
  

  

Abstract— A team of robots working to explore and map an 

area may need to share information about landmarks so as to 

register their local maps and to plan effective exploration 

strategies. In previous papers we have introduced a combined 

image and spatial representation for landmarks: terrain 

spatiograms. We have shown that for manually selected views, 

terrain spatiograms provide an effective, shared representation 

for occlusion filtering and for combination of multiple views. 

In this paper, we present a landmark saliency architecture 

(LSA) that will automatically select candidate landmarks given 

some preference settings. Using a dataset of 21 outdoor stereo 

images generated by LSA, we show that the terrain spatiogram 

representation reliably recognizes automatically selected 

landmarks. The terrain spatiogram results are shown to 

improve on two purely appearance based approaches: template 

matching and image histogram matching. 

I. INTRODUCTION 

The application domain considered in this paper consists 

of team of robots deployed to cooperatively generate a map 

of a specific area: an area under reconnaissance or an urban 

disaster site, for example. The objective is to generate an 

accurate map showing hazards, obstacles, traversable routes, 

etc., very quickly and to communicate it back to a command 

center. This map will then be used by a combination of 

human and robot teams for effective operations in the 

mapped area. 

In previous work [4][5][6], we have proposed a combined 

image and terrain spatial representation for landmarks, the 

terrain spatiogram. However, in that work, the input images 

were manually windowed.  In this paper, we introduce a 

saliency-based architecture, LSA, for automatically 

generating candidate landmarks. LSA follows a model of 

landmark saliency initially proposed by Rauball & Winter 

[11] for human way-finding.  

Using 21 stereo datasets collected with LSA, we show that 

the terrain spatiogram approach can effectively recognize 

landmarks in a range of poses and scales. An image template 

matching approach and a color histogram matching approach 

is applied to the same dataset with inferior results. 

This paper is laid out as follows. Previous work is 

reviewed in Section II. In Section III, the Landmark Saliency 

Architecture (LSA) is introduced. We recap the terrain 

spatiogram notation in Section IV. Experimental procedure 

and results are reported in Section V followed by discussion 
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and conclusions in Section VI. 

II. PRIOR WORK 

Appearance-based approaches to landmark recognition 

include Zhang and Kosecka [14] representing images of 

buildings using localized color histograms collected along 

the vanishing directions, and Cummins & Newman [1] 

employing a SURF-based, bag-of-words approach for 

mapping and localization. Ramos et al. [10] show that a 

combination of depth and appearance information can be a 

powerful tool for landmark recognition to implement loop-

closure for outdoor SLAM.  

In [4][5], we introduced an approach combining image 

and spatial information based on Birchfield & Rangarajan 

[9]’s spatial histogram or spatiogram. With range sensing 

equipment, it is possible to relate the image positions of the 

spatiogram to Cartesian coordinates relative to the robot. A 

spatiogram using terrain rather than image spatial 

information is called a terrain spatiogram (or TSG). We 

have shown that the TSG is an effective approach to sharing 

information between robot platforms [4], combining multiple 

views of a landmark [5], and detecting and filtering landmark 

occlusions [6] when the input images are windowed to 

manually selected landmarks.  

Some automatic landmark selection approaches are 

specific to the landmark representation being used, e.g., 

quadrangular patches in [3], and 2D patterns in [7]. On the 

other hand, saliency approaches [9] use information about 

visual attention [11][12] to determine general candidate 

image areas. A TSG represents a spatially compact portion 

of the environment and its appearance (color) information. 

This constraint is easily captured with saliency concepts. 

Furthermore, our objectives include sharing landmarks with 

humans – another reason for pursuing a saliency approach. 

Rauball & Winter [11] present a formal model of 

landmark saliency for human travellers consisting of visual 

attraction, structural attraction and semantic attraction 

components. Their visual attraction component is what is 

usually seen in robot saliency architectures [9]. However, 

their structural attraction component allows the definition of 

the spatial compactness criteria for TSGs. Their semantic 

attraction component supports a well-defined communication 

channel for more general and task-related landmark 

selection, allowing different landmark selection criteria to 

apply when exploring, constructing a quick topological map 

of a new area, or constructed a metric map for a local region. 

III. LANDMARK SALIENCY ARCHITECTURE (LSA) 

The purpose of the Landmark Saliency Architecture is to 

extract TSG landmark candidates from image and depth 
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views. The saliency criteria need to include visual and spatial 

regions that can be represented well by a TSG. However, we 

also want our landmarks to be useful for humans, so we 

include some criteria that relate to human visual attention. 

A. Model of Landmark Saliency 

Following Rauball & Winter [11]’s formal model of 

landmark saliency for human travelers, we consider the 

saliency of a landmark to consist of three components: 

• Visual attraction, 

• Structural  attraction, and 

• Semantic attraction. 

We consider visual attraction to refer to iconic image 

properties, while structural attraction will refer to region 

properties. Semantic attraction captures the relevance of a 

landmark to an ongoing task, modifying the relative 

importance of the various image and feature properties in 

selecting a landmark. 

B. Visual Attraction 

The input to the saliency architecture is an n×m visual 

image Ic and n×m spatial image Id registered as follows: 

Ic = { cij = (v1, v2, v3) | i ∈ 1..n, j ∈ 1..m } 

Id = { dij = (x1, x2, x3) | i ∈ 1..n, j ∈ 1..m } 
 

where dij  is the spatial location in the terrain associated with 

the visual pixel cij.  

 Many aspects of human color preferences can be 

accounted for by considering a color space, based on retinal 

cone responses, that roughly corresponds to Red-Green and 

Blue-Yellow axes [9]. In their recent study, Schoss & Palmer 

[9] found that irrespective of gender, Green and Blue were in 

general the preferred end of these two axes, but that prior 

positive reward experience played an important role in 

personal color preferences. Based on this, we have selected 

the CIELab color opposition space for Ic where the a 

component corresponds to a Red-Green axis and the b 

component to a Blue-Yellow axis. In general, low a and high 

b values will be considered salient. However, semantic 

attractiveness (the ‘prior experience’ reported by [9]) needs 

to be able to modify this. 

 The visual attraction module of LSA is shown in Figure 1 

with example stages in its processing shown in Figure 2.  

This module carries out iconic operations on the input image 

(it is applied in parallel to Ic and Id) to segment smooth 

regions of high saliency. The first stage in the module 

applies a filter Mα, αv∈{-1,0,1} to each plane of I, where -1 

inverts the values on that plane (e.g., change from high-

saliency red to high saliency green in Ic), 0 masks that plane 

(e.g., mask width and high and process only depth in Id), and 

1 passes that plane unchanged.  

 The module subsamples the filtered image at a scale s and 

computes the average Avs and variance Vars of the sub-

sampled regions.  Figure 2(a, b) and Fig. 2(a, d) show these 

images at s=2 for Id and Ic respectively for the scene shown 

in Fig. 2(i). The variance image is thresholded with τv to 

establish the salient level of smoothness and to produce a 

binary image Vs used to remove unsmooth areas as follows: 

Rs(I) = Avs(I) . Vs(I)  

Figure 2(c) and 2(f) show the salient smooth regions Rs(I) for 

Id and Ic respectively. 

 
Figure 1: Visual Attraction Module 

 

 
Figure 2: Landmark Saliency Example 

(a-c): Avs(Id), Vars(Id),  and Rs(Id);   

(d-f): Avs(Ic), Vars(Ic),  and Rs(Ic);  

(g-i): Fused Conspicuity map, Top saliency region, original 

image showing top region. Brighter is more salient in a-g. 

 

The visual attractiveness module results are next processed 

for structural attractiveness. The settings of αv and τv are part 

of the semantic attractiveness (subsection D). 

C. Structural Attraction 

The images Rs(Ic) and Rs(Id) are the input to the structural 

attractiveness module, which focuses on salient region 

properties. Figure 3 shows the structural attraction. 

The two images are linearly combined to form a fused 

conspicuity map [9] as follows: 
   

FM(I) = wc Rs(Ic)  +  wd Rs(Id) 
 

where wc + wd = 1 and 0≤ (wc ,wd) ≤1. Fig. 2(g) shows the 

Mα(I) 

Avs(I) Vars(I) 

Vs(I) 
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fused map. A connected components algorithm is used to 

generate a list of regions r, r ∈ 1..k,  from the fused image. 

 
Figure 3: Structural Attractiveness Module 

 

Three structural attractiveness properties are measured: 

1) Region Area, ar 

2) Region aspect ratio, arr (the height of the region 

bounding box divided by its width) 

3) Average fused attractiveness, vr over the region 

These properties are linearly combined for each region r to 

produce an overall saliency score for the region: 

ssr = wa  ar +  wr arr + vr  wv 

where wa + wr + wv = 1 and 0≤ (wa ,wr, wv) ≤1.  Figure 2(h) 

shows the top-ranked salient region for this example. 

D. Semantic Attractiveness 

The Semantic Attractiveness is the settings for the masks, 

thresholds and weight parameters for the visual and 

structural attractiveness modules. Rather than having these 

be fixed values, or ‘tuning’ parameters hidden in the 

architecture, we have chosen to make these explicitly visible 

so that  LSA’s selection of landmarks can be modified by the 

needs of the task at hand. These are the preference inputs 

mentioned in the abstract. 

 The following are the seven parameters of semantic 

attractiveness and a discussion of their settings: 
 

( αv , τv , wc ,wd , τs , wa ,wr , wv ) 

 

1. αv : This parameter allows the salience of the input 

components to be reversed or masked, For example, 

human preference has Green preferred over Red. 

However, there are tasks, for example driving, 

where the Red of traffic signs should be more 

salient. With spatial information, a closer landmark 

might be preferred for constructing metric maps 

whereas a more distant (and hence more widely 

visible) might be preferred for topological mapping.  

2. τv : This controls how smooth surfaces need to be to 

show up as salient. Man-made objects (walls, 

garbage bins) tend to be smoother than natural 

objects (bushes and trees). 

3. wc ,wd : These two mutually dependent parameters 

indicate how important spatial information is 

relative to color information. For the TSG landmark 

representation, a smooth spatial region is more 

useful than a smooth colored region.  

4. τs : This controls how salient a fused region needs to 

be to appear in the list of regions. A task that is 

looking for many candidate landmarks (e.g. local, 

metric mapping) should set this low, whereas a task 

looking for few, but highly salient landmarks (e.g., 

global, topological mapping) should set this high. 

5. wa ,wr ,wv : These three mutually dependent 

parameters control the relative attractiveness of 

large regions versus small regions, vertical regions 

(tall) versus horizontal (squat) regions and high 

versus low fused visual attractiveness.  Large, tall, 

close landmarks were preferred as candidates for 

TSG landmarks: Large, so that sufficient samples 

could be taken for the spatiograms; Tall, so that the 

samples were very compact with respect to the 

ground plane, and Close so that good depth 

precision was possible. 

IV. TERRAIN SPATIOGRAMS  

In this section, we briefly review the material on Terrain 

Spatiograms (TSG) from [4][5][6]. 

A. Spatiograms.  

Let I : P→V  be a function that returns the value v∈V of a 

pixel at a location p∈P in the image. The histogram of I 

captures the number of times each pixel value occurs in the 

range of the function I. Consider a set, B, of equivalence 

classes on V,  a histogram of I, written hI maps B to the set 

{0,…,|P|} such that hI(b)=nb and 

∑
=

=
||

1

P

i

ibbn δη  

where δib is equal to 1 iff  the i
th

 pixel is in the b
th

 

equivalence class and 0 otherwise, and η is a normalizing 

constant. A spatiogram or spatial histogram adds 

information about where values occur in the image: 

hI (b ) = 〈 nb , µb , Σb 〉 

where µb , Σb are the spatial mean and covariance of the 

values in the class b. Birchfield & Ragajaran define a 

histogram as a first order spatiogram, a formulation that also 

allows for second and higher order spatiograms. 
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Figure 4: Terrain Spatiogram (TSG) Example 

(a) Original image; (b) pixels mapped to depth; (c) TSG 

B. Terrain Spatiograms 

The spatial dimensions used by Birchfield & Ragajaran 

and others are the spatial dimensions of the image and a 

primary use of spatiograms has been for color-based tracking 

in video images. Note that there is nothing about the 

definition which constrains the spatial dimensions to be in 

the image. If, for example, the image information comes 

from a stereo camera, then the spatial information can be 

three-dimensional depth information. 

 In [4] the function d(p) is introduced that maps a pixel at 

position p to its three dimensional location in the viewed 

scene and the definition of the function δib is modified  so 

that δib = 1 iff the i
th

 pixel is in the b
th

 equivalence class and 

its stereo disparity is defined, 0 otherwise. The spatial 

moments for a terrain spatiogram (TSG) then become: 

∑
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For a robot to recognize a landmark, it computes a TSG of 

the landmark and then compares that TSG with the TSGs of 

a list of stored landmarks.  The spatial information must be 

landmark-centered rather than robot-centered [4] in order for 

it to be shared. We employ a variant on the normalized 

spatiogram measure introduced by [7] to compare two TSGs 

h and h’: 

 

∑
=

=
||

1

')',(
B

b

bbb nnhh ψρ  

where  

ψb = 2(2π)
0.5

|ΣbΣ’b|
0.25

 N(µb ; µ’b,2(Σb+Σ’b)) 
 

is the normalized probabilistic spatial weighting term.
1
  In 

[5] we defined TSGs that employ a mixture of Gaussians 

spatial distribution and the corresponding normalized 

comparison function, and demonstrated how this could be 

used to combine multiple views of a landmark into a single 

TSG as well as to share landmarks between robots. 

 
1 It can be easily verified that ρ(h,h)=1. 

C. Color Terrain Spatiograms 

 In [4][5] a color stereo image was represented as three 

channel terrain spatiograms. This is quite difficult to display 

accurately. In the current paper as in [6] we use a single 

color histogram where bc bins are assigned to each color 

channel (bc=25) and the histogram has |B| = bc
3
 bins in total.  

Figure 4 shows an example color terrain spatiogram for one 

of the landmarks in this paper, a yellow road sign. Fig. 4(a) 

is the left image of a stereo pair taken using the Videre 

digital Stereohead
2
. Fig. 4(b) shows the image pixels mapped 

to their spatial location. Fig. 4(c) shows a perspective view 

of the resulting color terrain spatiogram. The spatial and 

color content of the object in Fig. 4(a) is identifiable in the 

terrain spatiogram. 

D. Identifying and Filtering Occluded Landmarks 

An advantage to using SIFT or SURF features for 

landmark representations, e.g., [1][14], is a natural 

robustness to occlusion: If some of the features are 

mismatched due to viewpoint change or partial occlusion, 

enough matches may remain for identification. 

 
Figure 5: Occluded Landmark left image of stereo pair  

(a, d); perspective view of image pixels mapped to absolute 

depth (b, e); perspective view of terrain spatiogram with XZ 

cluster center and 1SD circle (c, f). 

Landmark occlusion is a depth related phenomenon: a 

landmark is occluded when the occluding object hides a 

portion of the landmark image as a consequence of being 

between the image sensor and the landmark. Consider a 

landmark positioned at p relate to some Cartesian coordinate 

system. Let the XZ plane be the ground plane and Y the 

height. Let the image sensor be on the Z axis in the negative 

direction. If we look at the depth information, then we would 

expect to see a cluster of points representing the landmark 

itself, and additional clusters between the landmark and the 

image sensor representing occluding objects. 

Figure 5 (a) is the left image of a stereo pair that shows a 

 
2 Model STH-MDCS3 

   
(a)     (b)     (c) 

   
(d)     (e)     (f) 

     
(a)                   (b)                     (c) 
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landmark (a table) occluded by a large box. Fig. 5(b) shows 

the image pixels mapped to depth and displayed in a 

perspective view. The Z axis is along the diagonal of the 

view. The occluding box is clearly separated out from the 

more distant table. In [6], K-means clustering was applied to 

depth information in Fig. 5(b) projected to the XZ plane. 

Two clusters were identified, shown in Fig. 5(c). A smaller 

occlusion case is shown in Fig. 5(d-f).  The cluster weights 

were 0.45 and 0.53 for (a-c) and 0.45 and 0.47 for (d-f) 

indicating that between them the two clusters accounted for 

over 90% of the data. Since the terrain spatiogram preserves 

the spatial information, it becomes possible to determine 

what portion of the spatiogram corresponds to the landmark 

and what portion corresponds to the occlusion. 

V. EXPERIMENTS 

A. Experimental Procedure 

The experiments were conducted on a Pioneer AT3 robot 

equipped with a Videre Stereocamera (6mm lenses) on a 

Biclops PT base. The Stereocamera was calibrated using the 

SRI SmallVision
3
 system. The robot was instructed to follow 

a loop around an outdoor traverse area in which there were a 

variety of objects. The robot stopped at regular distances 

along its traverse and collected sets of image and depth 

information from the Stereocamera, with pan angle set to 

80
o
,90

 o
,100

 o
 (i.e., three side views). This resulted in a 

variety of views of the objects in the traverse area.  

The traverse area was on a 7m×10m outdoor parking lot. 

The surface was blacktop and the pan angles used resulted in 

the robot always looking away from the parking lot over 

some grass and snow covered areas around the periphery of 

the lot.  

The objects around the lot were mostly natural occupants 

of the area augmented with some additional candidate 

objects. A key issue for place detection in topological 

mapping and in loop-closure for SLAM is perceptual 

aliasing [2] – for this reason a number of similar appearing 

landmarks were chosen: the garbage bins in Figure 6 (a), 6(c) 

and 6(h). Additional candidate landmark objects included a 

large compressor (Fig. 6(e)) and a yellow sign (Fig. 6(f)). In 

total, LSA extracted eight landmarks at a variety of poses 

and scales, some of which are shown in Figure 6. Between 

four and ten poses for each landmark were generated.  

B. TSG Landmark Recognition Results 

Single Gaussian TSGs where generated for each LSA 

landmark candidate extracted (46 TSGs in total). These were 

filtered to the group of three best matches per landmark 

provided the match was above 0.6 (to eliminate poor 

landmarks). This resulted in one landmark candidate being 

discarded at all poses, leaving seven reliable landmarks, each 

with three poses. All the images in Figure 6 are best poses. 

 The 21 remaining TSGs were used to generate a confusion 

matrix, shown in Figure 7(a) as a 21×21gray-level image. 

The axes are the consecutive landmark and pose indices. The 

 
3 http://www.videredesign.com 

darker colors represent poorer matches. Figure 7(b) is a side 

view of a surface plot of the matrix, looking along the 

diagonal. 

 
Figure 6: Some salient landmarks extracted by the LSA 

 
Figure 7: Confusion Matrix for TSG Comparisons 

  

 The strong diagonal band (of 7 3×3 submatrices) shows 

that different poses of a landmark are well recognized and 

well distinguished from other landmarks – despite the 

somewhat similar shape and color of the three garbage bins 

(Figure 6 (a), 6(c) and 6(h)) for example. This result from 

automatic landmark selection by the LSA reinforces our 

previous results for manually selected landmarks, 

documented in [4][5]. 

 To illustrate the difficulty of the landmark recognition 

problem with this data set, two other approaches to landmark 

recognition from LSA results were used: a template-based 

approach and an image histogram based approach. 

C. Image-based Landmark Recognition Results 

The template-based recognition approach normalized the 

rectangular image region produced by the LSA to a 90×60 

template for each of the 21 landmark poses. A normalized 

confusion matrix was calculated for a Squared Sum of 

Differences comparison of templates with 1.0 being the best 

match and 0.0 being the worst. This is shown in Figure 8 

with the same scale as Figure 7. 

 The image histogram approach extracted a normalized 

color histogram for each rectangular image region produced 

by the LSA. A confusion matrix was produced by using a 

Bhattacharayya histogram comparison operation modified to 

produce a 1.0 for the best match and 0.0 for the worst. This 

is shown in Figure 9 with the same scale as Figure 7. 
 

 

(a)                                                   (b) 

      
      (a)                 (b)              (c)            (d) 

    
           (e)              (f)        (g)               (h) 
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Figure 8: Confusion Matrix for SQDIFF Comparisons 
 

Figure 9:  Confusion Matrix for Histogram Comparisons 

The results of the three methods can be quantified further 

by removing the (1×21) diagonal and looking at the mean of 

the 3×2 of the remaining diagonal submatrix terms and the 

mean of the off-diagonal terms. This is shown in Table 1. 

Table 1: Comparison of Confusion Matrix Means 
 

Method Diagonal Off-Diagonal 

TSG 0.79 0.37 

SQDIFF 0.59 0.59 

HISTO 0.84 0.68 
 

Table 2: Variance Ratios for each method 
 

Method Var Ratio 

TSG 0.77 

SQDIFF 0.41 

HISTO 0.68 
 

The SQDIFF approach provides little help in 

distinguishing between landmarks, showing no statistical 

difference between poses of the same landmark and other 

landmarks. The HISTO approach identifies poses of the 

same landmark well, but the range between means is small, 

only 17% as opposed to 51% for the TSG approach. Finally, 

the ratio of variance of the matrix divided by sum of the 

variances for the diagonal and off-diagonal terms yields a 

measure of the discriminative power of each method for 

these landmarks. This is shown in Table 2.  

VI. DISCUSSION 

 We have introduced a landmark saliency architecture, 

LSA, based on Raubal & Winter’s model of landmark 

saliency. In addition to the visual attraction component 

modeled by most saliency architectures, this includes a 

structural attractiveness component, capturing the spatial 

conciseness criteria for candidate TSG landmarks, and a 

semantic attractiveness component, a channel by which the 

task at hand can influence landmark saliency.  

 We show that landmarks selected by LSA can be 

recognized reliably when represented as TSG landmarks. 

However, when template matching or image histogram 

approaches are used, the recognition is less reliable. 

 This result supports our previous results [4][5][6] for 

terrain spatiograms. However, this paper’s results were based 

on unshared, single view, and non-occluded landmarks. 

Future work will need to evaluate LSA used to build multiple 

view landmarks and to share landmarks. This latter is not 

trivial since the landmarks will need to appear salient on 

both robot platforms. The interaction of LSA with occluded 

landmarks may also be an issue, since both occluder and 

landmark may need to appear salient. 
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