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Abstract— We propose a method for multi-modal scene
exploration where initial object hypothesis formed by active
visual segmentation are confirmed and augmented through
haptic exploration with a robotic arm. We update the current
belief about the state of the map with the detection results
and predict yet unknown parts of the map with a Gaussian
Process. We show that through the integration of different
sensor modalities, we achieve a more complete scene model. We
also show that the prediction of the scene structure leads to a
valid scene representation even if the map is not fully traversed.
Furthermore, we propose different exploration strategies and
evaluate them both in simulation and on our robotic platform.

I. INTRODUCTION

The ability to interpret the environment, detect and manip-
ulate objects is at the heart of autonomous robot systems, [1],
[2]. These systems need to represent known and unknown
objects for generating task-relevant actions. In this paper,
we present strategies for autonomously exploring a scene
containing unknown objects. Our robotic setup consists of a
vision system that generates initial object hypotheses using
active visual segmentation, [3], [4]. Thereby, large parts of
the scene are explored in a few glances. However, without
significantly changing the viewpoint, areas behind objects are
occluded. Having a complete scene representation is essential
for finding suitable grasps. To achieve that, parts of the
scene that are not visible to the vision system are actively
explored by the robot using a hand with tactile sensors.
Compared to a gaze shift, moving the arm is expensive
in terms of time and gain in information. Therefore, the
next best measurement has to be determined to explore the
unknown space efficiently.

As exploration strategies, we adapt two approaches from
the area of mobile robotics. First, we use Spanning Tree
Coverage (STC) that is optimal because every place in
the scene is explored just once [5]. Secondly, we extend
the approach presented recently in [6] where unexplored
areas are predicted from sparse sensor measurements by a
Gaussian Process (GP). Exploration then aims at confirming
this prediction and reducing its uncertainty. The resulting
scene model is multi-modal in the sense that it i) generates
object hypotheses emerging from the integration of several
visual-cues, and ii) fuses visual and haptic information. This
model then forms the basis for interactive perception and a
general symbol grounding problem [7].
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Fig. 1. Top Left: ARMAR III robot head. Top Right: Kuka arm with the
Schunk hand. Middle Left: Peripheral view of a typical experimental scene.
Middle Right: Foveal view of the same scene.

Our experimental platform includes the Armar III robotic
head with a foveal and peripheral stereo camera. Attention
is used in the peripheral view to direct fixation of the foveal
cameras at regions of interest [8]. Object manipulation is
done using a 6DoF Kuka arm equipped with a Schunk
Dextrous Hand 2.0. Fig. 1 shows the hardware, an example
view of each camera and a typical table top scene.

The contributions of this paper are i) strategies for active
exploration of a predicted map, ii) a quantitative comparison
with coverage based exploration and iii) a multi-modal scene
representation that integrates data from a state-of-the-art
vision system with haptic data.

II. RELATED WORK

Interactive perception has gained considerable interest in
the last years. In [9], [10], the robot pushes objects to gain
more information about the objects or the scene. In that work
the assumption is initial object hypotheses are given. The
problem of choosing an action for forming these hypotheses
is circumvented.

In this paper, we want to actively choose measurements
from a latent function, in our case the scene, for approx-
imating it. This is related to active learning in the field
of machine learning. In [11], this is studied in an object
classification task. Specific training examples are selected for
querying their ground truth label to improve the estimated
decision boundary. A common approach is to choose a
measurement action that maximizes the expected information
gain. In [12], such a method is applied to C-space exploration
with a robotic arm. In [13], entropy is considered for
reinforcement learning. Training data for learning the policy
model is chosen based on an utility function that considers
both the expected reward and expected information gain.
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Algorithm 1: Pseudo Code for Scene Exploration
Data: Segmented point cloud S from active segmentation
Result: Fully explored P
begin

t = 0, j = 0
P = project(S)
while |Pu| > 0 do

P̂ = predict(P)
pj = planNextMeasurements(P, P̂)
repeat

t++
zt = observe(P, pj )
P = update(P, zt)

until zt 6= occ
j ++

end
end

Such combined utility functions are also common in mobile
robotics [14], [15], [16]. Here, the information gain of a
specific point in the commonly used 2D map is traded off
with the distance to travel there.

Other exploration strategies apply algorithms that sys-
tematically explore the space. We employ Spanning Tree
Coverage [5] in which every grid cell is guaranteed to
be measured only once. In this paper, we compare this
exploration strategy with an information-theoretic approach.
Specifically, we want to analyze how these strategies in-
fluence the quality of the scene estimation over the whole
exploration process.

III. SCENE REPRESENTATION

As a scene representation, we choose a traditional 2D
occupancy grid (OG) [17]. It is well suited for integrating
measurements from different sources. The grid which is
aligned with the table top, uniformly subdivides the scene
into N cells Ci with coordinates (wi, vi). Each cell has a
specific state s(Ci). For simplicity, we will refer to it as si.
It is defined over a binary random variable with two possible
values: occupied (occ) or empty (emp). It holds that P (si =
occ)+P (si = emp) = 1. We define P = {Ci | 0 < i < N},
as the whole grid. Our goal is to estimate P (si = occ | {z}t),
the probability for each cell Ci to be occupied given a set
of sensor measurements {z}t up to point t in time. Let
P = Pk ∪ Pu where Pk is the set of cells whose state has
already been estimated based on observations. Pu is the set
of cells that has not been observed yet. Each cell is initialized
with a prior probability P (si = occ) = 0.5. Our approach
for scene exploration is summarized in Algorithm 1.

Initially, we project the stereo reconstructed point
cloud S of the scene on the grid as follows. Disparity maps
are gathered from several views of the robot head on the
scene. They are converted into 3D points and projected
into a common reference frame for all observations. Once
aggregated, the whole point cloud is cleaned to remove
outliers. The labeling from the 3D object segmentation
(discussed in Section IV-A) is applied to the remaining points
identifying objects from the background. These object points
are placed into a voxel grid. This voxelized representation
is projected down into a 2D occupancy grid P for planning.
Fig. 2 displays this process and the resulting 2D map.

The initial P contains a lot of unknown space that needs to
be explored with the hand. The single steps in the main loop
of Algorithm 1 will be explained in the following sections.

IV. SCENE OBSERVATION

A. Visual Observation
For 3D object segmentation we use a recent approach [4].

It relies on three possible hypotheses: figure, ground and a
flat surface. It is assumed that most objects are placed on flat
surfaces thereby simplifying segregation of the object from
its supporting plane.

The segmentation approach is an iterative two-stage
method that first performs pixel-wise labeling using a set of
model parameters and then updates these parameters in the
second stage. This is similar to Expectation-Maximization
with the distinction that instead of enumerating over all
combinations of labelings, model evidence is summed up
on a per-pixel basis using marginal distributions of labels
obtained using belief propagation.

The model parameters consists of the following three parts,
corresponding to the foreground, background and flat surface
hypothesis:

θf = {pf ,∆f , cf}, θb = {db,∆b, cb},
θs = {αs, βs, δs,∆s, cs},

pf denotes the mean 3D position of the foreground. db
is the mean disparity of the background, with the spatial
coordinates assumed to be uniformly distributed. The surface
disparities are assumed to be linearly dependent on the image
coordinates, i.e. d = αsx + βsy + δs. All these spatial
parameters are modeled as normal distributions, with ∆f ,
∆b and ∆s being the corresponding covariances. The last
three parameters, cf , cb and cs, are represented by color
histograms expressed in hue and saturation space.

For initialisation, there has to be some prior assumption of
what is likely to belong to the foreground. In our system, we
have a fixating system and assume that points close to the
center of fixation are most likely to be part of the foreground.
For the flat surface hypothesis we apply RANSAC to find the
most likely plane. The remaining points are initially labeled
as background points.

B. Haptic Observation
For haptic exploration we use the two sensor matrices

padding one finger of the robotic hand. Our goal is to decide
when the hand is in contact with an object and when it is
not. For this purpose, we compute a noise profile of the
sensor matrices Hp and Hd. We model the distribution of
these random variables as multivariate normal distributions
Hp ∼ N(µp,Σp) and Hd ∼ N(µd,Σd) for which means
and covariance matrices are computed from a number of
non-contact measurements. A contact with an object can
then be seen as a multivariate outlier. For outlier detection,
we compute the Mahalanobis distance between the current
measurement ht|p,d and the respective mean µp,d.

d(ht) =
√

(ht − µ)T Σ−1(ht − µ) (1)
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Fig. 2. Generation of an occupancy grid from individual views. (a) ARMAR robot head that (b) gathers several views. (c) Views are projected into a
common reference frame and (d) cleaned to remove noise. (e) Points are labeled according to the 3D object segmentation (Sec.IV-A). (f) Scene is voxelized.
The voxels that belong to objects are projected down into the map (g). Blue labels are unseen cells and gray levels correspond to occupancy probability.

Note that the subscripts p and d are skipped in this equation
for simplicity. If d(ht) is greater than a threshold φ then
zt = contact, otherwise zt = ¬contact.

V. MAP UPDATE

For each movement of the haptic sensors along the planned
path, we are receiving a measurement zt+1. Based on this
and the current estimate P (si = occ | {z}t) of the state of
each cell si in the occupancy grid, we want to estimate

P (si = occ | {z}t+1) =

P (zt+1 | si = occ) P (si = occ | {z}t)∑
si
P (zt+1 | si)P (si | {z}t)

(2)

In this recursive formulation, the resulting new estimate
P (si = occ | {z}t+1) is stored in the occupancy grid.
P (zt+1 | si) constitutes the haptic sensor model. As de-
scribed in the previous section, we model the haptic mea-
surements as random variables with a multivariate Gaussian
distributions. The case si = emp is related to Eq. 1 as
follows

P (ht+1 | si = emp) = exp(−1

2
d(ht1))

= exp(−1

2

√
(ht+1 − µ)T Σ−1(ht+1 − µ)) (3)

VI. MAP PREDICTION

In the traditional occupancy grid, cells that have not been
observed yet will have a probability P (si = occ | {z}t) =
0.5, i.e. there is no information available about the state of
these cells. However, we know that cells in the grid that
are close to occupied spaces but are due to occlusions not
directly observable, are likely to be part of the occluding
object. By modeling this spatial correlation, we can predict
unobserved places from observed ones. Instead of exploring
the whole environment exhaustively, we want to confirm
the predicted map at specifically uncertain places. Recently,
it was proposed that the spatial correlation in a 2D occu-
pancy grid can be modeled with a Gaussian Process [6].
The assumption of independence of neighbouring cells in a
traditional occupancy grids is removed.

A GP is used to fit a likelihood function to training data. In
our case this is the set of cells Cr ∈ Pk and the estimate of
their state sr. Given the estimated continuous function over
the occupancy grid, we can then estimate the state of the cells
Cj ∈ Pu that have not been observed yet. We will briefly
introduce GPs. For a more detailed explanation, we refer
to [18]. A GP is defined as a collection of a finite number
of random variables with a joint Gaussian distribution. In
our case, the set of random variables is Ci ∈ P . A GP can
be seen as a distribution over functions with a mean µ and
covariance Σ. Given a matrix of M already observed 2D grid
cells x = {Cr}M = {(wr, vr)}M and a vector y = {sr}M
of state labels, we want to query the state sj of cell Cj then
f(Cj) ∼ N(µ,Σ) where

µ = k(Cj ,x)T [K(x,x) + σ2
MI]−1y (4)

Σ =

k(Cj , Cj)− k(Cj ,x)T [K(x,x) + σ2
MI]−1k(Cj ,x). (5)

σ2
M is the variance of the noise on the target values.

The entries of the covariance matrix K(x,x)u,v at row u
and column v are defined based on a covariance function
k(Cu, Cv) with some hyperparameters θ. We use the squared
exponential covariance function

k(Cu, Cv) = σ2
l exp(−((Cu−Cv)TL−1(Cu−Cv))/2) (6)

where the hyperparameters are σl, the signal variance, and
L, the identity matrix multiplied with the length scale l.

To compute P (sj = occ | {z}t), we squash f(Cj) through
the cumulative Gaussian function.

P (sj = occ | {z}t) = 1/2 · (1 + erf(f(Cj)/
√

2)) (7)

An example for this prediction given a 2D map of partially
explored scene is given in Fig. 3. In Sec. VIII, we will show
quantitatively on synthetic data that a GP predicted map is
a reasonable estimate of the ground truth.

VII. ACTION SELECTION FOR EXPLORATION

Given a partial map of the environment, we want to effi-
ciently explore the remaining unknown parts with haptic sen-
sors, i.e., we want to minimize the amount of measurement
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(a) Ground truth 2D occupancy
grid

(b) Occupancy grid after camera
Measurements taken from the
left side.

(c) Likelihood of occupancy for
each cell predicted by GP. 50th
row labeled.

(d) Predictive mean and variance for 50th
row of occupancy grid along with train-
ing points.

Fig. 3. Example for the prediction of a 2D map from camera measurements using GPs.

actions needed to reach a sufficient scene understanding.
We will present two algorithms for planning a measurement
path in the given map. First, we will use Spanning Tree
Covering [5]. Second, we propose an active learning scheme
based on the predicted map.

A. Spanning Tree Covering

STC tackles the covering problem that can be formulated
as follows. Given the haptic sensor of size d and a planar
work-area Pu, the sensor has to be moved along a path such
that every point in Pu is covered by it only once.

STC first defines a graph G(V,E) on Pu with cells of
size 2d, the double tool size. In our case where G(V,E)
has uniform edge weights, Prim’s algorithm can be used to
construct a Minimum Spanning Tree (MST) that covers every
vertex V in G at minimum cost regarding the edges E [19].
The haptic measurement path is defined on the original grid
with cells of size d such that the MST is circumnavigated in
counterclockwise direction. This circular path starts and ends
at the current arm position. In case an obstacle is detected
along the path, a new spanning tree has to be computed based
on the updated grid. An example for such a path is shown
in Fig. 4(a) and 4(b)

B. Active Learning

Our goal is to estimate the scene structure early in the
whole exploration process without exhaustive observation.
Thus, we want to support the map prediction by selecting
most informative observations. Let us consider a set of
measurements made along an MST as described above.
These measurements will tend to be very close to each
other without leaving any unobserved holes in the map.
The GP prediction of the map based on these measurements
will not be significantly different from the prediction based
on only half of it. By using a GP and thereby exploiting
spatial correlation in a map, the probability for a cell to
be occupied can be inferred from its neighbors without
explicitly observing it.

We will present exploration strategies that follow an active
learning paradigm of selecting new measurement points that
maximize the expected information gain. As it has been
shown in [20], this is equivalent to minimizing the predictive
variance Σ from Eq. 5.

C∗ = arg max
Pu

U1(Ci) with U1(Ci) = Σi (8)

(a) Initial Prim STC path. (b) Updated scene and
weighted STC path after
250 measurements.

(c) First measurement path
along PRM.

(d) Updated scene and mea-
surement path after 250
measurements.

Fig. 4. Examples for potential measurement paths generated with different
exploration strategies. Red stars label current and previous traversed arm
positions, respectively.

It can occur that the hand is detecting an obstacle along
the chosen measurement path. It then has to re-plan and
would potentially never reach the initially selected optimal
observation point. Instead of considering the predictive vari-
ance only, the expected gain in information of the whole
measurement path has to be taken into consideration. We
propose two different utility functions that are dependent on
both predictive variance and distance of a specific cell. The
first one is

U2(Ci) = αΣi − (1− α) d(Cs, Ci) (9)

where Σi is the predictive variance of the cell Ci and
d(Cs, Ci) is any distance function of the current position
of the arm Cs and cell Ci. The parameter 0 < α < 1 is user
determined. The closer it is to 1 the more important becomes
the value of the predictive variance.

The second utility function uses a discount factor δ.

U3(Ci) =
R∑

r=1

δrΣp(r) (10)

where R is the number of measurement that are needed to
reach the final cell Ci along the path p = [Cs+1 . . . Ci]. Not
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just the final cell Ci is considered. Instead, the predictive
variance of all the cells along the path contributes to the
utility value of Ci. The parameter δ has to be chosen by the
user. It steers how steep the decrease of influence of the cells
in the path are dependent on their distance from the current
arm position.

To find the global maxima of Eq. 8 we have to maximize
over all cells Ci in Pu and over all the paths through which
a cell can be reached from Cs. Since this is a prohibitive
number of possibilities to compute, we use sampling tech-
niques to find a local maxima of the utility functions. We
are building a probabilistic road map (PRM) in the two
dimensional C-space of the occupancy grid [21].

A set T of cells from P is sampled according to their
predictive variance and connected to the PRM. The Dijkstra
algorithm is used to compute the shortest path from the
current arm position to each cell in T through the PRM.
The result is used to compute the utility of each cell in T .
An example for the PRM and therefore the possible paths to
traverse is shown in Fig. 4(c) and 4(d).

VIII. EXPERIMENTS

We evaluate the proposed exploration strategies quantita-
tively on synthetic data and demonstrate their feasibility in
a real-world scenario.

A. Synthetic Data

1) Data Set and Measure of Comparison: We generated
50 different 2D occupancy grids (70× 70 cells) an example
appears in Fig. 3(a). Every scene contains ten objects that
can either be of circular, elliptical or rectangular shape
with a random size, aspect ratio, orientation and position.
Overlappings are allowed so that fewer than ten connected
components can occur as well as more complex contours.

For every scene, we simulated three camera observations
made from a fixed position on their left side with a random
direction. As a sensor model, we used a beam model with a
Gaussian profile [17]. Given a measurement, the occupancy
grid gets updated according to Eq. 2. An example for the
result of this simulation is shown in Fig. 3(b).

We posed the validation problem of occupancy grid es-
timation as a binary classification into empty or occupied
cells. For each estimated grid at any time in the exploration
process, the number of false and true positives can be
computed for different thresholds resulting in an ROC curve.
For evaluating the development of this curve over time, we
choose the area under the ROC curve (AUC) as a measure.
It corresponds to the probability that the state of a cell is
correctly classified.

2) Predicting Occupancy Grids with GPs:
Covariance Functions Compared: In [6], it is claimed

that the neural network covariance function is more suitable
for predicting the non-stationary behavior of a typical map
data set. That data comes from indoor and outdoor environ-
ments either with hallways, rooms, walls or streets bounded
by buildings. However, our experimental data showed su-
perior performance with the squared exponential covariance

Fig. 6. ROC for Squared Exponential (SE) and Neural Network (NN)
covariance function. SE outperforms NN for OG prediction.

function in which blob-like objects spread on a table were
more correctly modeled.

We predicted each of the 50 occupancy grids with a GP
by sampling training points from the space observed by the
camera and then querying p(si = occ | {z}t) for Ci ∈ Pu.
We compared a neural network with a squared exponential
covariance function. The ROC curves for the whole data set
are shown in Fig. 6 from which the improved performance of
the squared exponential covariance function for our scenario
is confirmed.

Prediction vs Occupancy Grid: An important question
is whether the GP makes a valid prediction of the scene
map and how this compares to the traditional occupancy
grid. In an OG, only those estimates for p(si = occ | {z}t)
are different from the initial value of 0.5 for which at
least one measurement has been obtained. However, the GP
predicts occupancy probability for all cells. To confirm that
this inference is valid, we calculated the mean AUC for all
occupancy grids after they have been observed by the camera
and compared it to the mean AUC of the GP predicted
maps. While for the unpredicted occupancy grid this value is
0.7697, it is 0.9058 for the predicted maps; a clear increase
of 13%. Therefore we conclude in agreement with [6] that a
GP prediction provides valid inference about regions of the
scene in which no measurements are available.

3) Exploration Strategies Compared: We compare the dif-
ferent exploration strategies based on the mean and variance
of the AUC measure over time and all synthetic scenes. We
start from the scenes partially explored with the camera.

First, we consider the utility based exploration (Sec. VII-
B). Three functions were proposed that incorporate uncer-
tainty in the map prediction and/or distance to traverse.
Fig. 5(a) and 5(b) show the results for the OGs and for the
GP predicted maps. There is a clear difference between the
utility functions. The discounted version (Eq. 10) performs
best both in terms of mean and variance in the OGs and GP
predicted maps. This is due to the explicit consideration of
the whole exploration path instead of just a high predictive
variance goal point that might never be reached.

Second, we consider STC based exploration (Sec. VII-
A). Measurement paths are planned such that each Ci ∈
Pu is traversed only once. Fig. 5(c) shows the results for
the occupancy grids and for the GP predicted maps. The
estimation of the occupancy grid converges relatively fast
towards ground truth.
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(a) Utility based exploration of OG (b) Prediction with GP during utility based explo-
ration

(c) Best STC and utility based exploration compared

Fig. 5. Mean and variance of area under ROC curve (AUC) for occupancy grid (OG) as well as Gaussian Process (GP) prediction under different
exploration strategies. (a), (b): Utility based exploration. Discounted predictive variance outperforms pure variance and trading off between distance and
variance value. (c) Comparison between Spanning Tree Covering (STC) based method and best utility based method. The latter achieves a more accurate
GP prediction early in the process, while STC explores the unknown space in the OG faster.

4) Summary: Fig. 5(c) also contains the results for the
discounted utility function for direct comparison with the
STC based exploration. GP predicted maps traversed based
on the discounted utility are more accurate early in the
exploration process. This is an expected result since here
points of high variance are chosen to be measured first.
They will therefore have a high positive influence on the
quality of the prediction. However, the occupancy grid does
not converge as fast towards ground truth as in the STC
based exploration. We conclude that if a good map estimate
is needed quickly, active learning based exploration is advan-
tageous over systematically traversing the space. If there is
time for an exhaustive exploration, STC based measurement
paths are more beneficial.

B. Demonstration in the Real World
In this section, we demonstrate our approach for the real-

world scenario described in Sec. I: exploration of a table top
populated with several unknown objects using both, point
clouds coming from a stereo camera and haptic data from a
robotic hand. As exploration strategy we consider STC (see
Sec. VII-A) and a PRM based scheme with the discounted
utility function defined in Eq. 10.

The real world scene contains three objects. For visual
exploration, we manually select the initial fixation point for
two of them. This could be replaced by using an attention
system as described in [8]. The objects are segmented and
stereo reconstructed (Sec. IV-A). The resulting point cloud
is projected onto an occupancy grid aligned with the table
(Sec. III). By excluding the third object from visual observa-
tion, we can demonstrate the map update upon finger contact.
Examples for the occupancy grid are given in Fig. 7(c)
and 8(b).

In this stereo based grid, we can now detect locations that
were not observed with the vision system. The reachable
unexplored spaces are explored with the haptic sensors on
the hand. For doing so, we are using one of the three fingers
pointing downwards as shown in Fig. 7(e). The hand is
moved at a constant height over the table. The haptic sensor
arrays on the finger are always pointing in the direction of
movement. Planning is done in a slice of the robot task
space that is aligned with the table top. This is a reasonable
simplification since all the points on the table within a radius

(a) Initial STC based plan. (b) STC based plan after 73
steps.

(c) Initial OG from stereo. (d) Stereo OG after 73 steps.

(e) Initial Scene. (f) Scene after 73 steps.

Fig. 7. Snapshots from an exploration using an STC based plan (covers
only reachable workspace).

of 780mm are reachable with a valid joint configuration. For
more complex environments planning has to be done in the
six-dimensional C-space of the arm which is considered as
future work.

Since the fingers of the Schunk hand are very thick, we are
keeping two grids in parallel: the coarse planning grid and
the finer grid from the stereo data. For every measurement,
both grids are updated in parallel: one cell in the planning
grid, a set of cells in the stereo grid.

In Fig. 7, the STC based measurement path planned on the
initial occupancy grid is shown as well as the updated grid
after 73 measurement steps. As expected from the results
on the synthetic data, the area close to the starting position
of the hand at the top left corner is explored systematically
without leaving holes. In Fig. 8, the first PRM based mea-
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(a) Initial PRM based plan. (b) Initial OG from stereo. (c) Initial Prediction of OG. (d) Initial Scene.

(e) PRM based plan after 68
steps.

(f) Stereo OG after 68 steps. (g) Prediction after 68 steps.. (h) Scene after 68 steps.

Fig. 8. Snapshots from an exploration using an PRM based plan (covers only reachable workspace).

surement path is shown as well as the updated grids after 68
measurements. The area close to the start position is not yet
fully explored, but the next measurement path leads towards
the lower left of the grid that has a high uncertainty. A movie
of the demonstration is available at [22].

Opposed to the synthetic experiments, in the real world,
objects can move upon contact with the hand. This can be
observed when comparing Fig. 7(e) and 7(f) or 8(d) and 8(h).
To avoid the map becoming inconsistent, visual tracking is
needed.

IX. CONCLUSION

We proposed a method for multi-modal scene explo-
ration. Initial object hypotheses formed by active visual
segmentation were confirmed and augmented through haptic
exploration. The current belief about the state of the map
is updated with measurements and yet unknown parts of
the map are predicted with a Gaussian Process. Through
the integration of different sensor modalities, we achieved a
more complete scene model. We showed that the prediction
of the scene structure leads to a valid scene representation
even if the map is not fully traversed. Furthermore, different
exploration strategies were proposed and evaluated quantita-
tively on synthetic data. Finally, we showed the feasibility
of our scene representation and exploration strategies in a
real world scenario. The demonstration on the robot also
exposed further challenges. Constant visual tracking of the
scene during the hand interaction is necessary to keep the
scene estimate up to date. This is considered as future work.
Furthermore, we aim to generalise the approach to 3D.
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