
Layering Algorithm for Collision-Free Traversal
Using Hexagonal Self-Reconfigurable Metamorphic Robots

Plamen Ivanov and Jennifer Walter
Computer Science Department

Vassar College
{plivanov,jewalter}@vassar.edu

Abstract— This paper presents an algorithm that determin-
istically plans the simultaneous, collision-free movement of n
hexagonal metamorphic robots (modules) over any contiguous
surface composed of modules in a hexagonal grid. A planning
stage algorithm identifies narrow passages between surface cells
where moving modules will come into contact. After identifying
all narrow passages on a surface, our algorithm identifies the
cells that can be used to build temporary structures across
the entrance to each narrow passage using 1, 2, or 3 modules.
The algorithm does not use intermodule message passing at
any stage of the traversal, making it suitable for modules
with limited communication capabilities. The algorithm main-
tains optimal spacing between moving modules throughout
the traversal. Our current algorithm is an improvement over
previous bridging algorithms because the bridging cells are
situated such that when they are filled with modules, they do
not form narrow passages (pockets) on the surface. In this
paper, we also propose a multi-layered technique for finding
longer bridges. We discuss the complexity and performance of
our algorithms and give an example of the results of simulating
them using a discrete event simulator.

Index Terms— Metamorphic robots, hexagonal robots, self-
reconfigurable robots, distributed reconfiguration

I. INTRODUCTION

Self-reconfigurable [6] robotic systems are collections of
independently controlled, mobile robots, each of which has
the ability to connect, disconnect, and move around adjacent
robots. In a metamorphic, self-reconfigurable system[4], each
robot is identical in structure, motion constraints, and com-
puting capabilities; modules have a regular symmetry, allow-
ing them to densely pack the plane to form two dimensional
solid lattices; also, modules are not independently mobile,
requiring a substrate lattice in order to move to another
position in the grid.

Systems of mobile robots that can change shape under
their own power, without direct human observation and con-
trol, promise to be useful in environments that do not support
human life (e.g., interplanetary space, planet and asteroid
surfaces, hazardous waste sites, deep oceanic environments,
or even inside the human body). Proposed applications for
two-dimensional shape changing systems include adaptive
optics for telescopes, radiation shields, structural supports,
solar collectors, and nano-scale medical tools like stents

This material is based upon work supported by the National Science
Foundation under Grant No. 0712911.

and excision tools. Two-dimensional modules are a better
choice than three-dimensional modules for forming two-
dimensional structures because of their shape and the relative
simplicity of their movements.

The robots we model are deformable, hexagonal modules,
prototyped by Chirikjian in [4]. The technique of using local
contact information in a self-repairing system of hexagonal
robots was first presented by Murata et al. in [10].

In this paper, we address the issue of planning the concur-
rent and collision-free motion of a sequence of modules over
a contiguous sequence of occupied cells in the hexagonal
grid, from a source to a goal configuration. Our overall
objective is to produce an algorithm that allows n robots to
make a collision-free traversal across any contiguous modu-
lar surface in the hexagonal grid while ensuring a minimal
uniform spacing between moving robots. We assume that
each robot uses local contact information, a map of the
surface, and an awareness of its current coordinates during
the traversal.

Fig. 1. Modules (shown in blue) with modular traversal surface (red), goal
cells (green), layer1 (light gray), and layer2 (dark gray). The goal of
the reconfiguration is the collision-free movement of the modules (which
rotate in either a clockwise (CW) or counter-clockwise (CCW) direction),
in parallel, from left to right until they reach the goal cells on the far right.

We present an algorithm that forms an ordered virtual
layer (layer1) over the surface (see Fig 1) to find all
areas where moving modules could collide. Segments of the
surface where two surface cells are separated by two empty
cells are identified by folds in layer1. In this paper, we
classify four distinct types of narrow passages that occur in
layer1 and give an overview of strategies for bridging each
type with at most two modules. After all 1 and 2-module
bridges have been identified in layer1, we form another

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 521

ordered virtual layer (layer2) over layer1 to find all
locations where 3-module bridges can be formed. We are
currently working on extending this layering process to find
even longer bridges, thereby further shortening the traversal
distance.

After the preprocessing phase in which bridges are iden-
tified, the distributed reconfiguration phase begins. During
this phase, our algorithm directs modules to temporarily stop
movement to block other modules from entering portions of
the surface where they may collide.

The traversal algorithms presented in this paper further our
overall goal of developing a complete, deterministic planner
for transforming a system of hexagonal, metamorphic robots
from an arbitrary initial configuration to an arbitrary final
configuration when initial and final configurations are sepa-
rated by a contiguous traversal surface.

The remainder of the paper is organized as described in
the following paragraph. Section II describes related work.
Section III presents the system model, the problem definition,
and other definitions used in the paper. The algorithms are
presented in Section IV and analyzed in Section V. We
discuss the performance of our algorithms in Section VI and
give an example of our simulation results in Section VII.
Finally, Section VIII discusses our future work.

II. RELATED WORK

Other work has addressed the locomotion of metamorphic
robots over irregular traversal surfaces with hills or stair-like
structures. Butler et al. [2] present a rule set for distributed
locomotion of layers of deformable cubic modules over
occupied cells on the traversal surface. In [3], distributed
algorithms for square and cubic robots moving in connected
layers over irregular terrain are presented. Hosokawa et al.
[5] addresses the problem for rigid square modules. While
reconfiguration of three-dimensional modules has become
the focus of many researchers in the area of reconfigurable
robotics, e.g., Bojinov et al. [1], the algorithms presented
by these researchers are probabilistic and therefore cannot
guarantee successful reconfiguration. Also, algorithms for the
reconfiguration of three-dimensional modules add unneces-
sary complexity to the process of forming two-dimensional
shapes.

Our work differs from the work of [1], [2], [3] and [5]
because: 1) we are addressing the problem for hexagonal,
rather than square, cubic or dodecahedral modules, 2) we
do not require any intermodule message passing during
the traversal, and 3) our algorithms are deterministic, not
probabilistic. Additionally, our algorithms use preprocessing
to ensure that no collision or deadlock occurs during recon-
figuration.

Recent work by Lee [7] presents an algorithm to recon-
figure a connected mass of hexagonal metamorphic robots.
Lee’s algorithm uses no preprocessing and it cannot guaran-
tee that module collision and deadlock do not occur. Also,
Lee’s algorithm uses message passing during reconfiguration
while ours does not. One of our contributions in this paper

is showing that an algorithm does not have to send and
receive messages in order to solve the traversal problem.
Rather, we show that the traversal problem can be solved
using only contact information, module location information,
and knowledge of the location of surface and goal cells in a
preprocessing phase.

Our previous work in [9], [11], [12], [13] is concerned
with reconfiguring a connected set of hexagonal robots
from an initial straight chain to an arbitrary-shaped goal
configuration. For these goal-filling algorithms, we assume
the size of the goal configuration is the same as the number
of modules and that the initial and goal configurations
overlap with no intervening surface. Prior to the start of
the reconfiguration, in a preprocessing phase, each module
calculates a matching between itself and one of the goal
cells. In [11] we address the same problem with irregularly
shaped obstacles embedded in the goal configuration. The
obstacles are assumed to have narrow passages (pockets) in
their surface and the algorithm calculates a matching between
modules and the goal cells inside the pockets. In [9], we
present algorithms to fill a goal configuration that contains
multiple obstacles. It uses modules to form a border around
the goal configuration and the pocket-filling algorithm from
[11], plus a strategy for including obstacles in the pocket
surface, to fill the goal.

The first algorithms for bridging pockets instead of filling
them were presented in [8]. The result presented in this
paper differs from the algorithms presented in [8] because
it: 1) ensures that bridging modules do not create narrow
pockets that are not part of the traversal surface, and 2) uses
many different bridge configurations, depending on the local
configuration of the surface around the pocket opening and
the perimeter length of the pocket. The algorithms presented
in this paper ensure that reconfiguration with concurrent
movement will be successful after a single preprocessing
phase, while those given in [8] are more complicated and
require four preprocessing phases to analyze the surface.

III. SYSTEM MODEL, PROBLEM, AND DEFINITIONS

This paper considers the reconfiguration scenario in which
modules start in a chain configuration and move to another
position in the grid across an uneven contiguous surface
composed of other, unmoving modules (shown in red in Fig
1). Unlike the problem considered in [9], in this paper the
objective is to efficiently move all the modules across the
surface, not to fill the pockets in the surface.

One concern in such a scenario is that the modules do not
contact other moving modules during traversal. This requires
blocking the segments of the surface in which collision will
occur. To block particular areas of the traversal surface,
modules form temporary bridges that allow other robots to
pass over constricted areas, and, in so doing, prevent collision
of moving modules while shortening the overall length of the
traversal for all modules.

The system model that we work with has restrictions and
assumptions that make it more predictable to work with and

522

also make it a simplified model of the real world. We use a
uniform hexagonal grid to describe the plane in which our
modules move. The grid is labeled using a modified Cartesian
coordinate system that is described by Chirikjian [4]. The
size and shape of the modules is identical to the individual
hexagons in the grid. We discuss module limitations in the
next section.

A. General Assumptions about the modules
We assume the number of modules in the system is

n, where n ≥ 3. All modules are identical, hexagonally-
shaped, flexible-jointed robots that have the same computing
capabilities and run the same program. At all times each
module knows its location (the coordinates of the cell that
it currently occupies), the state of the cells that are its
immediate neighbors (either occupied or empty), the total
number of modules executing the traversal, and a map of the
entire surface, including the initial and goal configurations.
The modules follow two sets of constraints that are enforced
by their physical nature and by our algorithms.

Fig. 2. An illustration of deformable module detaching from cells above
and left and rotating CW over substrate (S) in a single round of movement.
Time proceeds from left (a) to right (e). Only outlined cells are occupied.
Illustration adapted from [4].

Physical constraints on the modules (refer to Fig 2):
1) A robot must have a minimum of two contiguous sides

adjacent to unoccupied cells in order to move.
2) A robot must have an adjacent occupied cell (the

substrate cell) to rotate over into its next position.
3) Modules cannot carry, push, or pull other modules, i.e.,

a module is only allowed to move itself.
4) Modules are deformable and move by a combination

of rotation and changing joint angles, either clockwise
(CW) or counter-clockwise (CCW).

Algorithm constraints on the modules:
1) Modules are initially aligned in a contiguous chain ad-

jacent to the traversal surface such that each module in
the initial chain has at most 2 neighboring modules that
are not mutually adjacent and such that the modules
in the chain do not form pockets with other modules
or with the traversal surface.

2) Modules move in synchronous rounds.
3) Only one module tries to move into a particular cell

in each round.
4) Modules have local information about surrounding

cells and a map of the initial state of the plane.
5) Once in motion, modules are separated by two unoc-

cupied cells. As shown in [14], this spacing prevents

moving modules from contacting each other in acute
angle corners of the traversal surface.

6) Modules do not exchange any algorithm-generated
messages.

The physical constraints are a property of the module
design we are considering, as presented in [4], and therefore
we include them in our model. Many of the algorithm
constraints, on the other hand, are enforced to prevent
collision and unpredictability of the system. For example, a
module that uses a moving module as substrate will have
an unpredictable position after the round, and if moving
modules lack sufficient intermodule spacing, they will collide
when moving through acute angle bends.

B. Definitions
In this section we formally define terms that are used

throughout the paper.
A traversal surface (or simply surface) is a chain of one

or more contiguous occupied cells that modules can use as
substrate but cannot enter. A free cell is any cell in the
grid that is not occupied by a module. For this problem,
we assume that the surface is composed of a contiguous
chain of unmoving modules that are in contact with a free
region in the plane and that this surface links initial and
goal configurations. We call all free cells in contact with the
surface the perimeter of the surface. Because the surface is
contiguous, the perimeter also has the property of being a
contiguous chain of cells.

Given a traversal surface, a pocket cell is any unoccupied
cell that is bisected by a straight line between the center
points of non-adjacent obstacle cells. In Fig 3(a), for exam-
ple, the cells numbered 15. . .23 are pocket cells and in (b),
cells numbered 15. . .37 and all un-numbered white cells are
pocket cells.

Narrow pockets are segments of the surface where concur-
rently moving modules will come into contact when moving
into and out of the pocket. These narrow passages include
all areas where two free cells lie on a straight line between
the centers of non-adjacent surface cells. For example, in
Fig 3(a), perimeter cells in the range 15 to 23 form a narrow
pocket and in part (b), cells 20 to 27 and 30 to 35 line the
perimeter of narrow pockets.

We define a bridge to be a temporary structure formed
by stationary modules that blocks moving modules from
entering a narrow pocket. Unlike [8], the modules that stop
to block narrow pockets cannot form new narrow pockets on
the surface because they are located inside the pocket.

IV. ALGORITHM

Each individual module runs the same preprocessing
algorithm on the same map of the environment. In the
preprocessing phase, each module computes the movement
of a probing module—a virtual module that moves through
perimeter cells across the surface from source to goal end—
to identify and number layer1 perimeter cells in order to
identify bridge cells to be used during traversal.

523

Fig. 3. Example of pocket configurations with numbered perimeter.

A pair of perimeter cells that are in contact but are not con-
secutively numbered are Non-Consecutive Perimeter (NCP)
cells. A Bridge Identifier (BI) is an NCP pair composed of
perimeter cells with numbers that are not included within the
range of any other NCP pair. For example, in Fig 3(a), cells
14 and 24 form a BI, and in part (b) cell pairs (19,28) and
(30, 35) form a BI.

After discovering all NCPs using layer1, modules use a
similar technique to number cells over layer1 from source
to goal end to identify and number layer2 perimeter cells.
Our algorithm uses the contact patterns of cells in layer1
to locate areas on the surface that can be bridged by 1 or 2
modules and uses contact patterns in layer2 to find bridges
of length 3. The classification of these bridges is described
in the next two sections.

A. Classification of 1 and 2 Cell Bridges

The local configuration in the vicinity of each BI allows
us to specify 4 main cases of bridges, as shown in Fig 4:
SINGLE, BASIC, LEFT and RIGHT.

Fig. 4. Local configuration of 1- and 2-bridge cases. Surface cells shown
in red, BI cells in yellow, free cells in white, and cells that can be either
surface or free cells in gray.

These cases are distinguished by the location of the BI
cells in relation to the surrounding surface cells, as shown in
Fig 5. Suppose a straight line through the center of the BI
cells is extended through cells d and e on left and right: if
neither d nor e are surface cells, the bridge case is SINGLE;
if both d and e are surface cells, the bridge case is BASIC; if
d is a surface cell but e is not, the bridge case is LEFT; and
if e is a surface cell but d is not, the bridge case is RIGHT.
In Section V, we show that these cases describe all possible
configurations of surface cells adjacent to BI cells.

For BI configurations that fit into the BASIC category, we
use the following rule: the first module to reach a BI cell

Fig. 5. Classifying main bridge categories. BI cells are shown in yellow.
Assume the interior of the narrow pocket is below and the exterior is above
the double-headed arrow.

stops and waits for n − 1 modules to pass over. As shown
in Fig 4, if modules stop in BI cells in the BASIC category
or in the cell whose perimeter number lies between the
perimeter numbers of the BI cells in the SINGLE category,
the modules do not extend outside the half-plane formed by a
straight line drawn parallel to and on the exterior side of the
tops of surface cells neighboring the BI cells. Therefore,
using modules to temporarily fill such cells cannot create
other narrow pockets on the surface.

LEFT and RIGHT bridge types are mirror images of each
other and have a more detailed sub-classification than do
SINGLE or BASIC types. This sub-classification depends on
both the number of perimeter cells whose perimeter numbers
are within the range of the BI pair and on the configuration
of surface cells inside the pocket. The TempSupport, and
Support cells are chosen such that a module has sufficient
clearance to enter the given cell before the Bridge cell is
filled and sufficient clearance to move to a position that
allows it to exit the pocket without traversing the entire
pocket interior.

In the LEFT and RIGHT cases, modules form bridges in
the cells adjacent to and on the inside of the BI pair that
identifies the need for a bridge in these locations. Since all
modules are inside the pocket, these bridges cannot form
other narrow pockets on the traversal surface.

B. Classification of 1 and 2 Cell Bridge Types

Each 2 cell bridge configuration contains one, two, or
three types of bridge cells: Bridge, TempSupport, and Support
cells. We distinguish different types in order to set varying
delays and changes of rotation direction in the surface map
computed at every module.

At least one and at most two Bridge cells exist in the
vicinity of every BI. Specifically, either the first, second, or
both first and second modules to reach a particular narrow
pocket during a traversal temporarily stop in Bridge cells.
Modules that stop in these cells remain in the cell for a
uniform delay time to allow all other modules to pass and
then resume movement in the same rotation direction in
which they were moving before they stopped.

The remaining two types of bridge cells, TempSupport and
Support, occur only with the main cases LEFT and RIGHT.

While a single module entering a cell inside a narrow
pocket with a 2-cell opening could prevent other modules
from entering the pocket, any single bridging module stop-
ping in the narrow pocket entrance would have to completely

524

traverse the pocket either before or after all other modules
had passed, causing undesirable variations in intermodule
spacing. To maintain a uniform and efficient intermodule
spacing, we devised a strategy in which the first module to
enter a narrow pocket either provides substrate for a module
entering (in the BASIC and LEFT cases) or exiting (in the
BASIC and RIGHT cases) a Bridge cell. Using two modules
in a bridge, in combination with the proper delays, ensures
that no module must traverse the entire perimeter of any
narrow pocket with perimeter length ≥ 4 cells.

Fig. 6. The general purpose of TempSupport (TS), Bridge (B), and Support
(S) cells in a LEFT bridge case with time increasing from, (a) to (c), and a
RIGHT bridge case , (d) to (f), during a traversal. Gray cells are occupied
by modules, red cells are surface cells, yellow cells are BIs, and white
cells are free. Execution time increases from a–c and from d–f.

Fig 6 gives a general idea of the relative location and
an insight into the purpose of Bridge, TempSupport, and
Support cells in particular LEFT (parts (a), (b), and (c))
and RIGHT (parts (d), (e), and (f)) cases. The module that
stops in the TempSupport cell enters the pocket first from
the left, rotating CW (parts (a) and (d)). The module in the
TempSupport cell waits until its neighboring Bridge cell is
filled (parts (b) and (e)), then it reverses rotation direction
and rotates CCW, using the Bridge cell as a substrate, until
it reaches a Support cell (parts (c) and (f)). A module in
a Support cell resumes CW rotation, using a surface cell
as substrate, after its neighboring Bridge cell is vacated.
TempSupport and Support cells are always filled (in the order
TempSupport and then Support) by the same module.

In the normal case, a module stops when it enters a Bridge
cell and then waits until n−1 modules pass over it. There are
two exceptions to this rule, described in the next paragraphs.

In the LEFT case (Fig 6(a), (b), and (c)), the module that
stops in the TempSupport and then the Support cell passes
through the Bridge cell on its way out of the pocket. Our
algorithm ensures that no module exiting a TempSupport or
Support cell stops in the adjacent Bridge cell.

In the RIGHT case (Fig 6(d), (e), and (f)), the first module
to reach a TempSupport cell must pass through a Bridge cell
on its way to the TempSupport cell. When the Bridge cell
adjacent to a TempSupport or Support cell is entered, the
module entering the Bridge cell detects if the neighboring
TempSupport cell is occupied. If the TempSupport cell is
not occupied, the module moves through the Bridge cell
without stopping, to occupy the TempSupport cell. If the

TempSupport cell is occupied, the next module will stop in
the Bridge cell. After a neighboring Bridge cell is occu-
pied, the module in the TempSupport cell changes rotation
direction and moves to a Support cell, using the Bridge cell
as substrate. The module occupying a Support cell is in a
position that allows it to exit the pocket without traversing the
entire pocket perimeter, maintaining the intermodule spacing
of 2 cells after its neighboring Bridge cell is vacated. The
first module to enter any TempSupport or Support cell always
stops in that cell, using the delay and direction assigned to
the particular cell in the module’s map of the surface. Only
one module will enter the TempSupport and Support cells of
a particular narrow pocket during the traversal.

C. Traversal Planning Algorithm

Recall, from Section III, that n modules are initially
aligned in a chain at the source end of a traversal surface.
The objective of the algorithm is to move all the modules
across the surface to the goal configuration while maintaining
an optimal [14] intermodule spacing of 2 free cells between
moving modules.

Algorithm FINDBRIDGECELLS in Fig 7 is run in a pre-
processing phase at each module.

Algorithm FINDBRIDGECELLS(surfaceCells)
1. layer1 = perimeter of surfaceCells from source to goal end
2. layer2 = perimeter of layer1 from source to goal end
3. Find and store all BI cell coordinates in layer1 in

array bridgePairs
4. bridgeCells,bridgeLength = SETBRIDGINGCELLS(bridgePairs)
5. Find and store all 3-cell bridges identified by layer2

Fig. 7. Preprocessing algorithm creates bridge map at each module.

Steps 1 and 2 of algorithm FINDBRIDGECELLS are ac-
complished by probing the surface or layer1, respectively,
with a virtual module rotating clockwise (CW) across the
surface or layer1, from the initial configuration to the goal
configuration, and numbering each cell on the perimeter in
ascending order (see Fig 3 for examples of numbered surface
segments.)

After the perimeter cells are identified and numbered, the
algorithm checks for narrow pockets in step 3 of FIND-
BRIDGECELLS, finding and storing the coordinates of BI
pairs.

Step 4 of FINDBRIDGECELLS identifies the main bridge
cases (Fig 4) using the position of BI cells in relation to
surrounding surface cells (Fig 5).

The procedure SETBRIDGINGCELLS (Fig 8) takes as input
the BI pairs found on the surface. Procedures NOSUR-
FCELLSALLIGNED, BOTHSURFCELLSALLIGNED, LEFT-
SURFCELLALLIGNED, and RIGHTSURFCELLALLIGNED
are predicates that take in both cells in the BI pair and
analyze the configuration surrounding the BI cells. The
pseudocode for each of these predicates is omitted in the
interest of preserving space. The value |pairRange| in Fig
8 is the the number of perimeter cells inside the narrow
pocket. Note that when calculating pocket length, we do not
include the BI cells because they are outside the range of

525

Procedure SETBRIDGINGCELLS(pairs)
1. for pair in pairs:
2. if BOTHSURFCELLSALLIGNED(pair[0],pair[1]):
3. classify type of pair[0] and pair[1] as BASIC
4. append ((pair[0],pair[1]), 0) to classifiedBridgePairs
5. else if NOSURFCELLSALLIGNED(pair[0],pair[1]):
6. classify type of cell as SINGLE
7. cell = cellAt(pn(pair[0]) +1)
8. append ((cell, 0), 0) to classifiedBridgePairs
9. else if LEFTSURFCELLALLIGNED(pair[0],pair[1]):

10. classify type of pair as LEFT
11. append ((cellAt(pn(pair[0])+1))),cellAt(pn(pair[1]−1))),

|pairRange|) to classifiedBridgePairs
12. else if RIGHTSURFCELLALLIGNED(pair[0],pair[1]):
13. classify type of pair as RIGHT
14. append ((cellAt(pn(pair[0])+1))),cellAt(pn(pair[1]−1))),

|pairRange|) to classifiedBridgePairs
15. return classifiedBridgePairs

Fig. 8. Procedure to set type of bridge in bridge map of each module.
Note that cellAt(...) returns the cell at the given perimeter number and pn(...)
returns the perimeter number of a given cell.

pocket cells in the LEFT and RIGHT cases. We use the local
configuration and number of perimeter cells inside the pocket
(the pocket length) to sub-classify LEFT and RIGHT bridge
cases.

LEFT and RIGHT pockets of length 1 or 2 are the only
cases where a single module of type Bridge is used. If the
pocket length is ≥ 3, we do not use a single bridge module
because that module would have to traverse the entire pocket,
causing a deviation from the optimal intermodule spacing.
Instead, we use two modules in these cases.

D. Classification of 3 Cell Bridges

The procedure for finding the 3 bridges in step 5 of al-
gorithm FINDBRIDGECELLS searches through the layer2
cells, looking for a triple of numbered cells (the cells
numbered in white in Fig 9) that form either an acute angle
(Fig 9 (a), (b), and (c)), or an obtuse angle (Fig 9(d)).
Once such a pattern is found, simple checks for cells in the
surrounding area are used to identify the bridge cells and to
avoid mis-identification of bridge cells.

Cell patterns in layer2 that are used to identify 3-
cell bridges include the following: acute angles for straight
symmetric (Fig 9(c)) and right and left curved asymmetric
(Fig 9(a) and (b)), and obtuse angles for curved symmetric
(Fig 9(d)).

All cells in a 3-cell bridge are classified as Bridge cells
because modules will enter these cells consecutively from
either direction and vacate the cells consecutively to proceed
in either direction. Just like in the 2-cell bridges, modules
that enter Bridge cells stop and wait until n − 1 modules
have passed and then resume movement to maintain the 2-
cell intermodule spacing.

E. Distributed Reconfiguration Algorithm

The distributed reconfiguration algorithm run by each
module in every round after the preprocessing phase is
shown in Fig 10. Initially, the rotationDirection set at each
module is CW (or CCW depending on the direction modules
will traverse the surface), and notInGoalCell is true for

1 2

3 6

3

4 8 921

5 6

4 8

5 10 1132

6 7

1

1 2

87

4

4

321 5 6

21

1
2 8

3
2

9
4

51 m

7

3 4 9

6

3

3 7

(a) (b)

(c) (d)

Fig. 9. Types of 3-cell bridges include right and left curved asymmetric
(a) and (b), straight symmetric (c), and curved symmetric (d). Surface cells
(red), layer1 cells (orange), layer2 cells (purple) and free cells (white).
Bridge cells are outlined heavily in black.

all modules. Modules become freeToMove consecutively,
starting at the module that is initially furthest, in terms of
surface distance in a given rotation direction, from the goal
and each module except the one furthest from the goal has an
initial delay of one time step to create a 2-cell intermodule
spacing.

Algorithm MOVEMODULE()
1. if freeToMove and notInGoalCell:
2. if delay = 0:

rotate in rotationDirection over adjacent substrate cell
3. else: delay = delay − 1; return
4. if cell just entered is a goal cell: notInGoalCell = false
5. if cell just entered is of type Bridge:
6. wait for n− 1 modules to pass.
7. else if cell just entered is of type TempSupport:
8. wait until neighboring Bridge cell is occupied
9. rotationDir = opposite of initial direction

10. else if cell just entered is of type Support:
11. wait until neighboring Bridge cell is unoccupied
12. rotationDir = initial direction

Fig. 10. Algorithm run at each module at each step of distributed
reconfiguration.

Figure 11 shows the bridges formed by our algorithm on
the surface shown in Section I. Note that 1- and 2-cell bridges
that are covered by 3-bridges are not shown in this figure
because no module would ever reach these cells. However,
for clarity, in our accompanying video, we show all classified
bridges.

V. ALGORITHM CORRECTNESS

We show that the main cases given in Fig 4 are an
exhaustive categorization of bridge types.

Theorem 1: For any BI composed of cells x and y, as
shown in Figure 5, the cells in positions a, b, c, and g must
be free, and x and y must be adjacent to at least two different
obstacle cells, at least one of which is taken from set {e, h}
and at least one of which is taken from the set {d, f}.

Proof: Assume a BI is formed by adjacent cells x and
y as shown in Fig 5. This assumption implies that cells x
and y are perimeter cells whose perimeter numbers are not

526

Fig. 11. Modules (shown in blue) with modular surface (red), goal cells
(green), layer1 (light gray), and layer2 (dark gray). One-, and two-,
and three-cell bridges are shown in yellow.

consecutive and that the perimeter numbers of x and y do
not lie within the range of any other BI. By definition, each
BI cell must be in contact with at least one surface cell.

Assume, without loss of generality, that the pocket formed
by the obstacle cells is below cells x and y in Fig 5 and that
the perimeter number of x is strictly less than the perimeter
number of y − 1.

If cell b is a perimeter cell, then its perimeter number must
be either less than x or greater than y, a contradiction to the
assumption that x and y are BI cells since, by definition in
Section IV, a BI cannot occur within the range of another.
If either cells a or c are surface cells, cell b is a perimeter
cell, so neither a nor c are surface cells.

If cell g is a surface cell, then x and y must be consec-
utively numbered perimeter cells and thus not in a BI, a
contradiction to our assumption. Therefore, cell g must be a
free cell. Since g is not a surface cell, the only neighboring
cells of x that can be surface cells are d and f and the only
neighboring cells of y that can be surface cells are e and h.

Since x and y must be adjacent to non-adjacent surface
cells, at least one of the surface cells adjacent to y is taken
from set {e, h} and at least one of one of the surface cells
adjacent to x is taken from the set {d, f}.

The proofs showing that our classification of Bridge,
TempSupport, Support and 3-bridge cells covers all cases
rely on an exhaustive listing of the layout of free and surface
cells around each pocket and are omitted here in the interests
of brevity.

VI. ALGORITHM COMPLEXITY AND PERFORMANCE

The complexity measure of interest in the preprocessing
phase of our reconfiguration scheme is the running time of
the algorithm. Since the modules do the preprocessing in
parallel, the running time is dependent only on the length
of the surface perimeter. To calculate the first layer, each
module must check the neighbors of every cell on the surface
perimeter. Every perimeter cell has at most 6 neighbors. If
the surface perimeter length is m, the running time is O(m).

The complexity measures of interest in the distributed
phase of reconfiguration are the number of time steps and
the number of module movements that take place during
a traversal. Without using bridges of length 1 and 2, the

correctness of the reconfiguration cannot be ensured because
of the possibility of module collision when traversing the sur-
face. Therefore, we address the performance of our algorithm
only for bridges of length 3.

Figs 12 and 13 show the result of measuring the number
of time steps and the number of module movements, respec-
tively, for a surface in which the size of the pocket perimeter
increases along the x axis. As the figures show, the presence
of a bridge of three modules makes the traversal take an
identical number of time steps and module movements,
regardless of the size of the pocket. The tests were conducted
using four modules on a surface with a single variable-length
pocket.

25 

30 

35 

40 

45 

50 

55 

60 

3  8  13  18  23  28 
Ti
m
es
te
ps
 

Pocket Perimeter Length 

Timestep Performance 

Fig. 12. Reconfiguration time for a surface in which the size of the pocket
is increasing along the x axis. The blue line shows the number of time
steps taken when modules must traverse the entire pocket and the red line
shows the number of time steps taken when a three-module bridge blocks
the pocket.

As Fig 12 shows, for small pocket perimeter lengths, the
time for making 3-bridges can actually make the traversal
longer. However, for pocket perimeter lengths greater than
10, the traversal time saved by shortening the overall length
of the traversal surface outweighs the cost of detaining
modules in the bridge cells. An optimization that could be
made to our algorithm is to avoid forming 3-bridges for
smaller pockets.

Fig. 13. Total module movements for a surface in which the size of the
pocket is increasing along the x axis. The blue line shows the number of
moves when modules must traverse the entire pocket and the red line shows
the number of moves taken when a three-module bridge blocks the pocket.

Forming bridges of type SINGLE is not necessary for
collision-avoidance, but SINGLE bridges do have an effect
on efficiency. Using modules to fill SINGLE bridges adds a
time delay of 2 time steps per bridge and reduces the number

527

of module moves by (n − 1) per bridge (where n is the
number of modules.)

VII. SIMULATION RESULTS

We developed an object-oriented discrete event simulator
to test the performance of our traversal algorithm on a wide
variety of different surfaces. Our simulator is written in Java,
using the Jython library so that algorithms can be quickly
prototyped in Python.

Fig. 14. Sample surface traversed successfully using our algorithm. Red
cells are the modular surface, pink cells are 1 and 2-cell bridges, yellow
cells are 3-cell bridges, light blue cells are the initial configuration, and dark
blue cells are modules traversing surface from left to right.

The video accompanying this paper shows eleven modules
traversing the convoluted surface shown in Fig 14. The col-
oring of cells in the video matches the coloring described in
the caption for Fig 14. The video shows a single environment
that demonstrates all the bridge types described in this paper.
It also demonstrates the effectiveness of the 3-cell bridges
in shortening the traversal distance and makes the need for
longer bridges apparent.

VIII. FUTURE WORK, CONCLUSION, AND DISCUSSION

Future work includes modifying the algorithms presented
in this paper to find bridges that are longer than 3 cells.
This could be done by extending our layering technique.
Clearly, the number of modules in the traversal is an upper-
bound on the length of bridges that can be formed. Adding
multiple layers will increase the algorithm complexity to
O(n × m), where n is the number of modules and m
is the surface length. The desirability of forming bridges
longer than 3 cells would depend on the emphasis of the
algorithm’s application—cost of preprocessing versus cost
of traversal. Our future plans are to develop experiments
to further understand efficiency trade-offs between these
costs. The layering technique we are using appears to be
a promising step in finding longer bridges.

An optimization to the planning phase of the algorithm
is to locate the longest bridges first, thereby reducing the
amount of surface that is processed to find the shorter
bridges.

ACKNOWLEDGEMENTS

We thank Isaac Krull for his work on the precursors to the
algorithms presented in this paper and Stanton Wong for his
help making the accompanying video.

REFERENCES

[1] H. Bojinov, A. Casal, and T. Hoag. Emergent structures in modulular
self-reconfigurable robots. In Proc. of IEEE Intl. Conf. on Robotics
and Automation, pages 1734–1741, 2000.

[2] Z. Butler, K. Kotay, D. Rus, and K. Tomita. Generic decentralized
control for a class of self-reconfigurable robots. In Proc. of IEEE
Intl. Conf. on Robotics and Automation, pages 809–816, 2002.

[3] Z. Butler and D. Rus. Distributed locomotion algorithms for self-
recongurable robots operating on rough terrain. In Proc. of IEEE
Intl. Symp. on Computational Intelligence in Robotics and Automation,
pages 880–885, 2003.

[4] G. Chirikjian. Kinematics of a metamorphic robotic system. In Proc. of
IEEE Intl. Conf. on Robotics and Automation, pages 449–455, 1994.

[5] K. Hosokawa, T. Tsujimori, T. Fujii, H. Kaetsu, H. Asama, Y. Kuroda,
and I. Endo. Self-organizing collective robots with morphogenesis
in a vertical plane. In Proc. of IEEE Intl. Conf. on Robotics and
Automation, pages 2858–2863, 1998.

[6] K. Kotay and D. Rus. Motion synthesis for the self-reconfiguring
molecule. In Proc. of IEEE Intl. Conf. on Robotics and Automation,
pages 843–851, 1998.

[7] K. Lee. A simple and strong algorithm for reconfiguration of
hexagonal metamorphic robots. International Journal of Computer
Science and Networks, 10(2):50–54, 2010.

[8] D. Little and J. Walter. Using hexagonal metamorphic robots to form
temporary bridges. In Proc. of the IEEE International Conference on
Intelligent Robots and Systems, pages 2652–2657, 2005.

[9] S. Matysik and J. Walter. Using a pocket-filling strategy for distributed
reconfiguration of a system of hexagonal metamorphic robots in an
obstacle-cluttered environment. In Proc. of the IEEE International
Conference on Robotics and Automation, pages 4265–4272, 2009.

[10] S. Murata, H. Kurokawa, and S. Kokaji. Self-assembling machine. In
Proc. of IEEE Intl. Conf. on Robotics and Automation, pages 441–
448, 1994.

[11] J. Walter, M. Brooks, and N. Amato. Filling an obstacle pocket
with hexagonal metamorphic robots. In Proc. of 8th Intl. Conf. on
Intelligent Autonomous Systems, pages 703–711, 2004.

[12] J. Walter, B. Tsai, and N. Amato. Algorithms for fast concurrent
reconfiguration of hexagonal metamorphic robots. IEEE Transactions
on Robotics, 21(4):621–631, 2005.

[13] J. Walter, J. Welch, and N. Amato. Concurrent metamorphosis of
hexagonal robot chains into simple connected configurations. IEEE
Transactions on Robotics and Automation, 18(6):945–956, 2002.

[14] J. Walter, J. Welch, and N. Amato. Distributed reconfiguration of
metamorphic robot chains. Springer-Verlag Journal on Distributed
Computing, 17:171–189, 2004.

528

