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II. RELATED APPROACHES IN ROBOTICS

We first review recent approaches to estimation of dynamic

object properties and then provide a brief overview of past

work on sequential active learning in robotics.

A. Dynamic estimation of object properties

Early studies have looked into estimating the weight,

center of mass, and modes of inertia to loads attached to

a robot arm [3]. These quantities can be estimated from

rigid body dynamics equations, and in these studies, obser-

vations were collected by applying specific, parameterized

trajectories chosen by the experimenters. Object properties

like hardness and texture—which are difficult or impossible

to determine from static grasps—have also been estimated

with dynamic movements [4]. Some studies used shaking

movements in order to discriminate between objects, but

movement parameter values (like shaking frequency) were

hand-tuned by experimenters [5], [6]. An active strategy to

select the movement parameters would clearly be beneficial

in this case. While some of the studies mentioned above deal

with estimation of continuous-valued object parameters, most

focus on the task of discrimination within a discrete set of

objects.

B. Active sequential learning in robotics

Active learning has been applied to the problem of setting

camera parameters such as zoom and pan when discrimi-

nating between different objects [7]. The solution relied on

either discretization or Monte Carlo sampling for comput-

ing information gain, making it hard to scale to higher-

dimensional problems found in real-world domains. Another

use of active learning involves generating internal models of

the robot’s current configuration (e.g. for detecting missing

limbs) by performing discriminatory actions [8].

Past work has also used reinforcement learning [9] or

evolutionary algorithms [10] in order to learn control policies

that allow for quick discrimination of objects or parameter

discrimination. These methods differ from our approach

since we determine optimal actions to be taken in an online

manner (i.e., during run-time). While this means that the

optimal action to be performed needs to be computed at

each time step, our approach makes it easy to add more

training data (i.e., to gather more observations) without

having to re-learn the policy (i.e., the sequence of actions to

be taken). In contrast to past work that optimize actions and

perceptions together, we de-couple the optimization (learning

the sensor model and optimal actions in separate phases)

so that discrimination can be done even when sub-optimal

actions are taken.

Gaussian processes [11] have been used in active learning

before, but most applications address how a sparse(r) set of

training data can be selected from a much larger data set

while retaining as much accuracy in the regression model as

possible, e.g., [12]. Another notable use includes the use of

GPs to model the cost function, which is then used to trade

of exploration and exploitation [13].

III. METHODS

A. Problem formulation

We assume the following notation:

• θ ∈ R
dθ is the parameter of interest that we want to

estimate (here, viscosity of a liquid).

• x ∈ R
dx is a vector of action parameters (shaking

frequency and rotation angle).

• y ∈ R
dy is observed sensory data.

We assume that observations y are a (nonlinear) function of

both the actions x and state parameters θ:

y = f (x,θ) + ǫy (1)

where {x,θ,y} are all continuous, and ǫy is observation

noise. Both x and y are potentially high-dimensional.

For active learning, we are interested in determining the

optimal actions x∗ to take during test time such that the mu-

tual information between y and θ, I (θ;y|x), is maximized,

i.e., x∗ = arg maxx∈X I (θ;y|x). The mutual information is

defined as:

I (θ;y|x) =

∫∫

p(θ,y|x) log
p(θ,y|x)

p(θ)p(y|x)
dydθ (2)

where p(θ,y|x) is the joint probability distribution of θ

and y|x; and p(θ) and p(y|x) are the marginal probability

distributions of θ and y, respectively.

B. Learning the Sensor Model

To learn the sensor model, we use a GP to approximate the

nonlinear function f in Eq. (1). GPs rely on a kernel function

to determine the correlations between different input points.

A kernel matrix Λ is computed from this kernel function,

specifying the correlations between all training points. We

learn a GP for each output dimension m = 1, .., dy and use

a squared exponential kernel function of the following form:

km (zp, zq) = α2
m exp

{

1

2
(zp − zq)

T H−1
m (zp − zq)

}

+ σ2
mδ(zp, zq) (3)

where zp and zq are the vectors of the form [θ x]
T

;

Hm =

(

H
θ
m

0

0 H
x

m

)

, Hθ
m and Hx

m are diagonal matrices;

α2
m is a scaling parameter; and σ2

m denotes the variance of

additive noise. The set of hyperparameters Γm to be opti-

mized for kernel function km is Γm =
{

α2
m, σ2

m,Hθ
m,Hx

m

}

.

When GPs are used for filtering [14], as in our approach,

the resulting calculations have a computational complexity

that is quadratic in the number of training points at each

time step. As a result, updates can be slow if the number of

training points is high. Sparse extensions of GPs rely on a

small number of pseudo-inputs to speed up computations. We

use one of these methods [1], where the location of pseudo-

inputs are optimized and some effects of heteroscedastic

noise are modeled.

Given the model specified by Eqs. (1) to (3), we can

compute the mapping from given values of viscosity θ and

action parameters x to a probability distribution over sensor
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readings y. In particular, the predictive distribution over y is

Gaussian with predictive mean m∗
m and predictive variance

Σ∗
m:

m∗
m = kT

mW−1
m K↑

mΛ−1

m ym (4)

Σ∗
m = σ2 − kT

m(K−1
m − W−1

m )km, (5)

where Wm = Km + K↑
mΛ−1

m K↓
m. Here, Λm is the kernel

matrix calculated from the training inputs, Km is the kernel

matrix for the pseudoinputs and K↑
m and K↓

m are T × U

and U ×T matrices, respectively, containing the correlations

between pseudo-input and training inputs, where U is the

number of pseudo-inputs and T is the number of training

inputs.

The GPs are learned from training data by first optimizing

the hyperparameters Γm of each kernel function km while

keeping the location of the pseudo-inputs fixed, and then

optimizing the position of the pseudo-inputs. Optimization

is done by gradient descent on the model likelihood [1].

To prevent overfitting, we leave out some of the initial

training data gathered to use as a validation set. Once the

estimated error on this validation set starts to increase, we

stop optimization.

C. Sequential Estimation

For detailed derivation, please refer to [2]. In this paper,

we extend the approach there to sparse GPs.

The algorithm starts with a broad Gaussian initial prior

over the viscosity θ in order to reflect our ignorance about

the viscosity of the liquid in the bottle. Optimal action param-

eters are then found that maximize the mutual information

in Eq. (2), and the resulting observations are recorded under

these new actions. Finally, the posterior distribution over

the viscosity θ is computed, leading to updated mean and

covariance terms. The process is repeated iteratively, with the

optimal actions being calculated at every time step. Updates

to the viscosity’s posterior mean and posterior covariance are

similar to Kalman-filter like updates:

µt+1 = µt + CT
t+1S

−1

t+1(y
obs
t+1 − mt+1) (6)

Σt+1 = Σt − CT
t+1S

−1

t+1Ct+1 (7)

where µt is the posterior mean of θ at time step t and Σt

is the corresponding posterior covariance. yobs is the new

sensory data. The terms Ct+1, St+1, and mt+1 correspond

to the cross-covariance between p(θ,x) and p(y), and the

marginal mean and variance of p(y), respectively (see be-

low).

We introduce an active component to the selection of

action xt+1 at time step t by maximizing the mutual in-

formation between the current probability distribution over

θ and future observations, conditioned on the actions taken.

The optimal action x∗
t+1 is found as follows:

x∗
t+1 = argmaxxt+1

I(θt;yt+1|xt+1)

= argmaxxt+1
|Ct+1(x)St+1(x)Ct+1(x)T |

(8)

where the above is maximized by performing gradient ascent.

For the rest of the paper, we drop the time index (subscript

t) on C, S, and m. Since the sensor model is non-linear,

these quantities have to be approximated, e.g., as in the

unscented Kalman filter [15]. However, it has been shown

that these quantities can be calculated analytically when

approximating p(y) with a Gaussian distribution [16], [14]:

mm = qm(x)T am (9)

Smn = aT
mQmn(x)am − mmmn

+ δ(m − n)
(

α2
m − tr(BmQmm)

)

(10)

Cmn = ZT
m(x)am − µnmm (11)

where mm is the m-th coefficient of m; Smn is the (m, n)-
th entry of the matrix S; Cmn is the (m, n)-th entry of the

matrix C. Moreover, am = W−1
m K↑

mΛ−1

m ym and Bm =
K−1

m −W−1
m (see section III-B). For definitions of qm, Qmn,

and Zm, as well as derivatives, please refer to [2].

D. Implementation

During run-time, optimization of the actions has to be

performed as quickly as possible. We are able to compute

this quickly for following reasons:

• During gradient ascent, only the terms dependent on x

are recalculated, thereby speeding up the calculations.

• The optimization can be run in parallel from different

starting points.

• We place an upper limit on the run-time of the opti-

mization at each time step (500 msec) and stop when

this upper limit has been reached. (Please refer to

section IV-B for why 500 msec was chosen.) Since we

perform gradient ascent, this ensures that whenever we

stop the optimization, we will have improved on the

informativeness of the next action.

• We assumed hyperparameters are shared across all

output dimensions, so that we can re-use kernel matrices

and reduce computation time.

IV. EXPERIMENTAL RESULTS

A. Setup and preprocessing

We examined the problem of viscosity estimation from

tactile sensory data using the robotic anthropomorphic hand-

arm system in Figure 1. The hand-arm system consists of a

7 degree-of-freedom robot arm with an attached 7 degree-of-

freedom three-fingered hand. The fingers are equipped with

6 tactile arrays (2 per finger) containing 486 texels in total.

The robot’s task was to determine the viscosity θ of

various liquids in bottles by shaking the containers using

different actions x. The action parameters include the shak-

ing frequency, as well as the rotation angle of shaking

(that is, the angle of the last arm joint at one of the

end-points of the shaking trajectory). At a rotation angle

of 0 degrees, the bottle is held horizontally while being

shaken. For positive or negative rotation angles, the bottle is

tilted upwards or downwards, respectively. Sensor data y is

measured from tactile arrays mounted on the robot’s fingers

and is preprocessed as described in the next paragraphs.
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To gather training data, we took bottles containing three

different liquids and recorded the tactile responses while

shaking the bottles at a range of frequencies (from 0.3 to

1.1 Hz) and rotation angles (from −25 to 25 degrees) for

5 seconds each. Training data came both from a fixed grid

over action space and randomly chosen actions. The three

liquids had viscosities of 1 cst (water), 120 cst (motor oil),

and 1200 cst (glycerine). These values were transformed to

log10 space, yielding values of 0, 2.07 and 3.07, respectively.

The bottles used for the three liquids had identical shape, and

the content was matched for weight (160g). Bottles were

gripped using a force-controlled strategy, after which finger

joint position were held constant throughout the shaking mo-

tions. A typical response profile during shaking movements

consisted of responses from 20 texels.
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(a) Mean of Gaussian process for observed power at frequency 1.5 Hz
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(b) Mean of Gaussian process for observed power at frequency 1.8 Hz.

Fig. 2. Examples of learned GP mean functions over power spectrum
amplitudes at different observed frequencies. Left: Water (low viscosity).
Right: Glycerine (high viscosity).

We preprocessed the tactile data in the following way.

First, the time series recorded during shaking movements

were projected onto their principal component, in order to

achieve spatial invariance with respect to the most responsive

texels. Then, we calculated the Fourier transform of the

resulting time series and normalized the power spectrum

between the frequencies of 1.35 Hz and 2.9 Hz in order to re-

move any effects due to variations in individual grip strengths

and locations. The time series data were re-normalized at

each time step in order to combat drifting of the tactile

responses over time.

We then fitted individual sparse GPs to each Fourier

component (11 in total). The resulting model maps the joint

space of viscosity and action parameters [θ x]T to the

preprocessed tactile space y. We collected 5070 training

points in total and used 297 pseudo-inputs. The pseudo-

input were initialized over a grid over action parameter space

(instead of random initialization) before being optimized.

Figure 2 shows slices of the learned GP’s mean functions

for two different output frequencies for both water (left

figures) and glycerine (right figures). It can be seen that

most of the power is concentrated at a frequency that is

double the shaking frequency (vertical red bands). However,

other frequency bands also contribute power (yellow bumps

throughout plot). The specific relationship between action pa-

rameters and observed power spectrum most likely depends

on the exact shape of the bottle as well as other parameters.

As can be seen from the plots, at certain shaking angles,

the amplitudes between water and glycerine filled bottles

differ significantly—at these angles, the two liquids could be

distinguished more easily. It should be noted though, that the

plots only show the mean function and not the corresponding

variance, which also affects discriminability.

B. Performance comparison

We compared four different strategies for determining

optimal actions at each time step:

1) Random strategy: Actions are selected randomly from

a uniform distribution over the action space that was

explored in the initial training phase.

2) Grid strategy: A grid is placed to cover the action

space uniformly. This ensures high and low frequen-

cies, as well as a range of rotation angles, are used.

3) Frequency strategy: The shaking frequency is in-

creased over time while the bottle is held constant at

zero rotation angle.

4) Active learning strategy: The informativeness of each

subsequent action is maximized by gradient ascent on

the current information landscape.

At the start of run/test time, we placed an initial broad

Gaussian prior over the viscosity space and ran the ex-

periment for 20 time steps. At the very first time step, a

shaking frequency of 0.5 Hz was always chosen since the

sensor values had to be normalized to account for slight

variations in grip force and grip location. In subsequent steps,

shaking frequencies were selected according to one of the

four strategies described above. As in the initial training part,

we recorded tactile responses for 5 sec. When switching

action parameters, we allowed the liquid to settle into the

new shaking pattern for 3 sec, before starting to record new

tactile observations.

For the active learning strategy, the execution time of

optimization was capped to a maximum value of 500 msec

at each time step in order to ensure that the optimization

procedure did not affect overall run-time. Each shaking be-

havior/trajectory (corresponding to a set of action parameter

values) needed to be completed before a new set of actions

could be performed. On average, it took more than 500 msec

for a specified shaking trajectory to complete.
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(a) Estimation run with a bottle containing water.
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(b) Estimation run with a bottle containing glycerine.

Fig. 3. Sample runs with two different liquids. Each individual column corresponds to a single time step (lasting 5 sec). Shown are the commanded joint
angle of the last arm joint (top plot—where the abscissa indicates time and shows commands taken over 5 secs), average tactile observations (middle—where
the abscissa again indicates time and shows sensor data observed over a period of 5 sec) and belief over log viscosity space (bottom—where the x axis
represents log viscosity values ranging from −1 to 4) at each time step. Note that only every other time step t is shown in the figure.

Figure 3 shows two step-by-step sample runs for water

and glycerine-filled bottles using the active learning strategy.

Further examples are shown in the accompanying video.
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Fig. 4. Posterior variance of viscosity (on log scale) over time for active
learning (red), random (blue), frequency (green) and grid (black) strategies.

Instead of doing classification over a fixed number of liq-

uids, our model is continuous over the viscosity domain and,

therefore, is capable of exhibiting generalization properties.

To evaluate model generalization, we introduced a fourth new

liquid—a water-glycerine mix with a viscosity of 30 cst (1.47

in log space). We performed six trials for each liquid, using

both the random and active learning strategies, and three

trials for both the frequency and grid strategies. Estimation

worked equally well for the liquids used in the training phase

as for the newly introduced liquid.

The mean squared error—averaged over all four liquids

and trials—for the active learning strategy after 20 time steps

was 0.48. The frequency strategy was close with 0.52, while

the other strategies had a mean squared error of 0.72 and

greater. Additionally, the posterior variance after 20 steps

was considerably lower for the active learning strategy than

for any of the other strategies. Figure 4 shows the average

posterior variance of θ over time, indicating that the active

learning strategy leads to the fastest convergence. The figure

shows that the active strategy is able to reduce the viscosity’s

uncertainty in just 7-10 steps to the same level that the other

strategies take 20 steps to achieve.

C. Information landscape

It is generally very hard to come up with information

maximizing strategies by hand, since small changes in the

sensor model can result in large changes in informativeness

of different action parameters. Moreover, in problems where

there is no analytical model of all involved effects, intuitions

about what might be effective strategies can be misleading.

Another challenge is that in non-linear problems, the infor-

mativeness of different actions also depends on the current

belief state. Depending on what is already known about the

problem, different actions may be desirable.

Figure 5 shows information landscapes for two different

prior distributions over θ. As Figure 5(a) illustrates, when

uncertainty about the true viscosity is high, relatively high
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Fig. 5. Information landscapes for two different probability distributions of
θ (a broad one centered over a high viscosity value of 1.5 and a narrow one
centered over a low viscosity value of 0.3). Increasing shaking frequencies
are shown on the abscissa, different rotation angles on the ordinate. Blue
regions have low information, while yellow and red regions are medium
and highly informative, respectively.

shaking frequencies are preferred, along with a positive

rotating angle (resulting in an upwards tilted bottle) that

increases with shaking frequency. On the other hand, when

the distribution over θ is restricted to a narrow low vis-

cosity region, low shaking frequencies become much more

informative, as Figure 5(b) shows. This trend can also be

seen in Figure 3, where towards the end of each run, low

shaking frequencies are selected for the water-filled bottle

(see Figure 3(a)), while high shaking frequencies are chosen

for the glycerine-filled bottle (see Figure 3(b)).

Since informative regions of the action space can vary

drastically with the current belief and highly informative

regions tend to be sparse, any strategy relying on chance to

encounter such informative regions could be expected to fail.

Moreover, regions of high information may be located very

close to parameter regions containing very little information.

As a result, small differences in action values can have a huge

effect on how informative resulting observations will be.

V. DISCUSSION

We presented an active framework that exploits a learned

sensor model in order to determine dynamics parameters

of objects. We derive a model based on sparse Gaussian

Processes and evaluate our framework on a real robotic hand-

arm system that is able to determine the viscosity of different

liquids by shaking bottles at different frequencies and angles.

Optimal actions are performed at each time step by so that

most informative observations (i.e., informative with respect

to the liquid’s viscosity) are gathered. We demonstrated that

the active learning strategy performs better than other simple

strategies and is not slowed down by protracted calculations.

An interesting extension of this work would be to incorpo-

rate active learning concepts to the collection of the training

data (in addition to run-time data). As the dimensionality

of the action space increases, the amount of training data

samples grows very quickly, and collecting training data can

be very time consuming and involved. One can imagine

gathering data only from regions that would contribute to

a sufficiently rich training set so that the sensor model can

be properly learned in a reasonable amount of time.
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