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Abstract— Although human beings see and move slower than
table tennis or baseball robots, they manage to outperform such
robot systems. One important aspect of this better performance
is the human movement generation. In this paper, we study
trajectory generation for table tennis from a biomimetic point
of view. Our focus lies on generating efficient stroke movements
capable of mastering variations in the environmental conditions,
such as changing ball speed, spin and position. We study table
tennis from a human motor control point of view. To make
headway towards this goal, we construct a trajectory generator
for a single stroke using the discrete movement stages hypothesis
and the virtual hitting point hypothesis to create a model
that produces a human-like stroke movement. We verify the
functionality of the trajectory generator for a single forehand
stroke both in a simulation and using a real Barrett WAMTM.

I. INTRODUCTION

Table tennis has long fascinated roboticists as a partic-

ularly difficult task. The main work on robot table tennis

started in 1983 [1] and ended in 1993 [2]–[6], but single

groups continued work until today [7]–[9] (see Section II for

a more detailed review). These early approaches used smart

engineering to overcome inherent problems like movement

generation, orientation of the racket and vision in an human

inhabited environment. In contrast to these approaches, we

use an anthropomorphic robot arm with seven degrees of

freedoms (DoFs) and concentrate on generating smooth

movements that properly distribute the forces over the dif-

ferent DoFs. Therefore, we employ a biomimetic approach

for trajectory generation and movement adaptation.

Humans perform complex skills relying on little feedback

with long latencies, have strong limits on their possible exe-

cution, and have chronically inaccurate sensory information

on largely unmodeled environments. Table tennis requires

fast and accurate movements to achieve a decent playing

performance. Understanding how humans perform a complex

task such as table tennis can yield essential knowledge for

skill execution and learning in robotics.

In this project, we construct a trajectory generator for table

tennis striking movements based on known hypotheses on

human motor control in table tennis. Our goal is to generate

human-like arm trajectories for striking movements on a

robot system with seven DoFs. We investigate the problem

of determining the right joint angles and joint velocities of

a redundant robot arm at the hitting point as well as planing

arm trajectories which hits an incoming ball back to a desired

point on the opponents court and which can be adopted to

new environmental conditions. We end up with a robot table
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tennis player that is able to return balls served by a ball

connon on an International Table Tennis Federation (ITTF)

standard sized table and which works sufficiently well in

simulation and on a real Barrett WAMTM.

In this paper, we will proceed as follows. In Section III,

we present all relevant knowledge on modeling a table tennis

stroke based on biological hypotheses such that we are able

to obtain a trajectory of a table tennis stroke in Section IV.

In Section V, we present the results of the simulation and of

our real setup.

II. LITERATURE REVIEW

Work on robot table tennis started with the robot table

tennis competitions initiated by Billingsley in 1983 [1].

Several early systems were presented by Knight [3], Hart-

ley [4], Hashimoto [5] and others. For this early work, the

major bottleneck was fast real-time vision. An important

breakthrough was achieved in 1988 by Andersson who

presented the first robot ping pong player capable of playing

against humans and machines [2]. Andersson and his team

employed the simplified robot table tennis rules suggested by

Billingsley1. Andersson used a high-speed video system and

a six degree of freedom (DoF) PUMA 260 arm with a 0.45 m

long stick mounted on it. In 1993, the last robot table tennis

competitions took place and was won by Fässler et al. [6]

of the Swiss Federal Institute of Technology. Although the

competitions ceded to exist, the problem was by no means

solved but the current limits were met in terms of robot

hardware, algorithms and vision equipment.

Nevertheless, interest in robot table tennis did not wane

and a series of groups continued work on robot table tennis.

Acosta et al. [9] constructed a low-cost robot showing that

a setup with two paddles can already suffice for playing if

the ball is just reflected at the correct angle by a stationary

paddle. Miyazaki et al. [7], [8] were able to show that a slow

four DoF robot system consisting of two linear axes and a

two DoF pan-tilt unit suffices if the right predictive mappings

are learned. See Table 1 for an overview.

All systems were tailored for the table tennis task and

relied heavily on high-gain feedback, over-powered motors

(no saturation), linear axes (easy to control), and light-weight

structures (no torque saturation, little moving inertia). They

were engineered in such a way that they could execute any

straight movement towards the ball at a rapid pace with the

right approach angle. The important problem of generating

smooth movements that properly distribute the forces over

the different DoFs of the arm was often avoided. In our setup,

the task is more difficult as the robot does not have linear

axes but has to deal with large inertia; the wrist adds roughly
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Author Vision System Robot System Comments

Andersson [2] Four high speed cameras, 60 Hz Puma 260, 6 degree of freedom (DoF). First robot ping pong player able to play against
humans and robots.

Fässler [6] Two CCD cameras, 50 Hz. Light weight aluminum structures, 6 DoF (3
linear, 3 rotation).

Won the last robot ping pong competition in
1993.

Acosta [9] Single CCD video camera, 40 Hz. Lightweight robot with two paddles, 5 DoF
(2 prismatic, 3 revolution).

Engineered for table tennis, just reflecting the
ball at the right angle on a small table.

Miyazaki [7] Quick MAG System 3, 60 Hz. Robot mounted on the table, 4 DoF (2 DoF
linear + 2 DoF pan-tilt unit).

Learned input-output maps to predict the im-
pact time, ball position and velocity.

Angel et al. [10] Single Sony XC HC 50 camera,
placed on the end-effector.

Parallel robot, 4 DoF, maximum end-
effector speed 4 m/s.

Focus on visual control of the robot.

TABLE I

THIS TABLE OUTLINES ROBOT SYSTEMS CONSTRUCTED TO PLAY TABLE TENNIS.

2.5 kg weight at the elbow. Thus, we have severe constraints

in the joint velocities (the maximal velocity is approximately

10 rad/s) and accelerations. Furthermore, our vision system

operates in a cluttered environment.

III. MODELING HUMAN STRIKING MOVEMENT IN

TABLE TENNIS

In this section, we discuss modeling table tennis from a

racket sports’ perspective. In particular, we focus on separa-

ble movement stages, movement selection, parameterization,

and generation. At the end of each of these sections, we

will outline which computational concepts arise from the

biological hypotheses.

A. Movement Stages during a Stroke

Table tennis exhibits a very regular, modular structure

studied by Ramanantsoa and Durey [11]. They analyzed a

top player and proposed a spatial adjustment with respect to

certain ball events, i.e., bouncing, net crossing and stroke.

According to the hypothesis of Ramanantsoa, the following

four stages can be distinguished during expert players’ play

and, which we labeled according to their function:

Awaiting Stage. The ball moves towards the opponent who

hits it back towards the net. The racket is moving downwards.

At the end of this stage the racket will be in a plane parallel

to the table surface.

Preparation Stage. The ball heads towards the player, has

already passed the net and will hit the table during this stage.

The racket moves backwards in order to prepare the stroke.

The player chooses a hitting point where he plans to hit the

ball to which we refer as the virtual hitting point.

Hitting Stage. The ball moves towards the virtual hitting

point where the player intercept it. The racket moves towards

the virtual hitting point until it hits the ball in a circular

movement. For expert players the duration of this stage is

constant and lasts approximately 80 ms.

Finishing Stage. After having been hit, the ball is on the

return path to the opponent while the racket moves upwards

to an end position.

1In contrast to human ping pong rules, the table is only 0.5 m wide and
2 m long. The net has a height of 0.25 m. Wire frames were attached at
each end of the table and the net. For a valid shot, the ball has to pass all
frames. As a result, the maximum ball speed is slowed down to 10 m/s.

We have tested and verified the stages suggested by

Ramanantsoa et al. [11] in a VICONTM motion capture setup

for two intermediate players where each of the stages can be

observed distinctively (see Figure 1).

B. Movement Selection and Goal Determination

As humans appear to rely on motor programs [12], it is

also plausible that pre-structured movement commands are

employed for each of the four stages. These motor programs

need to be chosen based upon the environmental stimuli at

the beginning of each stage.

Motor programs determine the order and timing of the

muscle contractions and, by doing so, define the shape of the

action produced. Sensory information can modify motor pro-

grams to generate rapid corrections in the case of changing

environmental demands as found in table tennis by Bootsma

and van Wiering [13]. This observation is strengthened by

the supportive evidence of Tildesley and Whiting [14], who

showed that expert table tennis players exhibit a consistent

spatial and temporal movement pattern. They concluded that

a professional player chooses a movement program for which

the execution time is known from his movement repertoire

and decides when to initiate the drive. This hypothesis is

known as operational timing hypothesis.

The problem of which information is used in order to de-

cide when to initiate the movement has not yet been solved.

It is likely that humans use the so-called time to contact,

which is the time until an object reaches the observer, to

control the timing. Hence, the operational timing hypothesis

implies that humans have to initiate the chosen movement

program when the time to contact reaches a critical value.

In our biomimetic player, we represent movement pro-

grams using splines. The hitting point is adapted according

to the incoming ball and the desired return. All other start

and end positions, velocities and accelerations of the stages

and the duration of the movements are fixed.

C. Movement Generation

Next, we need to discuss how the different strokes are

generated. There are infinitely many ways to generate racket

trajectories and, due to the redundancy of the arm, there

are also numerous different arm postures to realize the same

task-space trajectory in joint-space. In order to find genera-

tive principles underlying the movement generation, neuro-
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(a) Awaiting Stage (b) Preparation Stage (c) Hitting Stage (d) Finishing Stage

Fig. 1. This figure illustrates the four movement stages of Ramanantsoa et al. [11] recorded in a VICONTM motion capture system for verification during
our study. The red arrow shows the movement of the ball in the phase and the blue arrow indicates the movement of the racket.

scientists often turn to optimal control [15]. One approach

is the use of cost functions which allow the computation of

trajectory formation for arm movements. Most studies focus

primarily on reaching and pointing movements where one

can observe a bell-shape velocity curve and a clear relation-

ship between movement duration and amplitude. However,

this relationship does not hold for striking sports. Cruse et

al. [16] suggested a cost function for the control of the human

arm movement based on the comfort of the posture. For each

joint, the cost is induced by proximity to a comfort posture

in joint-space, i.e., the cost is minimal if the joint angles

are the same as for the comfort posture and increases with

the distance between comfort posture and joint position. For

movement generation, this cost is minimized. We employ

this cost function to select a comfortable joint configuration

at the hitting point (see Section IV-C for details).

IV. A BIOLOGICALLY-INSPIRED TRAJECTORY

GENERATOR FOR TABLE TENNIS STROKES

To evaluate and use the behavioral model presented in

Section III, we replace the data-driven observations by a

computational realization suitable for real-time execution on

a robot. Thus, we proceed as follows: we discuss all required

components in an overview. Then, we discuss the details of

the dynamics model for table tennis, the computation of the

goal parameters, the movement generation, the vision system

and the filtering of the vision information.

A. General Assumptions

As outlined in Section III-A, we assume the movement

stages of the model by Ramanantsoa et al. [11] and use a

finite state automaton to represent this model. In order to

realize each of these four stages, the system has to detect

the ball and determine its position xb. Due to noise in the

vision processing, the system needs to filter this information

(see Section IV-F).

To generate the arm trajectories, we have to determine the

constraints for the movements of each joint of the arm in each

stage. While desired final joint configurations suffice for the

awaiting, preparation and finishing stages, the hitting stage

requires a well-chosen movement goal which is the hardest

to realize. The system has to first choose a point xtable on the

court of the opponent where the ball needs to be returned2.

2Humans choose this point as part of a higher level strategy. To date, we
choose them ad-hoc and not conditioned on the opponent.

Secondly, we have to determine the intersection point of

the ball and the racket, which specify the virtual hitting

point xhp. The hitting point is determined by the location

where the ball trajectory intersects a virtual hitting plane in

the hitting area of the robot. Based on the choice of these

two points, the necessary batting position, orientation and

velocity of the racket are chosen as goal parameters for the

hitting movement. More details on the involved computations

are given in Section IV-C.

Movement initiation follows the presented movement

stages and is triggered when the time thp of the predicted ball

intersecting the virtual hitting plane is less than a threshold.

This step requires the system to predict when the ball is going

to reach the virtual hitting plane. The current hitting time can

be determined by predicting the trajectory of the ball using

the dynamics model of the ball described in Section IV-B.

Following the suggestion in [17] that some online adaptation

of the movement can take place, we update the virtual

hitting point and subsequently the movement generation

for the hitting and finishing stage. For the determination

of the movement program, we rely upon a spline-based

representation for encoding the trajectory. More details are

given in Section IV-E. An overview of the resulting algorithm

can be found in Algorithm 1.

B. Dynamics Model of the Table Tennis Ball

To predict the position and velocity of the ball at time

tj+1 based on the ones at time tj , we have to model the

aerodynamics of the ball, and the physics of a ball’s bounce

off the table. To model the ballistic flight of the ball we

have to consider air drag, gravity and spin. As the latter is

hard to observe from data, our model currently neglects the

spin. For the table tennis ball, we can assume that the air

drag is proportional to the square of the velocity of the ball.

Using symplectic Euler integration, we can implement the

following model in discrete time form

aj+1 = g − C‖vj‖vj ,

vj+1 = vj + aj+1∆t,

pj+1 = pj + vj+1∆t,

(1)

where a denotes the acceleration vector of the ball, v denotes

the velocity of the ball, p denotes the position of the ball,

g is the gravity vector, ∆t is the time difference, C =
cwρA/(2m), cw is the drag coefficient, ρ is the density of
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the air, A is the size of the ball cross section area and m is

the mass of the table tennis ball. For the bouncing behavior

of the ball on the table, we assume a velocity change in

z-direction only. This change in velocity vj+1
z = −εT vj

z is

determined by the coefficient of restitution εT .

C. Determining the Goal Parameters

After determining the virtual hitting point, the system can

freely choose the height znet at which the returning ball

passes the net as well as the positions xb, yb where the ball

will bounce on the opponents courts. The y-axis is along the

net and the x-axis is aligned with the long side of the table.

The choice of these three variables belongs to the higher

level functionality (and is not covered in this model as we

do not attempt to model strategies based on an opponent),

we instead draw them from a distribution of plausible values.

To determine the goal parameters, we have to first compute

the desired outgoing velocity vector o of the ball which

corresponds to the velocity of the ball after the impact with

the racket. Directly from this vector, we can determine the

required velocity and orientation of the racket.

a) Desired Outgoing Vector: Based on the dynamics

model derived in Section IV-B, we obtain 5 nonlinear equa-

tions with 5 unknowns, i.e., the time until the ball reaches

the opponents court, the time until the ball reaches the net

and the desired outgoing vector (3 components)

f1(o,xhp, tnet) = xnet, (2)

f2(o,xhp, ttab) = xtable, (3)

where xnet = [xnet, znet]
T , xtable = [xb, yb, zb]

T , xnet is the

x-position for the net and zb is the height of the table. Since

these equations are nonlinear in the variables of interests,

we have to solve the problem numerically. Therefore, we

use a globally convergent solver for nonlinear equation

systems, which combines the Newton-Raphson update with

a modification for global convergence [18].

b) Racket Orientation: The orientation of the endeffec-

tor is specified as a rotation that transforms the normal vector

ne to the desired normal vector ned. To define ned, we have

to compute the normal direction of the racket nrd that results

in the desired outgoing vector o for the predicted velocity

of the ball i at the hitting point

nrd =
o − i

‖o − i‖
. (4)

Here i is the velocity vector of the incoming ball at the virtual

hitting point before impact. Note that we assume only a speed

change o − i in the normal direction nrd. The rotation that

transforms ne to nrd is defined in terms of quaternions by

qed = qrdqyrot, (5)

where qyrot is the quaternion that describes the rota-

tion from the racket to the endeffector and qrd =
(cos (γ/2) ,u sin (γ/2)), with γ = nT

e nrd/(‖ne‖‖nrd‖) and

u = ne ×nrd/‖ne × nrd‖, is the quaternion that defines the

transformation of the normal of the end-effector ne to the

desired racket normal nrd.

As there exist infinitely many racket orientations that have

the same racket normal, we need to determine the final

orientation depending on a preferred end-effector position.

The resulting quaternion of the end-effector qed is determined

by the rotation about nrd. For this purpose, the orientation

of the end-effector qed is rotated about the normal nrd of

the racket. The corresponding join values, velocities and

accelerations are then computed using inverse kinematics.

The inverse kinematics problem for the redundant DoFs is

solved numerically by minimizing the distance to the comfort

posture in joint space while finding the racket position and

orientation which coincides with the virtual hitting point xhp.

The orientation whose corresponding joint configuration θhp

yields the minimum distance to the comfort position θcom is

used as a desired racket orientation.

c) Required Racket Velocity: Next, we have to calculate

the velocity vector for the end-effector at the time of the

ball’s interception. We can describe the relation between the

components of the incoming and outgoing velocity vector

parallel to the racket norm using

o|| − v = εR(−i|| + v), (6)

where εR denotes the coefficient of restitution of the racket,

v the speed of the racket along its normal and o|| and i||
denotes the components of o and i, respectively, which are

parallel to the racket normal. This equation can be solved

for v which yields the desired racket velocity.

D. Movement Parameters

To perform a hitting movement to return an incoming ball,

we have to generate the movement for each of the four

stages. As stated in Section IV-A, we determine the start

and end position, velocity and acceleration for each of the

four stages. The start and end position for the awaiting and

preparation stage as well as the start and end configuration

of the finishing and hitting stage, respectively, are fixed and

chosen to produce a hitting movement similar as exhibited by

humans. The corresponding joint velocities and accelerations

are set to zero. The start and end position and velocity of

the finishing and hitting stage, respectively, are determined

by the joint configuration of the hitting point described above

and is determined for each stroke individually. The duration

of each stage (i.e., tas, tps, ths, tfs) are chosen such that the

robot is able to execute the movement. The duration of the

hitting stage ths is equal to the estimated time to hit thp.

E. Movement Generation

We plan our trajectory in joint space, where high velocity

movements can be executed more reliably than in workspace.

For the execution of the movements, we need a representa-

tion to obtain position θ(t), velocity θ̇(t) and accelerations

θ̈(t) of the joints of the manipulator at each point in time t
so that it can be executed with an inverse dynamics based

controller. We used fifth order polynomials θk =
∑5

l=0 αklt
l,

where αk = [αk0, αk1, αk2, αk3, αk4, αk5]
T are adjustable

parameters and k denotes the DoF, to represent the trajectory

of all stages. Such polynomials are the minimal sufficient
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Algorithm 1 Table Tennis Algorithm

Initialize: switch to AwaitingStage

repeat

Extract ball position xb

EK-Filter: xb → xt, ẋt

EK-Prediction: xt, ẋt → thp,xhp, ẋhp

————————Switch Stage—————————

if FinishingStage and MovementEnds

Switch to AwaitingStage

Compute αk = M−1(0, tas)b
as
k for each DoF k

else if AwaitingStage and thp ≤ tas + ths

Switch to PreparationStage

Compute αk = M−1(0, tps)b
ps
k for each DoF k

else if PreparationStage and thp ≤ ths

Switch to HittingStage

else if HittingStage and BallHit

Switch to FinishingStage

Compute αk = M−1(0, tfs)b
fs
k for each DoF k

end if

——————–Update Striking Motion——————–

if HittingStage

Solve with Newton-Raphson for o using

f(o,xhp, tnet) = xnet

f(o,xhp, ttable) = xtable

Determine joint configuration at hitting point

v = o|| + εRi||/(1 + εR)
nrd = o − i/(‖o − i‖)
qed = qrdqyrot

Determine optimal rotation about nrd by

θopt = arg minθhp
‖θcom − θhp‖

with Inverse Kinematics: xhp, qed, v → θhp

Compute αk = M−1(0, ths)b
hs
k for each DoF k

end if

——————–Executing Movement———————

for each DoF k do

θk =
∑5

l=1 αklt
l

end for

Execute (θ, θ̇, θ̈) with Inverse Dynamics Control.

until user stops program

representation, generate smooth trajectories and can be evalu-

ated quickly as well as easily. Applying the four stage model

of Ramanantsoa et al. [11], we can determine four different

splines interpolating between the initial and final positions.

As the trajectory of the hitting and finishing state depends on

the hitting point, trajectories have to be calculated jointly at

the beginning of the hitting stage and have to be recalculated

every time the virtual hitting point is updated.

The boundary conditions for the joint positions, velocities

and accelerations at the time point ti and tf are given by

θk(ti) = pi θ̇k(ti) = vi θ̈k(ti) = ai (7)

θk(tf ) = pf θ̇k(tf ) = vf θ̈k(tf ) = af (8)

where pi, vi, ai, pf , vf and af are the joint angles, velocities

and accelerations at the time points ti and tf , respectively.

Fig. 2. This figure shows the movement of the racket and the ball on the
real robot for a successful striking movement.

With the linear equation system Mα = b given by










1 ti t2i t3i t4i t5i
0 1 2ti 3t2i 4t3i 5t4i
0 0 2 6ti 12t2i 20t3i
1 tf t2f t3f t4f t5f
0 1 2tf 3t2f 4t3f 5t4f
0 0 2 6tf 12t2f 20t3f











︸ ︷︷ ︸

M(ti,tf )











αk0

αk1

αk2

αk3

αk4

αk5











︸ ︷︷ ︸

αk

=











pi

vi

ai

pf

vf

af











︸ ︷︷ ︸

b

, (9)

we can solve for α by Gauss-Seidel elimination efficiently.

F. Filtering the Vision Information

The vision system consists of a stereo camera setup

with two Prosilica GE640C Gigabit Ethernet cameras and a

GPU-based 60 Hz blob detection. The vision information xb

contains the 3D position coordinates of the detected blob. To

filter xb and to track the table tennis ball, we use an extended

Kalman filter (EKF) [19]. The system equations used for the

EKF are given in Equation (1).

V. EVALUATIONS

In this section, we show that the presented trajectory

generator can be used for robot table tennis in a ball cannon

setup. For this purpose, we will first examine the resulting

setup in a simulation of the robot table tennis setup. We

discuss the accuracy of the system in striking a ball such that

it hits a desired point. As second evaluation, we implement

the model on a real robot and demonstrate that it can

successfully return balls. We use a simulated and a real

Barrett WAMTM arm. It is an anthropomorphic seven degree

of freedom arm, that is capable of high speed motion and

runs on 500 Hz on a real-time Linux. A racket with 16 cm

in diameter is attached to the end-effector. The robot arm

interacts with a standard sized table and a table tennis ball

according to the ITTF rules. The ball is served randomly

by a ball cannon to the forehand of the robot. As a result,

the balls passes the robot’s end of the table in an area of

approximately 1.5 m2 on a length of 2 m. This area serves

as the virtual plane. The goal point on the opponents court

is chosen randomly over the whole area.

A. Evaluation in Simulation

We employed the SL framework [20] to create a simulation

of the Barrett WAMTM arm. To built the table tennis environ-

ment, we used a model of the flight and bouncing behavior

of the ball as discussed in Section IV-B. We model the noise
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(a) Awaiting Stage (b) Preparation Stage (c) Hitting Stage (d) Finishing Stage

Fig. 3. The figure shows the different stages, matching those in Figure 1, but performed by the real robot.

and delay of the vision system but have not yet included

spin. The coefficients of restitution of both racket-ball and

ball-table interactions were determined experimentally.

The table tennis system is capable of returning an incom-

ing volley to the opponents court which was served by a

ping pong ball launcher at random times and to arbitrarily

chosen positions. In simulations where a ball cannon served

the ball 1,000 times to a random position in the work-space

of the robot, the system was able to return 98.5% of the

balls. In 82% of the trials the ball was returned successfully

to the opponent court. The mean deviation of the position of

the racket mid point to the ball at the moment of contact is

1.8 cm. This result could be further improved by optimizing

the determination of the outgoing vector and the trajectory

generation in joint space.

B. Application on a Barrett WAMTM

Subsequently, we successfully transferred the setup onto

a real Barrett WAM robot equipped with two partially

overlapping stereo camera pairs. We use the same trajectory

generator as in the simulated setup. As the arising differences

were small, we will only focus on these in this discussion.

The extended Kalman filter, based on the ballistic flight of a

point mass with estimated restitution factors, tracks the ball

well. However, the prediction of the virtual hitting point and

time is less accurate than in simulation due to the neglected

spin and inaccuracies in the vision system. Hence, these

predictions need to be updated frequently and the trajectory

generation is adapted. As a result, the robot manages to hit

the ball. See Figure 3 for snapshots of a stroke and Figure 2

for trajectories of the racket and the ball of the real system.

VI. CONCLUSION

In this paper we presented a robot setup for an anthropo-

morphic robot arm with seven DoF that is able to return balls

served with a ping pong ball launcher. Therefore, the system

predicts the hitting point and plans a stroke trajectory that

hits the ball back to a desired point on the opponents court.

The system is based on an analysis of human table tennis and

tries to mimic human stroke movements. We showed that the

system is able to return balls served to the whole with of a

human sized table tennis table in simulation. We successfully

evaluated forhand strokes on a real Barrett WAM.

Our future work will concentrate on a higher success rate

as well as a fluent game against human players. Furthermore,

we want to integrate strategies to choose the goal position

on the opponents court.
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[16] H. Cruse, M. Brüwer, P. Brockfeld, and A. Dress, “On the cost

functions for the control of the human arm movement,” Biological

Cybernetics, vol. 62, pp. 519–528, 1990.
[17] R. Bootsma and P. van Wieringen, “Visual control of an attacking

forehand drive in table tennis,” in Complex Movement Behaviour: The

Motor-Action Controversy. North-Holland, 1988, pp. 189–199.
[18] J. Dennis and R. Schnabel, Numerical Methods for Unconstrained

Optimization and Nonlinear Equations. Englewood Cliffs, NJ:
Prentice-Hall, 1983.

[19] H. W. Sorenson, Kalman filtering: theory and application. IEEE
Press, 1985.

[20] S. Schaal, “The SL simulation and real-time control software package,”
University of Southern California, Tech. Rep., 2009.

1926




