
  

  

Abstract—In this paper, a new method for the estimation of 
orientation repeatability index is proposed for industrial 
manipulator robots. First, we compute orientation repeatability 
in different locations of the workspace using the experimental 
covariance matrix and the stochastic ellipsoid modeling. Then 
we display experimental results about the direct measurement 
of orientation repeatability for an industrial Samsung robot in 
different workspace locations and with different loads. The two 
proposed procedures are compared. We analyze the incidence 
of workspace location on orientation repeatability and bring 
additional results to the existing literature. 

I. INTRODUCTION 
N the next years, one challenge for robot manipulator 
manufacturers is to design robots to be used in industrial 

and medical applications where high accuracy is demanded 
to perform minute tasks, meaning with a precision below 
5µm. This is the reason why it is important to be able to 
evaluate precision performances for industrial robots. Many 
factors including manufacturing and assembly tolerances, 
deviations in actuators controllers, influence the precision 
performance index [1]. They must be carefully analyzed to 
obtain a clear insight into manipulator performance. 

In our previous work we have presented a new approach 
to estimate the position repeatability index and analyzed the 
influence factors. This estimation was based on a pragmatic 
approach using one micrometer to compute an angular 
covariance matrix. This procedure is cheap, simple and time 
saving and it is based on the stochastic ellipsoid theory [2]. 
We have obtained interesting results for the position 
repeatability estimation. 

This work brought new elements to the existing literature 
[3-5] who studied the influence of workspace location, load 
and speed on the position repeatability.  

To our knowledge there are no scientific studies 
concerning the evaluation of orientation repeatability. This 
performance index is though very important because when 
the robot holds a part and is controlled to place it very 
precisely, both position and orientation repeatability 
intervenes as Fig.1 illustrates it. It is possible that some 
points of the solid part suffer from a misplacement whose 
cause comes mostly from orientation error rather than 
position error. It is the case of point A on the Fig.1. 
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Fig. 1. Misplacement of point A resulting from position and orientation 

repeatability errors 
 

In the second section, the usual definitions of position and 
orientation repeatability are recalled.  

In the third section, an innovative method for evaluating 
orientation repeatability is detailed. For this purpose, the 
angular covariance matrix is estimated and the stochastic 
ellipsoid theory is used to compute the orientation 
repeatability. 

In the fourth section, an experimental measure of 
orientation repeatability is performed using the usual 
stationary cube method but with six micrometers. 

In the last section, computed and experimental 
repeatability are compared. 

II. DEFINITIONS 
Several methods are available for characterizing robot 

performance in accordance with ISO 9283 “Manipulating 
Industrial Robots Performance Criteria and Related Test 
Methods” [6] and ANSI R15.05 [7]. 

The ISO9283 standard describes a process to estimate the 
positional and orientation precision indices. In the ANSI 
R15.05 standard, estimation for position repeatability is 
given but nothing concerning the orientation precision [8], 
[9]. 

To begin with, let us recall the procedure proposed in the 
ISO9283 Standard for both position and orientation 
precision indices. 

The robot endpoint is commanded to go to a specific 
position called the target and come back and this cycle is 
done 30 times in the same conditions. When the robot 
control achieves the target, the position and orientation of 
the robot tool are measured. Of course, the different atteined 
poses are not exactly the desired pose. So there are 
differences in the position and orientation of the tool. These 
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different poses constitute a cloud of points and the criteria 
proposed in the standard proceed from this cloud and the 
desired pose. 

The standard presents two different indices for precision: 
accuracy and repeatability which are now detailed. 

A. Definition of accuracy 
Accuracy is the distance between the mean of 30 final 

poses and the commanded pose. This definition is used for 
position or orientation accuracy. The index depends then on 
the coordinate system used to measure the solid pose.  

It includes: 
1) Position accuracy: difference between the commanded 
position of the robot endpoint and the barycenter of achieved 
positions as display in Fig. 2. 
 

 
Fig. 2.  Accuracy and repeatability of position (ISO 9283) 

 
It is given by: 

2 2 2( ) ( ) ( )p X y zAP AP AP AP= + +            (1) 

With APx, APy et APz are the accuracies of position along 
the axes x, y and z. 

( )x cAP x x= −         (2) 
( )y cAP y y= −         (3) 

( )z cAP z z= −        (4) 
With x , y and z   are the barycenter coordinates for the 
same pose repeated 30 times. 
xc , yc  and  zc  are the coordinates of the commanded pose. 
2) Orientation Accuracy: difference between the 
commanded orientation of the robot tool and the mean of 
achieved orientations as display in Fig. 3. 
Here an orientation coordinate system a, b, c has to be 
chosen to describe the tool orientation. For example a, b, c 
indicate a characteristic orientation around axes x, y and z. 
They can be Euler or Roll-Pitch-Yaw angles. 
The orientation accuracy is given by: 

( )a cAP a a= −         (5) 

( )b cAP b b= −         (6) 
( )c cAP c c= −         (7) 

Where a , b   and c  are the means of angular variables for 
the same poses repeated 30 times. 

ac, bc and cc are angular coordinates of the commanded 
position. 

 
Fig. 3. Accuracy and repeatability of orientation 

B. Definition of repeatability 
The pose repeatability of a robot measures the variability 

or dispersion of the poses around the mean of the poses. For 
a definite pose it is expressed by: 
1) Repeatability of position: it measures the dispersion 
between final points when the target is the same and the 
move is repeated several times as shown in Fig. 2. 
It is defined by: 

3L LRP L S= +                                (8) 
The random variable L is the distance from each point to 

the barycenter of the set. This random variable L has a mean 
L  and a standard deviation SL. 
2) Repeatability of orientation:  it is defined in the ISO 
9283 standard as the range of angular variations ±Sa, ±Sb, 
±Sc around the mean values a, b and c as display in Fig. 3, 
by: 
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Sa, Sb and Sc standard deviations related to the three angular 
coordinates of the achieved position. 

Gear backlash, sensor resolution and servo precision are 
some of the factors affecting robot repeatability. 

There are many manipulator applications which need a 
high repeatability as pick and place application, painting and 
welding. 

The errors in forward kinematic model are mostly 
responsible for the accuracy errors. Many factors such as 
manufacturing tolerances, link and joint offset, compliance 
or time-dependent effects such gear wear and component 
damage are involved [10]. 
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III. COMPUTATION OF ORIENTATION REPEATABILITY FROM 
THE COVARIANCE MATRIX 

A. End-effector pose estimation 
Given the joint angles, the controller of a robot computes 

its endpoint location and orientation. For this it needs an 
accurate description of the robot which involves many 
physical parameters such as link lengths and joint offset 
angles. These numerical parameters are parts of the 
kinematic model of the robot. 

First of all, to identify the location of the end-effector 
body, a reference coordinate system is necessary. 

Then the pose of the end-effector is expressed as a 
function of the robot joint variables.  

The position of the end-effector with respect to the 
reference frame can be expressed by the vector position 3×1 
of the gravity center. 

The orientation of the end-effector with respect to the 
reference frame can be expressed by several different ways 
such Euler angle representations and Roll-Pitch-Yaw angles 
representations. 

For the general displacement of the rigid body the 
orientation estimation needs three angles corresponding to 
three consecutive rotations around three axes.  
We choose to use the Roll, Pitch and Yaw angles for the 
orientation of the tool.  The rotations are done consecutively 
around x-axis (roll), y-axis (pitch) and finally z-axis (yaw). 

B. Homogenous Transformation Matrix 
The experiments are performed on a 6-axis Samsung 

Faraman robot displayed in Fig. 4. The kinematic 
architecture is hybrid because there is a parallelogram for the 
second and third axes. 

 
Fig. 4.  Samsung robot structure 

All the information about the final pose (position and 
orientation) is summed up in the homogenous transformation 
matrix. 

The consecutive transformation matrices can be computed 
using the Khalil-Kleinfinger method [10], [11].  

The homogeneous transformation matrix is obtained by:  
01 12 23 34 45 56M T T T T T T= × × × × ×               (12) 

Where Tij is the transformation matrix modeling the 

displacement coordinate frame j relative to coordinate frame 
i. 

The forward kinematic model presents the pose as the 
function: 

1 2 3 4 5 6( , , , , , ) ( , , , , , )x y z R T L f θ θ θ θ θ θ=           (13) 
We can subdivide this function on two more functions as: 

1 1 2 3 4 5 6( , , ) ( , , , , , )x y z f θ θ θ θ θ θ=                (14) 
And   

    2 1 2 3 4 5 6( , , ) ( , , , , , )R T L f θ θ θ θ θ θ=              (15) 
From these functions, a position Jacobian matrix Jpos and 

an orientation Jacobian matrix Jori can be defined to link 
these joint variations to the position and orientation 
variations. 

The position function is derived and we obtain: 
 

1 1 1 1 1 1

1 2 3 4 5 6
pos

f f f f f fJ
θ θ θ θ θ θ

 ∂ ∂ ∂ ∂ ∂ ∂
=  ∂ ∂ ∂ ∂ ∂ ∂ 

           (16) 

 
The orientation information lies in the 3x3 upper left 

extracted matrix from M. Then R, P, Y angles can be 
computed using the following formula [8]: 
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So the orientation Jacobian matrix Jori  can be introduced: 
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   (20) 

 
Computing Jori by derivation is complex and requires the 

help of symbolic calculus as available in the Matlab software 
using the functionality ( , )idiff h θ . 

The joint small variations affect the final position and 
orientation of the robot tool. 

This orientation Jacobian matrix maps the angular small 
joint variations 1 2 6( , ,..., )d d dθ θ θ with the tool orientation 
variations (dR,dP,dY) with the formula: 

1 2 6( , , ) ( , ,..., )T T
oridR dP dY J d d dθ θ θ= ×   (21) 

We have proved in a previous paper [12], [13] that the 
angular variation dΘ can be modeled with a Gaussian 
distribution. As the 6 axes have independent control, the 
angular position random functions are independent. So dθ  
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is a Gaussian vector whose covariance matrix is D. The 
density w of the orientation variation vector 

( , , )Td dR dP dYΩ = is the following [14]:  

11( ) exp
2

TW d K d C d−− Ω = × × Ω × × Ω  
   (22) 

Where the constant K is computed by normalizing the 
density function: 

11exp 1
2

TK d C d−− × × Ω × × Ω =  ∫∫∫     (23) 

C. Experimental determination of the angular covariance 
matrix 

The angular covariance matrix D can be estimated using 
one micrometer and one axis at a time. When one axis has to 
move, the other axes are locked using the electromechanical 
brakes. 

Let us describe the experimental procedure. At least 200 
measures are done for each axis. 

The high number of samples will give a good estimation 
for the covariance matrix: 

2 2 2
1 2 6( , ,..., )D diag σ σ σ=      (24) 

Where 2
iσ  is the variance of the random variables idθ . 

At this stage, it is interesting for a better estimation to use 
the jump process as explained in detail in [15]. For the 
Samsung robot, the experimental covariance matrix is 
estimated for a medium (3 kg) and a high load (6 kg) leading 
to the results displayed in table I: 

The analysis of the covariance matrix leads to interesting 
results. 

First, most of the time, the angular variance is increasing 
from 1st axis to 6 h axis. This tendancy was already 
observed in our previous work on a Kuka robot. There are 
some exceptions and the analysis of these differences can 
help diagnose the “weakest” axes. For instance, it is clear 
that the 4th axis is weak, meaning that the motor power is 
not sufficient. Here is a more detailed explanation. For the 
3kg load, the end-effector was in the horizontal position, 
orthogonal to the 4th axis, creating a high torque on the 
actuator because of the load weight. The servomotor 
managed to hold the torque with the 3 kg load but the 
angular variance increased a lot. But for the 6 kg load, it was 
impossible to do the test in the same configuration because 
the servo-controller could not stabilize the 4th axis and the 
robot 4th axis was vibrating around a mean position, 
affecting the measures. So we had to change the posture and 
the end-effector final orientation was to be set up in the 
vertical in order to reduce the load torque. This explains why 
the variance of the 4th axis is higher for the 3 kg load than 
for the 6 kg load. 

It is difficult to estimate precisely the angular covariance 
matrix with a 6 kg load as far as this load is close to the 
nominal load of the robot. In fact, because of the 
experimental device, when the 6 kg load is set up, the 
gravity center of the load is moved away from the nominal 
tool center, producing far more important torques. That is 
the reason why sometimes the manufacturer gives a chart 
linking the maximal load with the tool center distance. 

Another interesting result is that for the 5th and 6th axes, 
the angular variances are higher for the 6 kg load compared 
to the 3 kg load. But for the 1st, 2nd and 3rd axes, the 
angular variance are quite the same for the 3 kg and 6 kg 
loads. This means that the load does not affect the first axes 
variance and this is quite easy to understand because the load 
increase has a smaller relative effect on the first axes. For 
instance, the inertial and static wrenches on the first axis are 
not really different with a 3 kg or a 6 kg load, because this 
first axis supports already a huge load corresponding to the 
whole robot structure. Then the first axis power is strong, the 
gear reduction rate is high and the servo controller can reach 
good performances. On the contrary, for the last three axes, 
the change in the load has a relative important effect, and 
sometimes the motor cannot cope with the important wrench 
applied to the structure. 

D. Computation of the orientation repeatability 
The values of orientation repeatability can be computed in 

different workspace locations and from angular covariance 
matrices corresponding to different loads. It is then possible 
to analyze the effects of load and workspace location on 
orientation repeatability. 

The three locations named P1, P2 and P3 are 
representative points in the workspace. They are displayed 
on Fig. 5. P1 is situated in the workspace center, the point P2 
is at the edge of the workspace and the last one P3 is as near 
as possible as the first axis. 

 

 
Fig. 5. Dimensional characteristics of the Samsung robot 

The covariance matrix C associated with the orientation 
variations of (dR,dP,dY) is obtained by computing: 

TABLE I 
COVARIANCE  MATRIX OF ANGULAR VARIATIONS 

Load 
(kg) 10−12× D(rad2) 

3 diag(0.64; 6.12; 4.15; 151; 33.4;511) 
6 diag(0.82; 5.73; 7.11;54.1;334;1750) 
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T

ori oriC J D J= × ×        (25) 
 
This covariance matrix can be detailed in the following 

terms:  
2

2

2

R RP RY

PR P PY

YR YP Y

C

σ σ σ

σ σ σ

σ σ σ

 
 
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 
  

       (26) 

 
The orientation repeatability can be directly obtained 

computing the square root of the diagonal values. 
Table II presents the orientation repeatability with 

confidence intervals of 3σ . 
 

TABLE II 
     COMPUTED ORIENTATION REPEATABILITY CONFIDENCE INTERVALS 

Load 
(kg) locations RPR ×10−5 

(rad) 
RPP ×10−5 

(rad) 
RPY ×10−5 

(rad) 

1 [2.73;3.71] [2.30;3.20] [4.60;6,20] 
2 [2.92;3.95] [7.10;9.60] [4.50;6.10] 3 
3 [2.45;3.31] [4.81;6.50] [4.85;6.55] 
1 [1.88;2.55] [8.00;10.8] [10.7;14.5] 
2 [1.91;2.60] [9,82;13.3] [10.7;15.5] 6 
3 [1.56;2.12] [7.83;10.5] [10.8;14.5] 

     

 
This work is inspired by the ISO standard definitions and 

will allow us to make some comparison with the 
experimental measured orientation repeatability of next 
section. 

IV. EXPERIMENTAL MEASUREMENT OF ORIENTATION 
REPEATABILITY 

A. Experimental measurement device 
Previously we have calculated the repeatability index for 

three different locations in the workspace. In this section, we 
want to compare these results to direct measurement of 
orientation repeatability. But the direct estimation of the 
orientation of a solid is not as simple as the direct estimation 
of the position of the mass center, for which three 
micrometers are sufficient. For the estimation of orientation, 
we choose to use the stationary cube method proposed by the 
Ford Company, with six micrometers. Then we are able to 
estimate the relative differences in position and orientation 
for the consecutive attempts. 

The experimental measurement device consists of two 
trihedra. One is an aluminium parallelepiped moving with 
the robot and is supported by the robot gripper. The other 
one is fixed on the robot base and supports the measurement 
device consisting of six micrometers disposed orthogonally 
as displayed in Fig. 6. Micrometers are laid out by pair of 
two on three orthogonal sides. We chose this setup to keep 
the same resolution on the three orientation angle estimation. 
The six 543-390 Mitutoyo micrometers have a precision 
error less than 3 µm and their resolution is 1 µm.  

The final resolution in orientation is 1.6×10-5 rad and the 
final resolution in position is 0.5 microns. 

The position and orientation variations are obtained from 
the six micrometers variations using a linear transformation 
from the screw theory. The robot is set up to reach a target 
point two hundred times. 

 

 
Fig. 6. Experimental measurement trihedral 

 
We organize a communication between the robot and the 

PC so that the 6 micrometers values are read once the robot 
has reached its target. This dialog via the RS232 protocol is 
very useful to reduce the experiment delay. 

B. Experimental results 
Repeatability was computed in the 3 different locations in 
the workspace. Table III displays the orientation 
repeatability values for the points P1, P2 and P3 with a low 
(3kg) or high load (6kg). 
To analyze the results, we used the construction of the 3σ  
confidence intervals on the experimental repeatability 
values.  
 

TABLE III 
EXPERIMENTAL ORIENTATION REPEATABILITY INTERVALS 

Load 
(kg) locations RPR10−5 

(rad) 
RPP10−5 

(rad) 
RPy10−5 

(rad) 
1 [3.26;8.07] [3.61;10.2] [2.65;5.17] 
2 [5.78;13.3] [8.67;15.0] [6.52;13.1] 3 
3 [4.57;36.5] [8.43;35.9] [9.47;32.0] 
1 [4.86;9.46] [5.90;11.1] [6.41;9.97] 
2 [7.19;10.2] [6.23;11.4] [5.59;13.2] 6 
3 [6.21;17.0] [11.2;21.0] [7.25;16.5] 

     

 
This was done computing orientation repeatability on 

consecutive 30-sample following the ISO92383 but then we 
estimated the mean and the confidence interval with 6 series 
of 30-sample because we had 200 data for each location. 
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Here are some comments concerning the results: First the 
variability of the results is important for all considered 
locations but this variability is higher for the 3rd location. 
For this location, we chose a point very close to the 
workspace centre, because we thought that there, the 1st axis 
lever-arm being short, we should observe the smallest 
repeatability. 
The results were completely different. Looking more 
carefully at the problem, we observed that this point was in 
fact just outside the workspace recommended by the 
manufacturer. In fact it seems that the robot cannot work 
efficiently in this location; it certainly has a link with the 
parallelogram structure of 2nd and 3rd axis which seems to 
be in a bad configuration if the end-effector stands in 
location 3. 

Secondly, the influence of the load on the orientation 
repeatability is not very important. It appears quite clearly 
that the performance is better if the load is smaller, but the 
degradation is not really important when the load increases. 

Thirdly, for a given location, the orientation repeatability 
is nearly the same for the three Roll, Pitch and Yaw angles 
and there is no special direction around which the result 
would be better. 

Fourthly, the influence of the workspace location is here 
not very important. It was not possible to notice significant 
differences. There are two main reasons to this result. First, 
the manufacturer recommended workspace is not very large 
compared to the extended theoretical workspace so that it is 
difficult to choose location significantly faraway. The 
second reason is the hybrid topological structure of the robot 
which tends to unify repeatability in the workspace. 

V. DISCUSSION AND CONCLUSIONS 
Now that we have computed the orientation repeatability 

confidence interval using two different methods, it is 
interesting to compare the results. For the reasons previously 
explained, the location P3 would not be considered in the 
comparison. So if we analyse the results for the 1st and 2nd 
locations, the confidence intervals for the two considered 
method intersect 7 times out of 12. This result could not be 
satisfactory in the general case but here in this special case, 
it is a good experimental result. Let us explain why. 

The estimation of the orientation variations of a solid is 
difficult to attain with a good accuracy except if the cube 
used in the stationary cube method offers sufficient lever-
arm length between the micrometers. It is the same 
phenomenon known as lever-arm amplification error but 
here acting in the reverse direction. Our experimental setup 
offers 30√2 mm between the micrometers positions. It leads 
to an orientation resolution of 1.6×10-5 rad. If this resolution 
is compared to the estimated orientation repeatability value, 
it is clear that the resolution is not fine enough. That explains 
why the experimental orientation repeatability is higher than 
the orientation repeatability computed from the experimental 
covariance matrix. For better orientation variation accuracy, 
we have to increase the distance between the micrometers 
but of course the size of the cube cannot grow indefinitely. 

Both methods are useful in the sense that it is possible to 
use them to have interesting results on the factors that 

influence orientation repeatability. Here the load increases 
the orientation repeatability index but the workspace 
location does not have a real influence due to the 
parallelogram structure.  

To conclude on this comparison, it is easier and probably 
more judicious to choose to estimate orientation repeatability 
from the covariance matrix and the stochastic ellipsoid 
theory. Because in order to obtain the same accuracy in the 
results for a direct experimental estimation with the 
stationary cube method, the cube has to have sides large 
enough to move away one micrometer from the others. 
Another solution would be to redesign the micrometers 
disposal to have a better resolution on a unique angle R, P or 
Y and then to permute three times the device to evaluate 
each angle with great accuracy. 
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