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Abstract— In this paper we present our work on integrating a
locomotion controller based on central pattern generator (CPG)
and a motion planning algorithm using artificial potential fields
for a non-holonomic crawling humanoid robot, the iCub. We
also integrated a vision tracker and an inverse kinematics solver
to perform reaching tasks. We study the influence of the various
parameters of the potential field equations on the performance
of the system and prove the efficiency of our framework by
testing it on a physics-based robotics simulator and partially
on the real iCub.

I. INTRODUCTION

Humanoids have inspired a lot of researchers and science

fiction authors over the last few decades. Building a machine

that would mimic humans with the same dexterity and

robustness is a problem far from solved. The first step

towards a fully functional humanoid robot is to enable it

to move around its environment autonomously, identifying

goals while avoiding collisions with obstacles.

This paper presents our work on designing a closed loop

which, using only visual feedback, allows a non-holonomic

humanoid robot, the iCub, to locomote in a complex envi-

ronment autonomously. It uses an infant like crawling gait,

and reaches targets while avoiding obstacles using a potential

field based planning. As a metaphor of a real infant, one can

think of a child moving around a room towards toys scattered

on the ground and grab them, while avoiding to bump into

the furniture.

A. Locomotion

The locomotion system we developed, already presented

in [1] before, uses central pattern generators (CPG), i.e.

networks of coupled oscillators inspired from the spinal cord

of many animals. CPG models are increasingly used for

different kinds of robots and types of locomotion such as

insect like hexapods and octopods ([2]), quadrupeds ([3]),

swimming ([4]), and humanoids ([5]). For a more complete

review of CPGs and their application in robotics see [6]. The

main benefits of CPGs for locomotion is their robustness

against perturbations, the ability to smoothly modulate the

shape of the oscillations with simple control signals and the

possibility to easily integrate sensory feedback. Most of the

efforts of the past decades have been dedicated to using CPGs

for rhythmic locomotion pattern generation. Yet, periodic

movements do not suit discrete tasks like manipulation or

reaching. Our system embeds both rhythmic and discrete

motion generation in the same CPG architecture.

B. Path planning

Numerous path planning techniques exist in the literature.

Most of them use a geometric description of the environment

and the robot. Grid based approaches overlay a grid on the

map of the environment, reducing the path planning problem

to a graph theory problem. Sampling techniques are currently

considered the state of the art for a vast majority of motion

planning problems. For a comparative description of grid

based and sampling techniques, see [7]. Yet, both these

methods require an exhaustive representation of the world

to be efficient and a precise odometry estimation to be able

to achieve the computed roadmap, which we do not have for

our application.

Obstacle avoidance techniques are better suited to partially

known environments. Examples of obstacles avoidance tech-

niques include vector field histogram [8] which computes a

subsets of motion directions and picks the best according to

some heuristics and the dynamic window approach [9] which

works in a similar way but in the velocity controls space.

An alternative method, at the border between path plan-

ning and obstacle avoidance techniques, is Artificial potential

fields [10]. The idea is to place artificial positive potentials

on obstacles and negative potentials on the goal to attain,

and navigate along the gradient of the potential field. The

major problem of this method is its fragility to local minima,

although some harmonic potential field functions have been

developed to counter this weakness [11]. This method has

not been developed specifically for non-holonomic robots,

and some variants based notably on fluid dynamics theory

[12] have been developed to cope with the constraints of

these particular robots.

We chose to use an artificial potential fields approach for

our application because it is (i) easily extensible to partial

descriptions of the environment and dynamically changing

environments, and (ii) it is computationally inexpensive, a

necessary condition for online path planning.

Our approach does not claim to design a new state of

the art motion planning algorithm. Instead, the goal of

this work is to study the challenges that emerge when

dealing with real legged non-holonomic robots. From this

perspective we have developed a framework which integrates

a vision tracking system exploiting the embedded cameras

of the robot, a high level motion planner based on artificial

potential fields and acting on the low level CPG controller,

and an inverse kinematics solver for reaching. To our best

knowledge approaches integrating all these features on a
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humanoid robot are very seldom in the literature. Exam-

ples include the work in [13] on the ASIMO robot which

dealt with dynamical environments but where no vision was

involved and a exhaustive representation of the world was

provided to the robot. Other examples on different kinds of

robots are found in [14] where a potential field approach

was explored to plan the movement of a rover robot in

an outdoor environment, and [15] which won the DARPA

challenge consisting of having car robots locomote in a

natural environment. This study shows that online vision

based navigation can be efficient even on a legged non-

holonomic robot where vision and odometry estimation are

strongly perturbed by the specificities of the quadruped gait

(rolling effect etc.). It also shows an application of a fully

autonomous high level to low level control system based on

dynamical systems allowing rhythmic (crawling) and discrete

(reaching) movements. Finally one of the main concerns of

this work is to match as closely as possible the constraints of

the real robot. The gait that we designed implies a minimal

radius of curvature of the robot when steering. The study

presented here gives clues on how to adapt the parameters

of the planning system to the actual constraints of the robot,

when implementing on a real iCub. We also quantify the

minimum radius of curvature that a robot should have to

achieve acceptable performance, which could be critical

information when implementing new gaits for the iCub or

even when designing the next generation of the robot.

II. PRESENTATION OF THE ARCHITECTURE

A low-level controller for the generation of both discrete

and rhythmic movements, based on the concept of central

pattern generators (CPGs), was developed with the main

focus of implementing an adaptive, closed-loop controller for

crawling, in the framework of the RobotCub ([16] project.

In this article, we combine this low-level architecture with a

high-level planner algorithm.

After a brief description of the general hardware and

software infrastructure of the iCub, we present the low-

level control and then discuss more in details the high-level

planner that we developed. For more information on the low-

level architecture, please refer to [1] and [17].

A. Hardware and software platform

The iCub is a humanoid robot developed as part of the

RobotCub project [16]. It has been designed to mimic the

size and weight of a three and a half years old child

(approximately 1m tall). It has 53 degrees of freedom. The

iCub’s eyes have 2 DOF each and are composed of two

Dragonfly 2 cameras with a 640x480 CCD sensor. The head

of the robot embeds a Pentium CPU, allowing for fully

autonomous control, and more demanding computation can

happen outside the robot via Ethernet communication. All

software modules of the iCub architecture are independent

and can be distributed over a cluster of computers.

We used the Webots [18] robotics simulator, which is

based on the Open Dynamics Engine for the physics simu-

lation and on OpenGL for the rendering. It is rather realistic

in the sense that is enables to set robot specific constraints

such as joints limits of position, velocity, acceleration and

force, as well as the proportional term P of the low level

controller. Parameter of the environment like gravity, friction

coefficient etc. are also open. The Webots model of the iCub

fully respects the Daenavit-Hartenberg parameters of the real

robot as well as the limits of the joints. The same controller

is used in Webots and on the real robot thanks to a common

interface.

B. Locomotion

Our locomotion framework is built on the concept of

central pattern generators (CPGs), that we take in the sense

of a network of unit generators (UGs) of basic movements

called motor primitives ([1]).

All trajectories (for each joint) are generated through a

unique set of differential equations, which is designed to

produce complex movements through the superimposition

and sequencing of simpler motor primitives generated by

rhythmic and discrete unit generators. The dynamics of the

discrete movement is simply embedded into the rhythmic

dynamics as an offset. These trajectories are sent as setpoints

to the PID controllers of the motors.The discrete UG is

modeled by the following system of equations:

ḣi = d(p − hi) (1)

ẏi = h4
i vi (2)

v̇i = p4−b2

4
(yi − gi) − b vi. (3)

The system is critically damped so that the output yi of

Equations 2 and 3 converges asymptotically and monotoni-

cally to a goal gi with a speed of convergence controlled by

b, whereas the speed vi converges to zero. p and d are chosen

so to ensure a bell-shaped velocity profile; hi converges to

p and is reset to zero at the end of each movement.

The rhythmic UG is modeled as Hopf oscillator with the

output of the discrete system as offset:

ẋi = a
(

mi − r2
i

)

(xi − yi) − ωizi (4)

żi = a
(

mi − r2
i

)

zi + ωi (xi − yi) +
∑

kijzj (5)

ωi =
ωdown

e−fzi + 1
+

ωup

efzi + 1
(6)

where ri =
√

(xi − yi)
2

+ z2
i . When mi > 0, Equations

4 and 5 describe an Hopf oscillator whose solution xi is a

periodic signal of amplitude
√

mi and frequency ωi with an

offset given by gi. A Hopf bifurcation occurs when mi < 0
leading to a system with a globally attractive fixed point

at (gi,0). The term
∑

kijzj controls the couplings with the

other rhythmic UGs j; the kij’s denote the gain of the

coupling between the rhythmic UGs i and j and are set here

to generate a trot gait. The expression used for ωi allows

for an independent control of the speed of the ascending and

descending phases of the periodic signal, which is useful

for instance for adjusting the swing and stance duration in

crawling ([17]).
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Fig. 1: Unit pattern generators. Upper panel. Control commands for
discrete and rhythmic movements, that is the target position (in blue) and
the amplitudes (in red), the frequency being not shown on the figure. Bottom
Panel: The resulting discrete and rhythmic movements (resp. in blue and in
red) and the trajectory embedding the two dynamics (black).

Qualitatively, by simply modifying on the fly the parame-

ters gi and mi, the system can switch between purely discrete

movements (mi < 0, gi 6= cst), purely rhythmic movements

(mi > 0, gi = cst), and combinations of both (mi > 0, gi 6=
cst) as illustrated on Figure 1. Different values for the kij’s

lead to different phase relationship between the limb, i.e.

different gaits for instance.

C. Vision

For a robot to be able to navigate in an environment, it

needs to be able to perceive it ; in our case see it. The iCub

is equipped with two cameras with the same two degrees

of freedom as the human eye. As visual processing is not

our main topic here, we chose to use a very simple marker

based tracker, based on the ARToolKit Plus library [19].

Another reason for us to use this tracker is the fact that is

does not use stereo-vision to compute the three dimensional

position of a fixed sized marker which for faster tracking, an

especially important feature when both the eyes and the head

are moving during scanning. The obstacles and the goals are

marked with different markers. The tracker is able to output

the 3D position in the camera reference frame and the ID

of multiple markers. On the real iCub robot, the tracker is

able to detect an 8cm marker and its ID about 1.5m away.

It is also very robust to changes of lightning. The position

of the marker is translated to the robot root reference frame

(attached to the waist) using forward kinematics.

The environment that we are considering here is corridor-

like and composed of goals and obstacles (See Figure 2). We

placed different markers on the goals and on the obstacles.

We chose a corridor-like environment so that most of the

obstacles and goals appear in the field of view of the robot

during locomotion. To compare the performance of our

planning algorithm with different parameters, we also wanted

to have a narrow environment in order to prevent the robot

from turning back and have a finite dimension to have an

upper bound of the performance.

D. Reaching

Once the robot has detected a goal using the vision tracker

described before, it has to reach it with its hand. While

approaching the goal, the robot follows it with its head and

eyes to keep it in the center of its vision field. This will

allow him to make sure it does not loose the goal and to

have a better precision on its position. The goal position is

estimated using the vision tracker described in the previous

section. Once the robot reaches a specific distance to the

goal, it is considered ”potentially reachable”. Starting from

this point we use inverse kinematics to compute the joints

angle of the 7-DOFs arm to achieve the target position, that

is the position of the goal.

An inverse kinematics cartesian solver, (iKin) was de-

signed specifically for the YARP framework. This solver

is based on the IPOPT (Interior Point OPTimizer) library

[20], a library for large scale non-linear optimization. For

our problem, given a desired position xd in R
3, the solver

finds the joint configuration q in the 7 dimensional joint space

Q ∈ R
7 that achieves the nearest position Kx(q) of the end

effector (here the hand of the robot):

q = argmin
q∈R7

(||xd − Kx(q)||2)

s.t. qL < q < qU

(7)

where qL and qU are the lower and upper joint limits of

the arm of the robot. For more details about IPOPT and the

non-linear solver see [20].

It is then possible to compute the Euclidean distance

between the desired and achieved positions ρ(x, xd) and set

a threshold ǫ defining the reachability of the goal. Once the

goal is ”reachable”, moves its hand to the computed position

q that achieves x using the discrete system described in

Section II-B.

E. Planning

The purpose of the planning module is to have the robot

navigate in a world composed of multiple goals and multiple

obstacles. The input of this module is a set of 3D positions

of goals and obstacles sent by the vision tracker described

in Section II-C and expressed in robot coordinates. The field

of view of the cameras of the iCub is relatively small (α ≈
45◦) which gives a very small amount of information to the

robot about its surroundings. To counter this limitation, we

make the robot scan the environment by rotating its head

and eyes from left to right. An egocentric partial map of the

environment is built by merging the areas scanned over a full

rotation of the head. The head oscillations are coupled with

the limbs movements to have the scanning speed depend on

the locomotion speed. The frequency of the head oscillations

was set to half that of the limbs (one head rotation every two

steps). This scanning made it possible to extend the vision

field of the robot to θ ≈ 120◦ (see Figure 3).

Every time a head scanning is finished, a partial map of

the environment is generated and, attractive potentials Ua(p)
are placed on the goals and repulsive ones Ur(p) on the

obstacles, p being the robot 2D position on the map (note

that since the map is an egocentric one, p = (0, 0)). Figure

2 shows an example of a partial map of the environment and

the potential field associated to it.

Usual potential methods have a unique goal and thus de-

fine the attractive potential and the corresponding attracting
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Fig. 2: Snapshot of a Webots world with the iCub at t = t0, t1, t2, t3, t4.
The associated potential built by the robot at t = t0 (in a theoretical ideal
case) is represented on the right (the scales are different). The field of action
of an attractive potential is wider than that of a repulsive one due to the
maximum distance of action ρ0 = 2 and kr = 4 of the repulsive potentials
(see Equation 8)

force proportional to the distance to the goal or even to

a power of it. Having multiple goals, we cannot define it

this way since the robot would keep oscillating between

goals without ever reaching one. Instead, we chose to define

the attractive and repulsive forces so as to have a higher

attraction where near a goal. This way, when several goals

are in the field of view of the robot, it will go to the nearest

one, which will at some point exit the field of view and the

robot will head toward the next nearest one. The attractive

and repulsive forces ( ~Fa) and ( ~Fr) created respectively by

the goal and obstacle potentials are defined as:

~Fa = −∇Ua(p) = −ξ
1

ρ(p)ka
~u

~Fr = −∇Ur(p) =

{

η 1
ρ(p)kr

( 1
ρ(p) − 1

ρ0

)~u if ρ ≤ ρ0,

0 if ρ > ρ0.
(8)

where :

• ρ(p) is the Euclidean distance between the origin of the

potential and the robot.

• ρ0 is the maximum distance of influence of a repulsive

potential.

• ka and kr are positive factors that determine the curva-

ture of the potential surface.

• ξ and η are positive scaling factors.

• ~u = ∇ρ(p) is a unit vector oriented away the origin of

the potential and towards the robot.

The resulting force ~FΣ that applies on the robot is then

simply:

~FΣ =
n

∑

i=0

~Fai
+

m
∑

j=0

~Frj
(9)

n being the number of goals and m the number of obstacles.

The robot moves then of a small distance following ~FΣ.

Its displacement ~D and angle of rotation φ can be defined

as :

~D = ∆
~FΣ

||~FΣ||
φ = atan2(~r⊥.~u, ~r.~u)

(10)

Where where ~r is the current direction of motion of the

robot and ∆ is a small distance to be defined and ⊥. is the

perp-dot product.

ρ0
α

θ

R

Fig. 3: A snapshot of the Webots world with annotations of the important
quantities. The red pylon is an obstacle, the green cube a goal (notice the
ARToolKit markers on them). α is the field of view of the robot, θ the
extended field of view due to the scanning process, and Rmin the minimum
radius of curvature.

Here we only compute φ explicitly and let ∆ be the

distance achieved by the robot between two refreshs of the

potential field (between two full scans). In theory, the actual

rotation angle of the robot corresponds to the torso roll

angle of the robot (see Figure 3), but they may somewhat

different on the real robot due to sliding of the limbs on the

ground.

The values of kr, ka and ρ0 in Equation 8 influence

strongly the shape of the potential field. Figure 4 shows this

influence for two different values of ρ0. A potential with a

low k (kr or ka) has a slighter slope, and thus a larger range

of influence than one with a big k. By varying ρ0, one can

explicitly limit the range of influence of an obstacle potential.

Setting a low ρ0 is particularly useful if one wants the robot

to be able to squeeze in between obstacles. Setting a high

kr has a similar effect, while also changing the slope of the

potential field. Section III presents a study of the influence of

these various parameters on the performance of robots with

different minimum curvature radius.

k = 0.5 k = 6

k = 0.5 k = 6

Fig. 4: Influence of k (kr or ka) on the shape of the potential field for
ρ0 = 2 (top) and ρ0 = 10 (bottom). The slope of the potential surface
increases with k, while ρ0 allows an explicit limitation of the range of
influence of the potential

III. RESULTS

The main questions we address here are (i) How well

does our planning system perform for robots with different

minimum radius of curvature Rmin, (ii) how do the different

parameters of the potential field equations described in Sec-

tion II-E influence the performance and how are they related

to the values of Rmin, and (iii) what minimum value of Rmin

186



should we achieve in order to reach good performance. This

last point is particularly important when designing a turning

gait for a robot since it helps finding a compromise between

the performance of the locomotion and that of the planning.

For instance, if one cannot find a stable turning gait leading

to a small minimum curvature, one could decide to have the

robot turn on itself by performing a series of maneuvers, at

the expense of the speed of locomotion.

The performance of the system was measured by the

number of reached goals versus the number of collided

obstacles. In order to study the influence of the various

parameters on the performance of the motion planning al-

gorithm with the constraints of the real robot we used a

two stage simulation approach: first using a 2D simulator,

having enough simplicity and speed to test a wide range

of parameters and then using the physics-based robotics

simulator Webots ([18]). Implementation of the crawling

locomotions system and the visual based reaching has been

done and will be discussed at the end of this section.

A. 2D simulations

We performed a series of systematic tests using a simple

2D simulator on the following parameters: ka, kn, and ρ0

and Rmin, the minimum radius of curvature of the robot.

In this simulator, no vision is involved but the field of view

of the robot is constrained geometrically. Thus obstacles

and goals are only ”seen” by the planning algorithm if they

are in an area corresponding to a field of view of 120◦,

with a depth of two meters, from the robot position and

along its orientation. These values are coherent with the real

robot properties. We generated 70 corridor-like worlds of

dimension 4 × 40 m, containing 10 goals and 15 obstacles

each, and enclosed by walls of obstacles. The goals and

obstacles were randomly positioned with the only condition

that the distance between each of them was at least 1m.

This is to ensure a rather uniform distribution of goals and

obstacle and avoid worlds with conglomerates that would

be impossible for any parameters and thus would lead to

similar scores for all trials. The parameters were taken in the

following sets: kr = {0.5, 1, 2, 4, 6}, ka = {0.5, 1, 2, 4, 6},

ρ0 = {1, 1.3, 1.5, 2}, Rmin = {0.7, 1, 2, 3, 4, 6} (42000

runs). The results of these systematic tests are presented in

Figure 5.

The top left graph shows the mean number of reached

goals and collided obstacles over all runs for each value of

Rmin. As can be expected the smaller the minimum radius

of curvature the better the performance. The fact that the

number of obstacles collided is lower for Rmin = 6 than

for Rmin = 4 is due to the corridor shape of the world

tested. Indeed, for Rmin = 6 the robot moves almost in

straight line and thus the probability to collide with the walls

is reduced. Interestingly for Rmin < 1 the performance does

not increase so much anymore, suggesting that a minimum

radius of curvature of 1 should be sufficient to achieve near-

optimal performance.
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Fig. 5: Results of the systematic tests using the 2D simulator. Top left:
number of reached goals and obstacles collided over the whole pool of tests.
Top right: influence of ρ0 on the performance. Bottom left: influence of ka

and kr on the performance for a small radius of curvature (Rmin = 1) for
ρ0 = 1. Bottom right: influence of ka and kr on the performance for a big
radius of curvature (Rmin = 4) for ρ0 = 2.

The top right surface plot shows the influence of ρ0 on

the number of goals reached and obstacles collided. For a

small Rmin, the value of ρ0 has barely any influence on

the performance. The small radius of curvature of the robot

allows it to avoid obstacles even if they influence its motion

only very late (ρ0 small). For higher Rmin however, the

performance strongly decreases with ρ0. This time the robot

can only avoid obstacles if it can anticipate enough (ρ0 big).

The bottom two graphs show the influence of kr and ka

on the performance for a small and a big value of Rmin,

and for ρ0 = 2. When the radius of curvature is sufficiently

small, the values of kr and ka are, like ρ0 in the previous

graph, not critical. This independence of the parameters for

small Rmin is a good feature of the planning algorithm for

real robotics applications, since it means that the system does

not significantly depend on specific parameters choices. Very

small values of kr and ka lead to slightly lower performance,

since the robot cannot get near enough obstacles to perform

quick maneuvers, which would be made possible and safe

by its small radius of curvature.

For big Rmin the number of collided obstacles mostly

increases with the value of kr, since for big kr the influence

of the obstacle potentials decreases rapidly with the distance

and so the robot cannot anticipate enough to cope with

its big radius of curvature. A less intuitive observation

is that the number of reached goals decreases for small

values of ka. This can be explained by the fact that, where

several goals are in the field of view of the robot, and ka

is small, their influence would mostly balance until one is

significantly nearer than the other. At that point however,

with a big Rmin, the robot would not be able to turn fast
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enough to reach the nearest one. This happens in Figure 6

for Rmin = 4 for the 2D simulator. At y ≈ 12 the robot

passes in between two goals without reaching any of them.
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Fig. 6: Comparison of the performance of the planning algorithm for
different radius of curvature in one world using the 2D simulator (top left)
and Webots (top right). Comparison of trajectories with similar performance
in Webots (blue solid line) and the 2D simulator (black dashed line) for
different values of Rmin (bottom figure).

B. Webots simulations

The observations made in the 2D simulator are useful

to adapt a potential field based planning algorithm to the

constraint of a real non-holonomic robot. But first we have

to check that the behavior of a real robot would match that

of the 2D simulation, at least concerning curvature radius

issues. In the physics-based simulator Webots, detection of

the obstacles and goals is not geometrical anymore as in

the 2D simulator but uses the perspective projection Webots

cameras, the ”eyes” of the robot, to perform visual processing

using the ARToolKit based marker tracker described in

Section II-C. Hence detection is not deterministic anymore

but subject to noise in the position extraction of the markers.

Locomotion of course is significantly different since it uses

the CPG based system described in Section II-B and not a

simple translation like in the 2D simulator. This also induces

noise in the vision tracking due to movements of the head

and a high variance in the potential field generation since

markers are constantly entering and escaping the field of

view of the robot, causing the modifications in the potential

field. To cope with these issues, we performed noise filtering

at the vision level and introduced a short term memory at

the planning level. This memory introduces damping in the

changes of the potential field and thus prevents the robot

from constantly changing direction.

Due to the complexity of the simulator + locomotion

+ vision tracker + planning system, we only performed a

limited amount of tests, to prove the efficiency of the whole

framework and show that the results match that of the 2D

simulation. We chose a world that gave significantly different

results for different values of Rmin in the 2D simulations.

We run 5 runs for each values of Rmin ≈ 1, 2, 3, 4. We

could not find a stable gait leading to Rmin < 1 (the robot

would not move) or Rmin > 4 (the robot would move

in straight line). A significant difference between the way

the radius of convergence is computed in the 2D simulator

and in Webots is worth mentioning. In Webots, turning is

achieved by changing the torso roll angle (see Figure 3)

and modifying the amplitudes of the left and right limbs

accordingly. However, the robot cannot reach its maximum

turn angle at once since it would cause a lot of sliding and big

constraints on the motors. Thus at each step the turn angle

increases by a small amount, and so the radius of curvature

is not constant, unlike in the 2D simulator. The values of

Rmin given before are the curvature after the maximum turn

angle has been reached, which may be different from the

actual turn angle while navigating.

Figure 6 (top two graphs) shows the performance of

the planning for different values of Rmin in Webots and

in the 2D simulator. Interestingly the relation between the

maximum curvature and the number of goals reached and

obstacles collided is qualitatively the same as in the 2D

simulator. Thus the 2D simulator is a good approximation

of the Webots simulation which should be a good approx-

imation of the behavior of the system on the real robot.

However, quantitatively, results are different, the values in

the 2D simulator corresponding approximatively to those in

Webots for 2 × Rmin. This is mostly due to the imperfect

match between the curvature in both simulators, as discussed

before.

Overall the planning algorithm proved to solve well

the planning problem with the proper parameters. For

Rmin = 1 the robot was able to reach 9 goals out of 10

and collide with no obstacle (even reach 10 in the 2D

simulator). The fast online refreshing of the potential field

during locomotion allows the robot to handle dynamical

environments. The video attached with this paper shows

the iCub navigating in a Webots world with only one goal

moved around manually. The obstacles were also moved

during this experiment. In the end the iCub was able follow

the moving goal while avoiding the obstacles.

C. Implementation on the iCub

Finally we implemented the crawling and visual based

reaching mechanisms on the real iCub robot. We did not

yet implement steering and thus did not test the planning

algorithm on the iCub. The experiment consisted in having

the robot crawl for a couple of meters, then detect a marker

placed on the ground, follow it with its head and reach it
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Fig. 7: Left: output of the CPG (solid line) and encoders of the four
controlled joints of the right leg and right arm during crawling then reaching.
Right: picture of the iCub crawling

with its right arm. Crawling proved very stable even though

controlled in open loop, and the robot was able to switch in-

stantly from rhythmic to discrete movements when reaching.

Visual detection and tracking showed good performance and

the robot seldom lost track of the marker before reaching

it. The attached video presents this experiment. Figure 7

shows the output of the CPG and the actual trajectories of

the four controlled joints of the right arm (the other limbs

are qualitatively similar).

IV. CONCLUSIONS

We have presented in this document a full system to allow

a humanoid to navigate in a complex environment using

only vision to get knowledge about its surrounding. The low

level locomotion mechanism uses coupled non-linear oscilla-

tors (CPG), to generate complex locomotion patterns using

simple control inputs. This locomotion framework is able

to perform rhythmic movements, for crawling, and discrete

movements for reaching. At the highest level, we designed

a motion planning system based on artificial potential fields

and using only the visual feedback provided by a maker

based tracker. The whole locomotion + vision + motion

planning + reaching is thus fully autonomous.

We proved the efficiency of our system using a 2D

simulator to study the influence of the various parameters

of the potential field equations on the performance while

respecting the constraints of non-holonomic robots and a

physics-based robotics simulator to validate our system. We

showed that for small radius of curvature, the system is

very stable to changes in parameters, while for big radius

of curvature, setting the values of kp and kn low and ρ0

high allows the robot to anticipate more and compensate for

its limited turning ability. These results will allow us to adapt

our planning algorithm to the specificities of the turning gait

when implementing on the real robot. It also gives gives us

an idea of a minimum curvature radius that is necessary to

attain to have good performance when navigating.

Once specificity of our work worth mentioning is the shape

of the environments tested: corridor-like. We suppose that the

behavior of the system would be similar in different shapes

of environments since the planning system does not make

any assumptions on the shape of the world and uses only

local information, but proving this is left for future work.

Implementation on the real iCub showed promising results,

the robot being able to crawl, track a marker on the ground

while crawling and finally reach it. Further work should

include more systematic tests of the planning system in the

realistic robotics environment and the implementation of a

steering gait and the planning system on the real robot.
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[20] A. Wächter and L. T. Biegler, “On the implementation of an interior-

point filter line-search algorithm for large-scale nonlinear program-
ming,” Mathematical Programming, vol. 106, pp. 25–57, 2006.

189




