�D f oot ,�Dmeta j) = 0 (a)
α(�D f oot ,�Dmeta j) =

1
4 (|�D f oot −�Dmeta j |−4) (b)

α(�D f oot ,�Dmeta j) = 1 (c)
(2)

e) Force vector strategies: We are interested in dif-

ferent strategies concerning the influence of neighboring

metamodules at the �Vf calculation, and have designed three

modes which are switched with the α function: (a) The

α-greedy approach (α = 0), where neighboring modules

have no influence on the force field of other metamodules.

During reconfiguration metamodules should go as straight

as possible towards the next active seeding position. To

minimize collision, modules pause as soon as they detect

(by comparing broadcast messages) another metamodule in

a very close range, i.e. within four cubes distance. The

lock is released with the next status message. (b) A α-

slope function, where α = 1
4 (|�D f oot −�Dmeta j |−4). This grad-

ually decreases the repelling force between four and eight

cubes distance. (c) A α-step function, where α = 1. Any

metamodule within eight cubes distance provides a full force

component. The hypothesis guiding this experiment is that

with an additional, repelling force component metamodules

will have a tendency to keep a minimum distance between

each other. Hence less collisions should occur.

f) Look-up table and collision-cloud computation: As

we do not apply sensing in the conventional sense, there

is the danger of collision within a metamodule, between

metamodules, or with an object. We have designed a method

that in-advance calculates what we call a collision cloud
(Fig. 3b) of a single metamodule for all permutations of

initial and final metamodule shapes.3 The collision cloud

represents the number and position of the virtual cubes being

touched during the transformation, and is stored in a lookup

3There are five possible metamodule shapes, and four different metamod-
ule configurations. Each can be assembled with different joint values. Three
positions are possible for each of the four outer RB DOF in a metamodule,
and four positions for the two inner DOF.

1129



table in an external device. At the begin of each step the

metamodule will request the collision cloud corresponding

to its initial and final shape from the look-up table. It then

checks, based on the cubic grid, if the cloud intersects with

any known object or metamodule in range. The look-up table

enables us to centrally store data which would be hard to

compute in real-time for a single module, and is repeatedly

requested from many metamodules.

V. RESULTS

We performed experiments on two simple furniture-like

structures: (I) a non-dense cube-like structure built from

four metamodules, and (II) a chair-like structure built of six

metamodules. In both experiments all metamodules where

initially placed about 20 steps Manhattan-distance away from

the goal structure. The seeding plan of the goal structure was

made by hand. Each cube-setup was repeated three times

with shifted initial conditions, i.e. the starting points of the

metamodules are moved randomly by one or two fields. For

the chair-setup we altered the seeding recipe of the chair

structure; (i) in the first run chair-leg seeds are given in a

circular order, seed number four and five are metamodules for

the back of the chair. (ii) the four legs of the chair are given

in a cross-wise order, then the seeds for the back of the chair.

(iii) all chair-legs have the same seeding priority, again the

seeds for the metamodules on the chair’s back are given last

(iv) has the same conditions as (ii), however initial positions

of the six metamodules are shifted randomly by up to two

cubes. All experiments were tested with four different types

of metamodules (PAR, PER, SRS, and SRZ, see Fig. 3), and

three different reconfiguration strategies (α-greedy, α-slope,

α-step function).

TABLE I: Four metamodule cube assembly: numbers show collisions (CL,
numerical values), dead-locks (DL) are indicated by ∗. Table rows indicate
three different strategies: α-greedy, α-slope and α-step function for the
force vector estimation. Columns show the four different meta-module
configurations. Three sets of experiments per configuration are shown, with
the initial position of the meta-modules randomly shifted by a small number
of Manhattan distance steps. Numerical values in parenthesis include the
number of collisions in dead lock cases. We exclude dead-lock cases to
counting collisions, as those values are not too meaningful.

α-greedy α-slope α-step DL CL

PAR 4∗ 0 0∗ 0∗ 2 12∗ 0∗ 2 2∗ 6 4 (22)

PER 5∗ 0 2∗ 1∗ 1 0 0 1 0 3 2 (10)

SRS 0 0 0 0∗ 3 5 0 0 1 1 9 (9)

SRZ 0 1 0 0 0 0 1 0 0 0 2 (2)

DL 4 4 2 10

CL 1 (12) 4 (24) 5 (7)

a) Results experiment I, 4 metamodule cube: Fig. 5a

and Table I show the results for this experiment4. All three

strategies were tested, with four metamodule configurations,

and three random initial conditions (3× 4× 3 = 36 experi-

ments). In 26 of 36 experiments the final configuration was

reached and the shape was created, in 17 cases without

4Additional movies can be found at the Roombots page
http://biorob.epfl.ch/page38279.html

(a) (b)

Fig. 6: Top view onto the trace-patterns of six metamodules (depicted
with different colors) moving towards their seeding points in the left
center area. Trace points show the pivot point of the foot-hemisphere of
each metamodule. Quiver plots show the direction of attraction at iterative
steps. Left figure: due to the α-greedy strategy PAR metamodules aim
directly for their next seeding position. They will only be paused by
a close-by metamodule with a higher priority. Right figure: the same
experimental setup, but with SRZ metamodules, and a strategy applying the
α-slope function (2). Quiver orientations in (b) indicate that metamodules
are being repelled among each other on their way to the seeding position.

TABLE II: Result table showing dead-locks (DL and ∗) and collisions (CL,
numerical values) for the reconfiguration into a 6 metamodule chair-like
structure. Four experiments for each combination of (PAR, PER, SRS, SRZ)
and (α-greedy, α-slope, α-step) are performed altering mainly the seeding
recipe. Meaning of numerical values is the same as in Table I.

α-greedy α-slope α-step DL CL

PAR 0∗ 0∗ 1∗ 3 7∗ 1∗ 1∗ 0 9∗ 2∗ 1∗ 2∗ 10 3 (27)

PER 1 6 0∗ 8 2 1 2 1 5 1 1 1∗ 2 28 (29)

SRS 0∗ 2 1 0 1∗ 1∗ 1 0∗ 8 7 0 6 4 25 (27)

SRZ 0 0 2 0∗ 0∗ 2 0 3 2 0∗ 1∗ 4∗ 5 9 (14)

DL 6 7 8 21

CL 25 (29) 12 (23) 30 (50)

collision between metamodules. In all cases the area around

the final configuration was reached. Modules needed about 9

to 45 moves to reach their targets and presume their seeding

postures.

b) Results experiment II, 6 metamodule chair: Fig. 5b

and Table II show the results for this experiment, Fig. 6

shows tracing patterns of metamodules for one experiment

with a α-greedy and a α-slope-strategy, respectively. Fig. 7

show a snapshots series of a successful α-slope run with

SRZ metamodules. All three strategies were tested against

all four metamodule configurations. The seeding recipe was

altered (see above; 3× 4× 4 = 48 experiments). In 27 of

48 experiments the final configuration was reached and the

chair was created, in 6 cases without collision between meta-

modules. Modules needed approximately 15 to 55 moves to

reach their targets and presume their seeding postures.

VI. DISCUSSION AND FUTURE WORK

Both experimental setups included successful trials, for

several combinations of force field strategies and meta-

module configurations. This shows that already by straight-

forward hand-coding a seeding recipe, structures can be built

with the presented force-field guided strategy. We conclude

further that at least two metamodule configurations (PER and

SRZ) together with the greedy or slope reconfiguration strat-

egy appear to be the most promising method for distributed
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(b) 6 metamodules chair

Fig. 5: Bar plot showing the average number of moves four/six metamodules (PAR, PER, SRS, SRZ type) need to built a cube/chair-like structure,
respectively. Each bar represents one experiment. Colors indicate different force-field strategies (α-greedy, α-slope, α-step function). (a) Building a cube
from four metamodules was the easier task of both, about 20 moves are needed in average. PAR metamodules performed worst in average, otherwise plots
for the SRZ metamodules indicate a small superiority. As a tendency applying the α-greedy strategy results in the least amount of necessary moves. (b)
The chair structure is more complex, the results show more clearly now that the α-step strategy needs longer to assemble. Only PAR and SRS metamodules
succeed to complete the chair with this strategy. The α-slope strategy performs very well in both successful cases (for PER and SRZ metamodules).

reconfiguration. In the following we discuss a number of

options to avoid collisions between modules, and dead-locks

in future.

a) Mixing metamodules: In this work we concentrated

on testing metamodules in their four possible configurations

(PAR, PER, SRS and SRZ), however we never make use

of the reconfiguration ability within a metamodule. In case

it is possible to configure into e.g. a metamodule U-shape

on the ground (that is if a connector is reachable for this

configuration), any metamodule can switch its configuration

in runtime. This should increase possible shape transitions,

as for example a PER metamodule could change into a SRZ

metamodule, if the lookup table indicates better solutions.

b) Seeding recipe: Results indicate that metamodules

get stuck mostly within the last sequences of the recon-

figuration. Furthermore experiments with slightly altered

seeding recipe (6 metamodule chair) show that optimizing

the seeding recipe will improve reconfiguration, and in more

cases the final configuration can be reached.5 Building a

good seeding recipe presents a non-trivial task; Roombots

metamodules have a rather complex movement characteris-

tics, which influences not only their ability to move over

a structure, but also how this structure can be assembled.

Especially the orientation of the foot hemisphere plays a

large role, however this is not included yet in this work. We

are currently looking for a scalable planner to automatically

come up with a seeding recipe based on a CAD presentation

of a structure, to help a lay user with designing furniture-

shaped structures.

c) Asynchronous vs. cyclic: The presented framework

applies the RB metamodules in an asynchronous manner,

nothing is coordinated. Even if all metamodules start at

the same time, and as different joint angles need to be

reached, metamodules will de-synchronize rapidly. Missing

sensing abilities, and asynchronous metamodules assuming

5Indicated by the amounts of dead-locks for each chair-experiment type:
6, 5, 5 and 5, the first experiment had a less good seeding recipe.

neighborhood knowledge based on communication is the

reason for collisions; A metamodule sends a status message,

checks its environment, finds it unoccupied and starts to

move. If another close-by metamodule moves with a delay,

it assumes neighborhood knowledge on an outdated basis,

and resumes movement in the shared space of another meta-

module. There are at least two solutions. (i) An immediate

solution to completely avoid collisions and largely avoid

dead-locks features a single active metamodules at all time,

with the other metamodules being paused at their starting

positions. However reconfiguration time to completion will

increase largely. (ii) One could increase the safety distance

between metamodules, e.g. to ten cubes. It is then physically

impossible for two moving metamodules to meet within one

step, assuming that both move with about the same speed.

However this requires large distances between metamodules.

(iii) Another option could be consensus-based decision mak-

ing between metamodules, to agree on one’s priority. This

could benefit from a global clock, i.e. synchronized cycles

of movements as described in [23]. Once a synchronization

would be implemented, the overall setup becomes deter-

ministic, at any crucial point in time (beginning of cycles)

distances between metamodules are known, communicated,

and a consensus could be made. However this strategy will

require additional hand tuning to find proper safety distances,

and might also involve the creation of sets of rules to avoid

e.g. blocked Roombots locking each other.

VII. CONCLUSION

In this paper we have presented a decentralized approach

to reconfiguration with Roombots metamodules. Reconfig-

uration through locomotion uses Roombots metamodules

applying slinky-toy like movements attaching at embedded

connectors in the environment to move and change shape.

Metamodules are attracted and guided by a virtual force-

field, they use broadcast signals, look-up tables of collision

clouds and simple assumptions about their near environment

to reach their seeding positions, which are currently hand
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Fig. 7: Snapshots series of six SRZ Roombots metamodules reconfiguring into a chair-like structure, from left to right. The applied force field strategy
is α-slope based, the reconfiguration sequence and the order of pictures is from left to right. Metamodules start at in a straight posture (left side). They
attach and detach at passive connectors embedded in the ground, and use them as pivot points for a slinky-toy-like motion. Once a metamodule reaches a
goal point within the chair-structure, it switches off. Newly approaching metamodules will eventually move over it.

Fig. 8: In this snapshots series two shape transitions are highlighted. (1) shows an L-shaped metamodule in the front (indicted with red frame), and a
L-shaped module in the back (orange frame). Both modules transform during the five snapshots. The front metamodule uses three of its lower DOF to
transform in another L-shape. The hind metamodule changes into a 3D-S shape. For both modules this presents one step, a series of this steps can be as
a slinky-toy like movement, where head and foot module are alternated.

coded. We presented results from simulation tests with two

structures (a non-dense cube and a chair) made of four and

six metamodules, respectively. Four different metamodule

configurations and three force-field models were tested, we

also investigated the influence of altering the seeding order

of the goal structure. Future research on reconfiguration will

additionally explore how to include passive elements into

the reconfiguration. We are aiming at testing and using more

advanced seeding recipes, runtime metamodule changes, and

reconfiguration based on cyclic movements.
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