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Abstract— We propose a control strategy for a robotic
manipulator operating in an unstructured environment while
interacting with a human operator. The proposed system takes
into account the important characteristics of the task and the
redundancy of the robot to determine a controller that is safe
for the user. The constraints of the task are first extracted using
several examples of the skill demonstrated to the robot through
kinesthetic teaching. An active control strategy based on task-
space control with variable stiffness is proposed, and combined
with a safety strategy for tasks requiring humans to move in the
vicinity of robots. A risk indicator for human-robot collision is
defined, which modulates a repulsive force distorting the spatial
and temporal characteristics of the movement according to the
task constraints. We illustrate the approach with two human-
robot interaction experiments, where the user teaches the robot
first how to move a tray, and then shows it how to iron a napkin.

I. INTRODUCTION

Robotic applications are bringing robots into unstructured
environments populated by humans. These robots are ex-
pected to achieve a large range of skills that cannot be pre-
programmed. Controllers capable of handling several types
of external perturbations are required to let the robot general-
ize the skill to new situations. Flexible learning mechanisms
are also required to let non-expert users teach new skills in
a user-friendly manner. Providing robots with learning by
imitation capabilities is an approach to reduce the search
space of the possible actions that the robot can take, while
still allowing the robot to further refine its model of the
demonstration through reinforcement learning [1], [2].

Research in safety is carried out in two main directions,
passive and active safety. The former is mostly implemented
during the design of the robot to reduce the collision forces in
the case of an unexpected impact. Variable stiffness actuators
have been proposed as a safe approach for driving robots that
interact with humans [3], [4]. These actuators allow a robot
to both absorb the energy of an impact through a compliant
mechanism, and to achieve precise joint positioning through
variation of the stiffness gains. The active safety approach,
instead, attempts to prevent collision at the controller level
[5]. Moreover, strategies for detecting the collision together
with an appropriate reaction behavior have also been pro-
posed [6].
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The concept of risk assessment, which is mostly used for
industrial applications, is contained in the standards which
prescribe that safety is guaranteed by defining an area where
the robot stops when a human intrusion is detected [7],
[8]. These well-established standards remain valid for a
broad range of stiff robots. They, however, rarely meet the
requirements of close human-robot interaction in applications
such as collaborative tasks, or in tasks where the robots move
in the vicinity of users. With the development of torque-
controlled robots such as the Barrett WAM arm used in this
paper, novel flexible and adaptive control strategies can be
explored for human-robot interaction. Consequently, novel
risk management policies and associated control scheme also
need to be examined.

In this paper, we refer to the kinematic redundancy of
the robot when the robot possesses an infinite number of
generalized inverse control strategies, see e.g. [9], [10]. We
refer to task redundancy when the task can be achieved
through an infinite number of solutions, see e.g. [11]. We take
the perspective that both the robot and task redundancies can
be exploited to regulate the dynamics of the movement and
the stiffness of the robot during reproduction. After having
observed several demonstrations of a similar task, the robot
creates a compact model of the skill, by taking into account
the variations and correlations observed along the movement.
If a part of the movement was consistent across the different
trials, this part of the task should probably be reproduced
in this specific manner. On the other hand, if a large
variability was observed during the different demonstrations,
reproducing a specific reference trajectory is not required to
fulfil the task requirements.

During reproduction, the robot is using this information
to set an adaptive stiffness matrix compatible with the
task requirements. High compliance will allow here the
simultaneous consideration of other constraints. We consider
two situations where the interaction can benefit from the
variability and correlations of the task: (i) to let the user
physically move the robot while reproducing the task; (ii)
to let the robot modify the generalized trajectory to adopt
gestures that are safer for a user who is close to the robot.

Instead of setting in advance a pre-determined path to
follow, the robot thus makes use of the task redundancies
and its kinematics redundancies to fulfill constraints related
to safety and obstacle avoidance. Through this approach,
the robot can still follow a specific path if the task strictly
requires it to do so (i.e., the skill showed a strong invariance
across the multiple demonstrations). Otherwise, the robot
will loosely generalize the skill by adapting its movement
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to the user’s proximity and attention. The proposed strategy
offers the possibility to cope with unpredicted events in a safe
way, as the robot remains compliant in the parts of the task
that do not require to track precisely a reference trajectory.

II. CONTROL STRATEGY

To control the robot, we exploit the torque-feedback prop-
erties of the manipulator, where the robot remains actively
compliant for the degrees of freedom that are not relevant for
the task. We control the 𝑛 degrees of freedom (DOFs) robot
through inverse dynamics solved with recursive Newton
Euler algorithm [12]. The joint forces 𝑓𝑖 at each joint 𝑖 ∈
{1, . . . , 𝑛} are therefore calculated as

𝑓𝑖 = 𝑓𝑎
𝑖 − 𝑓𝑒

𝑖 +
∑

𝑗∈𝑐(𝑖)

𝑓𝑗 ,

where 𝑓𝑎
𝑖 is the net force acting on link 𝑖, 𝑓𝑗 with 𝑗 ∈ 𝑐(𝑖)

are the forces transmitted by the child 𝑐(𝑖) of link 𝑖, and 𝑓𝑒
𝑖

are the external forces defined as

𝑓𝑒
𝑖 = 𝐹𝑇 + 𝐹𝑂 + 𝐹𝐺.

In the above equation, 𝐹𝑂 = [𝑓𝑂, 0]
⊤ ∈ ℝ

6 is a repulsive
force applied to the point 𝑥𝑂 in the kinematic chain (when
𝑥𝑂 is on the link 𝑖) and then projected at the center of gravity
of the link; 𝐹𝑇 = [𝑓𝑇 ,𝑀𝑇 ]

⊤ ∈ ℝ
6 is the vector of force and

momentum requested to accomplish the task (only applied
at the end-effector, i.e. when 𝑖 = 𝑛), and 𝐹𝐺 = [𝑓𝐺, 0]

⊤ ∈
ℝ

6 is the gravity compensation force. Tracking of a desired
path in Cartesian space is insured by the force command
𝑓𝑇 = 𝑚𝑇

ˆ̈𝑥, where 𝑚𝑇 is a virtual mass and ˆ̈𝑥 is a desired
acceleration command (described in next subsection).

A. Learning the task constraints

𝑀 examples of a skill are demonstrated to the robot
in slightly different situations. Each demonstration 𝑚 ∈
{1, . . . ,𝑀} consists of a set of 𝑇𝑚 positions 𝑥, velocities
�̇� and accelerations �̈� of the end-effector in Cartesian space,
where each position 𝑥 has 𝐷 = 3 dimensions. A dataset
is formed by concatenating the 𝑁 =

∑𝑀
𝑚=1 𝑇𝑚 datapoints

{{𝑥𝑗 , �̇�𝑗 , �̈�𝑗}𝑇𝑚
𝑗=1}𝑀𝑚=1. By considering flexibility and com-

pactness issues, we propose to use a controller based on a
mixture of 𝐾 proportional-derivative systems

ˆ̈𝑥 =
𝐾∑
𝑖=1

ℎ𝑖(𝑡)
[
𝐾𝒫

𝑖 (𝜇
𝒳
𝑖 − 𝑥)− 𝜅𝒱 �̇�

]
. (1)

The above formulation shares similarities with the Dy-
namic Movement Primitives (DMP) framework originally
proposed by Ijspeert et al [13], and further extended in
[14], [15] (see [16] for a discussion on the similarities of
the proposed controller with DMP). The principal difference
is that we consider a full matrix 𝐾𝒫

𝑖 associated with each
of the 𝐾 primitives (or states) instead of a fixed 𝜅𝒫 gain.
This allows us to take into consideration variability and
correlation information along the movement for learning and
reproduction.1

1Note that this process can generically be applied to other movement
representations based on a superposition of affine linear systems, see e.g.
[17], [18].

The superposition of basis force fields is determined in
(1) by an implicit time dependency, but other approaches
using spatial and/or sequential information could also be
used [17], [18]. Similarly to DMP, a decay term defined
by a canonical system �̇� = −𝛼𝑠 is used to create an
implicit time dependency 𝑡 = − 𝑙𝑛(𝑠)

𝛼 , where 𝑠 is initialized
with 𝑠 = 1 and converges to zero. We define a set of
Gaussians 𝒩 (𝜇𝒯

𝑖 ,Σ
𝒯
𝑖 ) in time space 𝒯 , with centers 𝜇𝒯

𝑖

equally distributed in time, and variance parameters Σ𝒯
𝑖 set

to a constant value inversely proportional to the number of
states. 𝛼 is initially fixed depending on the duration of the
demonstrations. The weights ℎ𝑖(𝑡) are defined by

ℎ𝑖(𝑡) =
𝒩 (𝑡; 𝜇𝒯

𝑖 ,Σ
𝒯
𝑖 )∑𝐾

𝑘=1 𝒩 (𝑡; 𝜇𝒯
𝑘 ,Σ

𝒯
𝑘 )
. (2)

By determining the weights through the decay term 𝑠, the
system will sequentially converge to the set of attractors in
Cartesian space defined by 𝜇𝒳

𝑖 . The centers 𝜇𝒳
𝑖 in task space

and stiffness matrices 𝐾𝒫
𝑖 are learned from the observed

data, either incrementally or in a batch mode (through least-
squares regression). For example, parts of the movement
where the variations between the demonstrations are high
indicate that the reference trajectory does not need to be
tracked precisely. By using this information, the controller
can focus on the other constraints of the task such as moving
away from the user. On the other hand, parts of the move-
ment exhibiting strong invariance among the demonstrations
should be tracked precisely, i.e., the stiffness used to track
the position errors needs in this case to be high.

In a batch mode, by concatenating the training examples
in a matrix 𝑌 = [�̈� 1

𝜅𝒫 + �̇� 𝜅𝒱
𝜅𝒫 + 𝑥] ∈ ℝ

𝑁×𝐷, and by
concatenating the corresponding weights computed with (2)
in a matrix 𝐻 ∈ ℝ

𝑁×𝐾 , we can write the linear equation
𝑌 = 𝐻𝜇𝒳 , with 𝜇𝒳 ∈ ℝ

𝐾×𝐷 representing the concatenated
attractor centers 𝜇𝒳

𝑖 . The least-squares solution to estimate
the attractor centers is then given by 𝜇𝒳 = 𝐻†𝑌 , where 𝐻†

is the pseudoinverse of 𝐻 .

To take into account variability and correlation along
the movement and among the different demonstrations, we
compute for each state 𝑖 ∈ {1, . . . ,𝐾} the residual errors
of the least-squares estimation, in the form of covariance
matrices

Σ𝒳
𝑖 =

1

𝑁

𝑁∑
𝑗=1

(𝑌 ′
𝑗,𝑖 − 𝑌 ′

𝑖 )(𝑌
′
𝑗,𝑖 − 𝑌 ′

𝑖 )
⊤ ∀𝑖 ∈ {1, . . . ,𝐾},

where 𝑌 ′
𝑗,𝑖 = 𝐻𝑗,𝑖(𝑌𝑗 − 𝜇𝒳

𝑖 ). (3)

𝒩 (𝜇𝒳
𝑖 ,Σ

𝒳
𝑖 ) thus describes a Gaussian in Cartesian space

𝒳 . The set of 𝐾 Gaussians defines the sequence of virtual
attractor points in Cartesian space that the system will try
to reach, where each attractor encapsulates variability and
correlation information. The residuals terms of the regression
process are then used to estimate the stiffness matrices 𝐾𝒫

𝑖
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in Eq. (1) through eigencomponents decomposition

𝐾𝒫
𝑖 = 𝑉𝑖𝐷𝑖𝑉

−1
𝑖 ,

with 𝐷𝑖 = 𝜅𝒫
min + (𝜅𝒫

max − 𝜅𝒫
min)

𝜆𝑖 − 𝜆min

𝜆max − 𝜆min
. (4)

In the above equation, 𝜆𝑖 and 𝑉𝑖 are the concatenated
eigenvalues and eigenvectors of the inverse covariance matrix
(Σ𝒳

𝑖 )
−1. The basic idea is to determine a stiffness matrix

proportional to the inverse of the observed covariance. For
example, if high variability is observed, stiffness will become
low as the tracking does not need to be precise. If 𝐷𝑖 in
(4) is set to 𝜆𝑖, the eigencomponents decomposition gives
𝐾𝒫

𝑖 = (Σ𝒳
𝑖 )

−1. We rescale 𝐷𝑖 to obtain stiffnesses in
the desired range [𝜅𝒫

min, 𝜅
𝒫
max] (determined by the user and

hardware’s limitation) based on the initial range of eigen-
values [𝜆min, 𝜆max] (determined by the variability within
the motion and among several demonstrations). Source-
code for the algorithms in this section are available at
http://programming-by-demonstration.org/SylvainCalinon/.

B. Risk indicator

When the robot and the user are closely interacting in
an unstructured environment, the intentions of the human
operator are largely unpredictable. The experiment, that we
propose as a case study, considers the position and orienta-
tion of the human’s head with respect to the moving robot
arm. This scenario has been presented in literature as one of
the most important danger events that must be addressed, see
e.g. [3], [19]. In [20], we proposed an attention mechanism
based on the area covered by a vision cone intersecting with
a table on which a set of objects were placed. The proposed
approach was restricted to predetermined 2D planes, where
the level of attention was used to modify one existing task,
instead of considering several constraints simultaneously. We
propose in this paper a more generic mechanism in 3D
Cartesian space based on the user’s head pose.

A motion capture system is used to track the pose of the
head, described by its position 𝑥𝑈 and orientation matrix 𝑅𝑈 .
The closest position 𝑥𝑂 on the robot’s kinematics chain to the
position 𝑥𝑈 of the user is first computed. The vector between
the user and the robot’s closest point is defined by 𝑣 = 𝑥𝑈 −
𝑥𝑂, with associated norm 𝑑 = ∣𝑣∣. The user’s gaze direction
is approximated by his/her head direction vector 𝑢 = 𝑅𝑈𝑒1,
with 𝑒1 = [1 0 0]⊤ being a unit vector. The angle between
the user’s gaze vector and the vector directed towards the
robot’s closest point is determined by 𝜔 = arccos(𝑢⊤𝑣).
Distance 𝑑 and angle 𝜔 are both considered as parameters
for the determination of a risk factor related to the user’s
proximity and attention awareness.

When humans move their head, the indicator thus scales
the risk of human-robot collision on the basis of a function
𝑟 = 𝑓(𝑑, 𝜔, 𝜎𝑑, 𝜎𝜔) ∈ ℝ[0,1], that depends on the angle 𝜔
in-between the user’s gaze direction and the robot’s closest
point, and distance 𝑑 of the human’s head from the robot.
We define the risk indicator as

𝑟 =
𝒩 (𝑑; 0, 𝜎𝑑) 𝒩 (𝜔; 𝜋, 𝜎𝜔)

𝒩 (0; 0, 𝜎𝑑) 𝒩 (𝜋; 𝜋, 𝜎𝜔)
,
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Fig. 1. Illustration of the learning and retrieval processes. Top-left: Four
examples of the task provided as demonstrations. Top-right: Learned model
and multiple reproduction attempts by retrieving for each reproduction
a set of attractors from the Gaussian distributions 𝒩 (𝜇𝒳

𝑖 ,Σ𝒳
𝑖 ). Center:

Consideration of the user in the reproduction of the task. The user’s head is
represented by a red point, with the black line showing its orientation. The
trajectory in green lines shows a generalized reproduction attempt without
consideration of the user. The trajectories in red and blue lines show the
retrieved path when the user is close to the robot at the beginning and at
the end of the movement, for two different head directions. Those in red
lines correspond to the situation where the user is on the path but remains
attentive to the robot’s movement (left). Those in blue lines correspond to
the situation where the user looks away from the robot (right). The dots
show positions at constant time intervals. Bottom: Norm of the repulsive
force 𝑓𝑂 and value of the decay parameter 𝛼 along the movement for the
different reproduction scenarios.

where 𝜎𝑑 and 𝜎𝜔 are variance parameters determined by the
experimenter. Fig. 6 left shows the risk function used for
the experiments. The highest level is considered when the
user is close to the robot and facing away. The lowest and
safest level is when the human operator is out of the robot’s
workspace and when the user is looking in the direction of
the robot’s movement.

By taking this into consideration, we define a repulsive
force 𝑓𝑂 = 𝑟𝑓max

𝑣
∣𝑣∣ , where 𝑓max is a maximum force value

defined by the experimenter. Similarly, we define the decay
parameter that lets the system converge sequentially to the
set of attractors modeling the task (see Sec. II-A) as 𝛼 =
(1−𝑟)𝛼max, where 𝛼max is determined by the experimenter.

Fig. 1 illustrates the approach using a 2-dimensional exam-
ple. In the top-right graph, we see that the trajectories repro-
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Tray handling task

Ironing task

Fig. 2. Experimental setup.

duced stochastically from the learned model show different
levels of variability along the task. This variability shows
similar characteristics to the one in the training set (top-
left graph). In the second row, the behavior of the robot is
different in the two reproduction scenarios. In the first, where
collision avoidance is at the beginning of the movement, the
robot goes round the user by deviating significantly from
the generalized trajectory, as the constraints of the task are
not very high in this area (i.e. the robot still fulfils the task
constraints correctly). In contrast, in the second collision
avoidance situation, near the end of the motion, the robot
only moves slightly from the generalized trajectory, since the
demonstrations were showing a higher level of consistency
in this part of the movement (i.e. the robot can only slightly
depart from the generalized trajectory to reproduce the task
correctly). We see that, when the user is in the proximity
of the robot’s task path, the task motion is slowed down to
smoothly avoid the user, with a natural behavior that takes
into account the task requirements. Finally, when the user is
not looking in the direction of the movement, the robot goes
round the user with a larger amplitude.

III. EXPERIMENTS

A. Experimental setup

The experiment is conducted with a torque-controlled
Barrett WAM 7 DOFs robotic arm. The position and ori-
entation of the user’s head are tracked with a marker-based
NaturalPoint OptiTrack motion capture system. 12 cameras
are used to track the position 𝑥𝑈 and orientation of the user’s
head (𝑅𝑈 in direction cosine matrix representation), at a rate
of 30 frames per second.

Ironing task
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Fig. 3. Recordings (top row, in grey line) and stochastic reproduction
from the learned model (bottom row, in black line). We see that the
reproduced results present a variability similar to the one observed during
the demonstration trials.

Two experiments are proposed. The first consists of hold-
ing a tray at the left-hand side of the robot, and moving it
to a table at the right-hand side of the robot (while keeping
the tray horizontal). The second consists of ironing a square
napkin. These two skills have non-uniform constraints in
position. For the tray handling task, the position of the
tray is more constrained at the end of the movement than
during its transportation, in order to bring it to the desired
position. For the ironing task, the trajectory that the iron
should follow is more constrained in the vertical axis than
in the horizontal plane. To fulfil the task requirements, it
is indeed more important to have the iron in contact with
the table than to follow a very specific path on the table.
These constraints are reflected in the collected data. During
demonstration, gravity compensation is used to allow the
user to move the robot effortless. Through this kinesthetic
teaching process, 7 demonstrations are provided by recording
the position and orientation of the end-effector. Each task
is encoded with the proposed model, by fixing the number
of states (or primitives) with respect to the length of the
demonstrations. 6 and 8 states are respectively used to encode
the tray handling and ironing movements.

Fig. 2 presents the experimental setup and the static frame
of reference that we consider for the two tasks.

B. Experimental results

Figs 3-6 present the experimental results. Fig. 3 depicts
stochastic reproduction results showing that the residuals
can be used to generate reproduction attempts with similar
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Multiple demonstrations Extraction of the task constraints Σ̂𝒳 Reproduction with variable stiffness �̂�𝒫 Stochastic reproduction attempts
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Fig. 4. Experimental results for the tray holding task. From left to right: Demonstrations. Extraction of the task constraints through the residuals of the
regression process. Adaptive stiffness gain matrix computed from the residuals information. Stochastic reproductions of the movement.
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Fig. 5. Experimental results for the ironing task. Top: Demonstrations. Extraction of the task constraints through the residuals of the regression process.
Adaptive stiffness gain matrix computed from the residuals information. Stochastic reproductions of the movement. Bottom: The second row shows several
perturbed reproduction attempts. The user’s head is represented by red dots, with the black lines showing its orientation. From left to right: Situation where
the user is on the path of the robot and is not looking at the movement. Situation where the user is facing the robot. Reproduction by artificially applying
a constant force parallel to the table at the end-effector of the robot. Reproduction by applying a constant force with the same amplitude but vertically to
the table.

variabilities to those observed among the demonstration
trials.

For the tray handling task in Fig. 4, the robot becomes
stiffer at the end of the movement (bigger stiffness ellip-
soids at the end of the movement), in order to correctly
position the tray on the table (the covariance matrices
Σ̂𝒳 =

∑𝐾
𝑖=1 ℎ𝑖(𝑡)Σ

𝒳
𝑖 and stiffness gain matrices �̂�𝒫 =∑𝐾

𝑖=1 ℎ𝑖(𝑡)𝐾
𝒫
𝑖 are respectively represented with grey and

green ellipsoids). During the course of the movement, the
task constraints remain low, as there is no obstacle in the
robot’s workspace. The stiffness gains reflect this charac-
teristic by remaining low until the robot approaches the
table. We see in the second column that the model correctly
encapsulates the variability of the demonstrations through the
set of covariance matrices Σ̂𝒳 estimated from the residuals
of the regression process. A variable stiffness gain matrix
�̂�𝒫 is automatically set in consequence in order to fulfil the
learned task constraints (third column).

For the ironing task in Fig. 5, the learned model shows
that it is more important to track the movement in the vertical
direction than in the other two directions of the horizontal

plane (nearly flat ellipsoids in the second graph). In the third
graph, the stiffness matrices have consequently an elongated
shape. We also see that by applying a virtual force to the end-
effector during reproduction, the deformation is stronger if
the force is parallel to the table than if the force is vertical
(last two graphs).

Fig. 6 right presents snapshots of the robot reproducing
the ironing task, while the user enters the workspace and
grasps an object in the vicinity of the robot. A video of this
experiment also accompanies this submission.

IV. DISCUSSION

We used in this paper a simple repulsive force fields policy
as a first approach to avoid collisions with the user. Solutions
based on superposition of additional force fields help prevent
collisions [21], but do not necessarily guarantee that no
collision will occur.

Such a policy is fast and computationally efficient, but it
remains adequate only for a limited subset of the possible
scenarios that one might expect in human-robot interaction.
Considering multiple constraints within the same level of
control can indeed be problematic in cases where competing
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Fig. 6. Left: Risk indicator 𝑟 = 𝑓(𝑑, 𝜔, 𝜎𝑑, 𝜎𝜔). Right: Snapshots of a
reproduction attempt for the ironing task.

forces of high amplitudes sudden change in direction or ap-
plication points, which can produce unpredictable behaviors
if one does not limit the maximum force allowed. One pos-
sible alternative is to consider a hierarchical decomposition
of the task constraints [9], [10], or to adopt a prioritized
optimization strategy [22].

This first set of experiments opens the road for various
further investigations. We will explore in which manner risk
indicators can be integrated in an overall safety strategy,
by taking into consideration that these indicators strongly
depend on the user (e.g., the risk indicators can differ
depending on the age or motor capabilities of the person
interacting with the robot), as well as on other habituation
factors. To do this, we will concentrate on learning the
parameters that are relevant for the evaluation of the risk
indicator. We will also explore in which manner the dynamics
of the user’s body can be considered in the estimation of
the risk function (instead of a static pose). To do so, we
plan to develop prediction strategies that take into account:
(i) the context in which pre-collision occurs; and (ii) the
robustness of the sensory information available to track the
user’s movement.

V. CONCLUSION

We proposed an active control strategy based on task-space
inverse dynamics control with variable stiffness. Learning of
the task is insured by the user providing multiple demonstra-
tions of the skill. After extraction of the task constraints, the
robot replicates the task by automatically selecting a variable
level of compliance to reproduce the essential characteristics
of the skill. The redundancy of the task and the redundancy
of the robot are exploited to determine a safety control
strategy through the estimation of the user’s head pose. We
demonstrated the feasibility of the approach with a tray
handling task and an ironing task.
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[6] A. De Luca, A. Albu-Schäffer, S. Haddadin, and G. Hirzinger,
“Collision detection and safe reaction with the DLR-III lightweight
manipulator arm,” in Proc. IEEE/RSJ Intl Conf. on Intelligent Robots
and Systems (IROS), 2006, pp. 1623–1630.

[7] S. P. Gaskill and S. R. G. Went, “Safety issues in modern applications
of robots,” Reliability Engineering and System Safety, vol. 53, no. 3,
pp. 301–307, 1996.

[8] ISO 10218, “Manipulating industrial robots - safety,” Geneva, Switzer-
land, 1992.

[9] A. De Luca and L. Ferrajoli, “Exploiting robot redundancy in collision
detection and reaction,” in IEEE/RSJ Intl Conf. on Intelligent Robots
and Systems (IROS), Nice, France, September 2008.

[10] J.-O. Kim, M. Wayne, and P. K. Khosla, “Exploiting redundancy
to reduce impact force,” Journal of Intelligent and Robotic Systems,
vol. 9, no. 3, pp. 273–290, 1994.

[11] M. Howard, S. Klanke, M. Gienger, C. Goerick, and S. Vijayaku-
mar, “Methods for learning control policies from variable-constraint
demonstrations,” in From Motor Learning to Interaction Learning in
Robots, O. Sigaud and J. Peters, Eds. Springer Berlin / Heidelberg,
2010, pp. 253–291.

[12] R. Featherstone and D. E. Orin, “Dynamics,” in Handbook of Robotics,
B. Siciliano and O. O. Khatib, Eds. Secaucus, NJ, USA: Springer,
2008, pp. 35–65.

[13] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Trajectory formation for
imitation with nonlinear dynamical systems,” in Proc. IEEE Intl Conf.
on Intelligent Robots and Systems (IROS), 2001, pp. 752–757.

[14] S. Schaal, P. Mohajerian, and A. J. Ijspeert, “Dynamics systems vs.
optimal control a unifying view,” Progress in Brain Research, vol.
165, pp. 425–445, 2007.

[15] H. Hoffmann, P. Pastor, D. H. Park, and S. Schaal, “Biologically-
inspired dynamical systems for movement generation: automatic real-
time goal adaptation and obstacle avoidance,” in Proc. IEEE Intl Conf.
on Robotics and Automation (ICRA), 2009, pp. 2587–2592.

[16] S. Calinon, F. D’halluin, D. G. Caldwell, and A. G. Billard, “Handling
of multiple constraints and motion alternatives in a robot programming
by demonstration framework,” in Proc. IEEE-RAS Intl Conf. on
Humanoid Robots (Humanoids), Paris, France, December 2009, pp.
582–588.

[17] S. Calinon, F. D’halluin, E. L. Sauser, D. G. Caldwell, and A. G.
Billard, “Learning and reproduction of gestures by imitation: An
approach based on hidden Markov model and Gaussian mixture
regression,” IEEE Robotics and Automation Magazine, vol. 17, no. 2,
pp. 44–54, 2010.

[18] M. Khansari and A. G. Billard, “BM: An iterative method to learn
stable non-linear dynamical systems with Gaussian mixture models,”
in Proc. IEEE Intl Conf. on Robotics and Automation (ICRA), An-
chorage, Alaska, USA, May 2010, pp. 2381–2388.
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