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Abstract— Even if the probabilistic motion planner methods
(PRM or RRT) have been successful for robot path planning,
it remains a challenge in a constrained cases with narrow
passages. The RRT is a powerful tool for a simple request,
but the performances of approaches falls sharply when the
search has several narrow passages. The introduction of several
trees can reduce this problem, but has the disadvantage of
requiring the control of the number and the growth of these
trees. However, this can be done using the properties of the
Visibility-PRM. Combining the ideas of the Visibility-PRM with
a multi-RRT (local trees), a new algorithm is presented and
experimental results show the importance and effectiveness of
the method.

I. INTRODUCTION

Path planning has been an important problem in robotics
for many years [11]. During the past decade the path plan-
ning problem was widely extended in areas such as computer
animation, virtual prototyping and also in drug-design. With
the recent results in random planning algorithms [13] it is
possible to automatically solve problems for systems with a
large number of degrees of freedom. The algorithm computes
a collision free roadmap in configuration space (CS) where
the object is reduced to a point. This point represents the
robot’s model in the environment. The algorithm searches
then a free path for a point in the roadmap.

One problem of the random planning approach is the
computation time in high dimensional space with complex
workspace. The dimension of CS is equal to the number
of degrees of freedom of the mechanical system and the
computation time is growing with the dimension of CS. The
random approach is less time-sensitive to the dimension of
CS than a classical approach, and is a function of the number
of objects in the workspace (collision tests) and the number
of narrow passages in CS (connexity).

There are mainly two families of methods for building
a roadmap, the Probabilistic Roadmap (PRM) [10] and the
Rapidly-exploring Random Tree (RRT) [14].

The PRM [10] is a typical multiple queries method. The
main idea is to randomly sample configurations in CS, keep
only the free configurations and try to connect the sampled
configurations by a free local path. The result is a global
roadmap that captures the connectivity of the free CS.

RRT approach [14], originally proposed by Lavalle, is
more interesting in our case because it is faster in the simple
query case, when the roadmap computation must be limited
in time. An interesting variant is the RRT algorithm [14]
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which uses bidirectional expansion strategy between two
trees (one rooted at the start and the other at the goal).

Even if these approaches work well in a big variety of
examples ([5], [8], [17],...), they do not allow to resolve all
the cases. The typical example is the case of an object that
has to pass through a series of narrow passages. The difficulty
for the algorithm is to find the passage entrance. To do so
it will have to investigate randomly all the CS dimensions.
On the other hand, when the algorithm will find the narrow
passage entrance in the CS, it will quickly progress to find
a solution with RRT approach.

Many works present variants of PRM or RRT methods
to improve the algorithm performance : to find narrow
passages [2], [1], [21], [20], [24], to reduce the number of
nodes [19], or the number of expensive iterations [23], [6], to
guide expansion toward interesting regions [3], [4], [22], [16]
or combined methods [15] or sampling methods [18], [9].
Generally, these methods allow to resolve difficult cases for
a special class of problem (for example, solution trajectory
close to the contact). The main contribution of the paper is
to use properties of the Visibility PRM method (VISPRM)
[19] to control the Local Trees method (LTRRT) [20]. The
VISPRM reduces the number of nodes in the roadmap, but
also have information on the cover of free space to stop
the algorithm. Using this approach for the management of
local trees can help to overcome the narrow passages problem
and especially in cases difficult for VISPRM. The goal is to
develop an algorithm which works well in the case of large
free spaces separated by narrow passages (called weakly
connected configuration spaces in this article).

The paper is organized as follows. The related works
which are the basis of our work are summarized in section II.
Section III gives an overview of our planner. The motion
planning algorithm Visibility Local Tree (VISLT) is pre-
sented in section IV. Finally, simulation results are presented
in section V. Section VI summarizes the main results.

II. RELATED WORK

Starting at a given initial configuration, RRT [12] incre-
mentally searches the configuration space for a path connect-
ing the initial and the goal configuration. At each iteration
a new configuration is sampled and the extension from the
nearest node in the tree toward this sample is attempted.
If the extension succeeds a new node in the roadmap is
created. By definition the RRT tends to rapidly grow in the
unexplored regions of the CS. But with narrow passages the
cost of RRT increases and the cost gap between RRT and
PRM decreases.
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[20] introduces LTRRT to augment the number of samples
in difficult regions. A LTRRT is an RRT with more than
two trees and by growing them, it can go out of difficult
regions. The idea is illustrated in figure 1. If we can develop
a local tree T (q2)(root at q2) in the middle region (R2), the
probability to connect T (q1) and T (q2) or T (q2) and T (q3)
will be bigger than the probability to connect directly T (q1)
to T (q3).

This approach is a compromise between a pure RRT
(only two trees are diffusing), and a PRM (every node
introduced into the roadmap can be merged with a connected
component, or create a new one, but cannot be extended).

Fig. 1. An example of LTRRT. The method has a high probability of
generating nodes in the three regions Ri. The result will be a spread of
three trees in the three regions. The probability of connecting two trees will
be higher if there is a tree in the region R2 that if there is only the two
initial trees in regions R1 and R3.

To increase performances it is necessary to solve several
questions about LTRRT : when to create a new tree ? When
to allow it to grow ? When try to merge with another
tree ? when to stop the random process ? In [20], the
author answers the first three questions by using heuristics.
Its method is interesting, but when the number of local
trees increases, the computation time also increases rapidly
because the number of nodes in every tree grows and the
number of feasible connections between local trees also
grows. An idea to improve the behavior of the algorithm
is to limit the number of nodes and if possible the number
of trees.

This idea is the basis of an original variant of PRM
that uses the notion of visibility between nodes to produce
small roadmaps called Visibility Roadmaps [19]. The author
defines two types of nodes : “guard” for the coverage of free
CS and “connector” for creating connection. The algorithm
keeps only configurations which either increase the visibility
of the free CS (guard node, not visible by other guard nodes)
or connect two components of the roadmap (connection
node). The result is a roadmap with a small number of nodes
and the control of the end of the roadmap construction is
done by estimation of the CS coverage.

But this method has difficulties to find narrow passages,
the main problem is illustrated on the figure 2. The proba-
bility to sample a node connecting two components of the
roadmap is low when generated guards visibility domains
have a very small intersection.
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Fig. 2. A difficult example to create a connector node in VISPRM. A
connector node can be created only if it is sampled in the visibility region
(VC) common to q1 and q2. The probability to sample a configuration in the
region VC (in dark gray) is low.

The main idea of the VISLT algorithm is to combine VIS-
PRM and LTRRT strategies in order to overcome drawbacks
on both sides.

III. OVERVIEW OF THE PLANNER

As said earlier, the LTRRT method has three points to
resolve in order to be really efficient : where and when to
start a local tree, when to grow it and when to stop it. The
three of them can be answered at once with the VISPRM
strategy. Local trees are made for exploring unreachable
areas (neither from the start nor the goal tree), typically
“rooms” (local spaces) separated from the remaining CS
by narrow passages, and to connect them more easily. So,
local trees must start in those unreachable areas. But how to
define them? Guard nodes from the VISPRM can be roots
for new local trees. For trees growth, we decided to add
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Fig. 3. Compare this figure to figure 2 for VC sampling domain.

nodes only when useful, to keep their number as small as
possible. For this, Visibility Roadmap is the best, but on the
other hand narrow passages dramatically reduce the visibility
domain common to the trees surrounding the passages. These
ones are then difficult to connect together. They are all the
more difficult to connect that the tree nodes are far from
the passage. On the contrary, the closer nodes are from the
passage, the larger is the common visibility domain (see
figure 3). From this observation, we decide to add a third
type of node : “scout nodes” to get closer to narrow passages.
This is done by keeping only nodes that move away from
roots. Indeed, if roots are already near a narrow passage,
connections are made pretty fast as the common visibility
domain is larger, and scout nodes are not added.

The last point is when to stop trees growth. In the
VISPRM, roadmap growth is stopped after a certain amount
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of time or number of node, but it can be stopped as soon
as the number of nodes is not growing although the planner
keeps sampling. In this case, we can say that almost the
whole free space is covered by the roadmap. In the VISLT
method, this is the same because trees will stop growing
as soon as they will reach borders (Scout nodes can’t go
further).

The VISLT method resulting from the integration of
these three points is a RRT-based method combining both
strategies, each one overcoming the drawbacks of the other.

IV. VISIBILITY LOCAL TREE ALGORITHM

The VISLT algorithm is shown in Algorithm 1 and is
structured in three parts for each step :

First, the sampling part, which is standard in RRT and
PRM methods. The sampling method gives us a new random
configuration qrand . For implementing the VISLT method we
choose a simple uniform sampling method through the CS.

Then, for each tree Ti (or connected component) in the
roadmap, we try to find out if we can connect them to
the newly sampled configuration qrand , without connecting
them actually. We keep the number of connectable trees
(nbPossibleConnection). Instead of testing each node of each
connected component for connection, we choose to test only
the nearest node of the sampled configuration.

Finally, depending on nbPossibleConnection we can dis-
tinguish three cases :

- If there is no possible connection, qrand is added to the
roadmap as a guard node and the root of a new local tree.

- If there is only one possible connection, we compute the
distance between qrand and the root of the current tree Tc that
can be connected. If this distance (DIST ROOT) is greater
than the distance from node in Tn that has to be connected to
the root (qnearc ), then qrand is added to the roadmap (Scout
node) and the connection is made. The computed distance
is stored as a label in the node structure, to save time for
later iterations. In this case the local tree grows, and then its
visibility domain is augmented.

- Otherwise, we add qrand in the roadmap as a connector
node and make connection for each connectable tree. These
trees are then merged into one and a new root is chosen (for
each node that was connected, we recompute the distance
to the new root, when their relative root has changed).
The NEAREST NEIGHBOR is computed only once, we
memorize the result and use it during this step.

V. RESULTS

The algorithm was implemented in C++ in the software
platform HPP developed at LAAS based on KineoWorks1

The experiments were performed on a PC Dual Core, 2.1
Ghz and 2 GB of ram. All the reported values on the tables
are average over 100 runs.

We compare our VISLT with basic RRT, LTRRT and
VISPRM. The basic functions (sampling method, collision
checking, nearest neighbour) which have a big influence on

1KineoWorks is the path planning dedicated Software Developed Kit
developed by Kineo CAM.

Algorithm 1 The Visibility - Local Trees algorithm
F ← Tqinit , Tqgoal
Guards← /0
nbPossibleConnection = 0
for k = 0 to N do

qrand ← RANDOM CONFIG()
for All Trees Ti in F do

qneari ← NEAREST NEIGHBOR(qrand , Ti)
if CAN CONNECT(Ti, qrand ,qneari ) then

nbPossibleConnection++
end if

end for
if nbPossibleConnection = 0 then

R← qrand
Guards← qrand
Tnew = ADD NEW TREE(qrand)
F ← F ∪Tnew

else
if nbPossibleConnection = 1 then

if DIST ROOT(qrand ,Tc)> DIST ROOT(qnearc ,Tc)
then

Add Vertex(Tc, qrand)
Add Edge(Tc, qnearc ,qrand)

end if
end if

else
for All Connectable Trees Ti in F do

qneari ← NEAREST NEIGHBOR(qrand , Ti)
Add Vertex(Ti, qrand)
Add Edge(Ti, qneari ,qrand)

end for
end if

end for

the results are identical in the various algorithms. If we
change one or some of these functions, we can improve
the performances of the algorithms, but the objective of this
paper is not to find the best choice in a precise case of
environment but to be able to compare the various algorithms
between them.

A. Simple and Double Room

The first tests are made for a 2-dimensional workspace
(see figure 4) with a 3-dimensional CS (X ,Y ,θ ). The CS
dimension is the same in the two figures, but the workspace
is more difficult. The main difference between these two
examples is the number of narrow passages, increasing the
problem difficulty.

To take into account the narrow passage difficulty we take
a parameter K which corresponds to :

K = width of the narrow passage
width of robot

.
The lower is K the higher is the difficulty to find the

entrance of the narrow passage.
Table I summarize the mean values for tests made for the

four algorithms (complete results in [7]) for the double room
case.
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The first objective is to verify the interest of the approach.
We can see that the number of nodes in the roadmap is lower
in VISLT than in RRT and we can see in table I that in all
cases the VISLT gives the best results.

In [7] we can notice that computation time as well as
number of nodes are bigger in the double room case although
the CS dimension is only three. We also compute the same
case for the robot only in translation (CS dimension = 2)
for the simple room (we don’t show this too simple case).
The performance gap between these two cases is smaller
than the one between the simple room and the double room
cases. This confirms that the main difficulty is the number
of narrow passages more than the dimension of CS.

Fig. 4. VISLT for a simple (left) or a for a double room (right).

TABLE I

Case Algorithm Iterations Nodes Time
RRT 20426 8029 925 s

(K=3) LTRRT 3053 1297 292 s
VISPRM 2539 38 368 s
VISLT 1396 196 88 s
RRT 35246 13631 1916 s

(K=2.5) LTRRT 6105 2405 460 s
VISPRM 11081 106 1728 s
VISLT 2543 284 152 s
RRT 77590 29418 5182 s

(K=2) LTRRT 16931 6154 1433 s
VISPRM 46215 316 7380 s
VISLT 7639 557 410 s
RRT 190310 70098 18741 s

(K=1.5) LTRRT 74787 23490 7760 s
VISPRM 110220 704 18429 s
VISLT 33149 1363 2027 s

B. The Walls

In this case (figure 5), the CS is six-dimensional, as the
robot is a free flyer. The problem is to go through the walls
by the holes. The dimensions of each wall are 100x100x20,
and each hole and 20x20. The dimensions of the robot are
5x5x25. We tested the algorithms on four environments,
which differs on their number of narrow passages (walls) :
2, 4, 6 and 8 walls. We can see on table II that the VISLT
solved the problem in less time and with less iterations than
other algorithms. The number of added nodes in the roadmap
is also shorter in the VISLT roadmap than in the LTRRT one.

In this case, the RRT is omitted because the execution is
too slow and has no interest in the comparison.

Fig. 5. The environment with four narrow passages.

TABLE II

2 Walls 4p0 Algorithm Iterations Nodes Time
LTRRT 3880.7 1972.7 328.95s

VISPRM 3820.2 7.25 231.6s
VISLT 1294 383.65 81.3s

4 Walls 4p0 LTRRT 18273 7715.9 1755.1s
VISPRM 11954 18.65 1228.7s
VISLT 8288.5 1402.8 552.1s

6 Walls 4p0 LTRRT 31972 11920 3329.2s
VISPRM 36359 116.45 5553.9s
VISLT 11771 1756.5 894.35s

8 Walls 4p0 LTRRT 51016 15218 5357.3s
VISPRM 40606 162.17 9513.7s
VISLT 22084 2634.2 2005.7s

VI. DISCUSSION ABOUT PROPERTIES OF VISIBILITY
LOCAL TREE

A. Decreasing number of nodes

Fig. 6. Expansion nodes.

To show the interest of our method we consider the
example of a start and a goal in two unconnected rooms,
which has no solution. The algorithms kept running until
they had reached the time limit (10000 seconds). Figure
6 shows the number of nodes created for each algorithm
against the number of iterations. We can see that the number
of nodes increases constantly for the LTRRT and RRT, while
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the VISLT reduces the number of added nodes gradually as
the number of iterations is growing. This result shows that
the node creation in the VISLT is made only when useful.
A consequence of this node selection is a reduction of the
number of iterations needed to find a solution. The VISPRM
algorithm didn’t create any node (only the initial and goal
nodes).

B. Performance given the difficulty

Figure 7 shows the increasing difficulty, due to narrow
passages decreasing size in the double room case with a
three dimensional CS. On each one, we can see that the
VISLT algorithm has the best performances. This mean that
it is less time-consuming than basic RRT and LTRRT, and
that the number of iterations as well as the number of nodes
needed to find a path are lesser for the VISLT.

Fig. 7. Influence of the narrow passage size in the double room case.

If we look the slope of curves represented on figure 7, we
can see that even if the VISLT gives the best result, its times
complexity grows in a similar way with the other algorithms.

We have the same result with the simple room case [7],
but here we can notice that the slope is slightly weaker in the
case of the VISLT. It catches more easily narrow passages
and seems more adapted for motion planning in the case of
a configuration space with a succession of narrow passages
connecting parts of free space.

C. Performance given the number of weakly connected areas

After a comparison given the size, it can be interesting to
compare the influence of the number of narrow passages.
This number reflects the connexity of the environment.
On figure 8, we can see the performances of the VISLT,
compared to VISPRM and LTRRT. The control of the created
local trees makes the other algorithms greedier than VISLT
(in number of node for LTRRT and in time for VISPRM).

D. Roadmap connexity evolution

VISLT, LTRRT and VISPRM are algorithms that all
implies several trees for building their roadmap and solving
a problem. On figure 9, we can see the evolution of the trees
for each algorithm during a run. The tests were done on

Fig. 8. Performances given the number of narrow passages (number of
walls) in the environment.

a wall-type environment (like figure 5) with 8 walls. Each
run was stopped after 20000 iterations, and the curves are
averaged over 10 runs. This figure shows that the VISLT
creates less trees, and is able to connect them together faster
than both VISPRM an LTRRT (on the first iterations, the red
curve decreases faster than the blue and green ones).

The curves noise means that trees are created and then
linked to another one after few iterations. These transient
trees are located in small areas that are not really diffcult
to access but cannot be directly linked to a component due
to obstacle proximity (near the walls for example). In our
examples, this is mostly due to rotations and to the linear
steering method used to link two configurations.

On figure 9, the VISPRM curve is less noisy than the
other curves because it has difficulties to connect newly
created trees between them. On the contrary, VISLT and
LTRRT, creates new trees and connect them more easily to
the existing ones (thus making their curve noisy). But in the
LTRRT case, more nodes are added before a connection and
before a connected component creation. This explains why
the VISLT number of trees is always lower than LTRRT.

We can also see that the VISLT curve is noisier in
the beginning than in the end. This proves the exploration
capacity of VISLT. Most of the small areas are found and
quickly connected to the roadmap, as well as wider areas,
reducing the number of created trees. The VISPRM creates
components in large easy-to-find areas, but then has more
difficulties to find the small areas, explaining why its curve
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is less noisy at the end. Finally, the LTRRT is as noisy at the
beginning than at the end. This is due to the large number
of nodes added to the roadmap, and to its density.

Fig. 9. Number of trees evolution during one run.

E. Local Trees questions answered

In parts II and III, we spoke about several points to solve
in the LTRRT algorithm. These concerned the creation, the
growth and the end of growth of a tree. We saw on the
previous examples that all of them were solved by the VISLT.
The creation problem is solved by the PRM part of the
algorithm : trees are created only when there’s no possible
connection with the roadmap, that is to say when a guard
node is created. The component is growing until the bounds
of the local environment (area that is visible by the connected
component) are reached. Then the number of added nodes
decreases for this component, thus favouring large and fast
exploration to dense exploration (unlike RRT and LTRRT).
The growth is almost stopped (below a given threshold of
added nodes, the growth can be explicitly stopped) when the
local area is filled with the connected component, solving the
third LTRRT problem. Another way to ”stop” the growth for
a tree is to merge it with another one, when a connector node
is found. The connected trees are then growing as a single
one.

VII. CONCLUSIONS AND FUTURE WORKS

In this article, we described a motion planner combining
advantages of a Local Trees RRT and a Visibility PRM.
This method is an RRT-based method using Local Trees to
accelerate exploration and going through narrow passages
more easily and to limit the number of nodes with a
constraint of visibility, maximizing thus exploration. This
algorithm works well in configuration spaces with succession
of large free spaces and narrow passages. The Visibility
Local Trees algorithm is a good trade-off between roadmap
density, which slows down the resolution of a problem, and
a tiny roadmap which needs too much time (for a single
query problem) to represent the environment connectivity. It

would be interesting to study more in details how are scout
nodes added, thus allowing to tune on-line the connected
component density for finding really narrow passages faster.
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