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the humanoid robot Nao [5] which is additionally equipped

with a Hokuyo laser scanner (see Fig. 1). As we show in

simulated as well as in real-world experiments, the robot is

able to determine its global 6D pose and accurately track it

while walking and climbing stairs.

The remainder of this paper is structured as follows. We

first discuss related work in the next section. Section III

describes the humanoid used for our experiments, followed

by a description of our 3D environment representation in

Sec. IV. Our 6D localization approach is detailed in Sec. V.

Finally, Sec. VI illustrates the robustness and accuracy of

our localization approach in experiments.

II. RELATED WORK

In the last few years, many approaches for tracking

the pose of humanoids in the two-dimensional space have

been presented. For example, Ido et al. [6] apply a vision-

based approach and compare the current image to previously

recorded reference images in order to estimate the location of

the robot. Oßwald et al. [7] and Bennewitz et al. [8] compare

visual features to a previously learned 2D feature map during

pose tracking. Pretto et al. [9] track visual features over time

for estimating the robot’s odometry. Cupec et al. [10] detect

objects with given shapes and colors in the local environment

of the humanoid and determine its pose relative to these

objects. Seara and Schmidt [11] proposed to control the gaze

direction of a humanoid’s stereo camera in such a way that

the error of the robot’s estimated foot positions is minimized.

Furthermore, techniques using laser range data have also

been developed. Stachniss et al. [12] presented an approach

to learn accurate 2D grid maps of large environments with

a humanoid equipped with a Hokuyo laser scanner. Such a

map was subsequently used by Faber et al. [13] for humanoid

localization in 2D. Similarly, Tellez et al. [14] developed a

navigation system for such a 2D environment representation

using two laser scanners located in the feet of the robot.

Since a 2D map is often not sufficient for humanoid

motion planning, several methods use 2.5D grid maps which

additionally store a height value for each cell. Thompson et

al. [1] track the 6D pose of a humanoid equipped with a

Hokuyo URG-04LX laser scanner in such a representation.

However, they assume that the robot is only walking on

flat ground, constraining height, roll, and pitch within fixed

thresholds. In further approaches, authors use only odometry

data to estimate the robot’s pose while constructing a local

2.5D height map from 3D laser range measurements [2] or

a combination of a local height map and a 3D grid from

stereo data [15], [16]. To avoid problems resulting from the

accumulated error, old data is discarded after a short period

of time in these approaches.

Michel et al. [3] localize the robot with respect to a close

object. The authors apply a model-based approach to track

the 6D pose of a manually initialized object relative to the

camera. Stasse et al. [17] proposed an approach to simultane-

ously localizing the robot and mapping the environment. The

authors combine vision and motion information to estimate

the pose and velocities of the camera as well as visual feature

positions in 3D while the robot is walking on a small circle.

Finally, there exist navigation systems for humanoid robots

which use external sensors to track the robot’s pose, e.g., as

proposed by Michel et al. [18], [19].

In contrast to all of these approaches, we present a system

which is able to accurately determine the complete 6D pose

of a humanoid robot in a 3D representation of a complex,

multi-level environment using only on-board sensors.

Note that Kümmerle et al. [20] presented a localization

technique for wheeled robots in a multi-level surface (MLS)

map. MLS maps allow to store multiple levels per 2D grid

cell. However, they do not provide a volumetric represen-

tation of the environment which is needed for humanoid

navigation and they are not completely probabilistic.

III. THE HUMANOID ROBOT NAO

The humanoid robot Nao is 58 cm tall, weighs 4.8 kg

and has 25 degrees of freedom [5]. In addition to the

default sensors such as ultrasound and cameras, our hu-

manoid is equipped with a Hokuyo URG-04LX laser range

finder. While the measurements of this sensor are relatively

noisy [21], it is small and lightweight. The 2D range finder

is mounted in a modified head of the humanoid, providing a

field of view of 240◦ (see Fig. 1).

In order to obtain measurements of its joint positions, Nao

is equipped with Hall effect sensors which measure the angle

of each joint. Using the joints of the support leg, an estimate

of the robot’s torso position and orientation can be obtained

through forward kinematics at any time. Additionally, an

inertial measurement unit (IMU) yields an estimate about the

robot’s orientation. Measurements from a two-axis gyroscope

and a three-axis accelerometer are integrated in order to

obtain an estimate of the robot’s torso orientation around

the world’s x and y-axis (roll and pitch, respectively). The

measurements of this small and lightweight IMU are quite

noisy compared to the IMUs often used in robotics. However,

especially while walking, these values are more accurate

than the roll and pitch obtained through kinematics of the

measured support leg joint angles, because the robot’s feet

may not always precisely rest on the ground.

IV. 3D ENVIRONMENT REPRESENTATION

Humanoid robot navigation in complex environments re-

quires an adequate representation of the environment. In

non-planar multi-level environments, a full 3D occupancy

grid map is necessary since the map needs to encode both

occupied and free volumes.

In our system, we employ an octree-based mapping frame-

work that models occupied as well as free and unknown areas

in the environment in a probabilistic and memory-efficient

way. This enables our humanoid to use map resolutions as

small as 2 cm for a complete 3D indoor map. Our map

representation is available as an open-source library [22].

Note that we do not address the problem of simultaneous

localization and mapping (SLAM) in this work. We assume

that a volumetric 3D map of the environment has been

created beforehand.
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V. 6D LOCALIZATION FOR HUMANOID ROBOTS

For humanoid localization in complex multi-level environ-

ments, we need to determine the complete six-dimensional

pose x = (x, y, z, ϕ, θ, ψ) of the robot. Accordingly, we

estimate the 3D position (x, y, z) and the roll, pitch, and

yaw angles (ϕ, θ, ψ) of robot’s body reference frame in the

global 3D map of the environment. This reference frame is

located in the center of the humanoid’s torso, which is also

the origin of all of its kinematic chains. For estimating the

robot’s 6D state, we apply Monte Carlo localization [23].

A. Monte Carlo Localization (MCL)

MCL is a Bayes filtering technique which recursively

estimates the posterior about the robot’s pose xt at time t:

p(xt | o1:t, u1:t) = η ·

sensor model
︷ ︸︸ ︷

p(ot | xt) ·
∫

xt−1

p(xt | xt−1, ut)
︸ ︷︷ ︸

motion model

· p(xt−1 | o1:t−1, u1:t−1)
︸ ︷︷ ︸

recursive term

dxt−1

Here, η is a normalization constant resulting from Bayes’

rule, u1:t denotes the sequence of all motion commands

executed by the robot up to time t, and o1:t is the sequence

of all observations. The term p(xt | xt−1, ut) is called

motion model and denotes the probability that the robot ends

up in state xt given it executes the motion command ut
in state xt−1. The sensor model p(ot | xt) denotes the

likelihood of obtaining observation ot given the robot’s

current pose is xt.

In MCL, the belief distribution over the robot’s current

state is approximated by a set of n weighted samples

or pose hypotheses Xt = {〈x
(1)
t , w

(1)
t 〉, . . . , 〈x

(n)
t , w

(n)
t 〉}.

Here, each x
(i)
t is one pose hypothesis and w

(i)
t is the

corresponding weight, which is proportional to the likelihood

that the robot is in the corresponding state. The update of the

belief, also called particle filtering, consists of the following

steps:

1) Prediction: The current set of particles is

propagated forward according to the motion

model p(xt | xt−1, ut).
2) Correction: The importance weight of each particle

is computed according to the sensor model p(ot | xt)
given the map.

3) Resampling: New particles for Xt+1 are drawn with

replacement from Xt proportional to the particle

weights w
(i)
t . Afterwards, their weights are reset to

w
(i)
t+1 = 1

n
. This step ensures that the filter converges

to pose hypotheses with high likelihoods.

The filter is initialized with a distribution of equally

weighted samples around the initial pose estimate (“track-

ing”), or with a uniform distribution over all possible hy-

potheses (“global localization”).

B. Motion Model

In the prediction step of MCL, a new pose is drawn for

each particle according to the motion model p(xt | xt−1, ut).

In the approach presented in this paper, the motion command

ut corresponds to the incremental motion of the humanoid’s

torso while walking, turning, or climbing stairs. It is repre-

sented as a 6D rigid body transform that can be computed

as

ut = T (x̃t−1)
−1 T (x̃t) , (1)

where T (x̃t) denotes the transform from the origin to the

estimated odometry pose x̃t in an arbitrary odometry co-

ordinate frame at time t. These estimated odometry poses

originate from forward kinematics of the measured leg joint

angles, as described in Sec. III.

To account for motion noise, the particle prediction step

adds multivariate Gaussian noise to the motion command for

each particle i:

x
(i)
t = T

(

x
(i)
t−1

)

ut T (N (0, δ ·Σ)) , (2)

where the scalar δ corresponds to the length of the trans-

lational part of ut and Σ ∈ R
6×6 is the covariance of

the motion noise. Thus, we scale the motion noise so that

longer incremental torso trajectories imply higher motion

noise. Note that the torso also covers a distance while turning

because the humanoid constantly shifts its center of mass

from one foot to the other.

In practice, odometry and other sensor data do not arrive

at discrete timesteps but asynchronously and with different

update rates. To solve this problem and achieve time syn-

chronization, we update the MCL filter based on laser sensor

data, interpolating odometry and IMU sensor data between

two valid measurements. A second problem stems from the

fact that a full laser scan is not generated instantaneously

but over a certain amount of time in which the robot may

be moving. To overcome this problem, we apply temporal

uncertainty sampling as introduced by Thompson et al. [1].

For each particle, odometry transforms are interpolated to a

timestamp which is sampled uniformly around the current

laser timestamp in an interval corresponding to the time

needed for a complete scan.

C. Sensor Model

The belief about the humanoid’s 6D state is updated based

on three different sources of sensor information contained in

one observation ot. First, the laser range measurements lt

provided by the Hokuyo URG-04LX are integrated. Second,

we regard the height z̃t of the humanoid’s torso above the

current ground plane as a measurement of its joint encoders

and also integrate the angles for roll ϕ̃t and pitch θ̃t as

estimated by the noisy IMU. Since all these measurements

are independent, the sensor model decomposes to the product

p(ot | xt) = p(lt, z̃t, ϕ̃t, θ̃t | xt) =

p(lt | xt) · p(z̃t | xt) · p(ϕ̃t | xt) · p(θ̃t | xt) .
(3)

1) Laser Measurements: To integrate laser range readings,

we use the endpoint model proposed by Thrun [24]. Here,

the likelihood of a single range measurement lt,k depends

on the distance d of the corresponding hypothetical beam

1692



1693



 0

 5

 10

 0  50  100  150  200  250  300  350  400  450

er
ro

r 
[d

eg
.]

time [s]

yaw
 0

 2

 4

 6

er
ro

r 
[c

m
]

xy
z

Fig. 4. Mean and standard deviation of the tracking error over 10 runs
while following the trajectory depicted in Fig. 3. The errors for roll and
pitch are not shown due to space constraints. See text for details.

the ground when standing still.

A. Pose Tracking

First, we evaluate the performance of the proposed lo-

calization technique for a simulated tracking experiment.

Figure 3 shows the trajectory of the robot projected on

the xy-plane. In this experiment, the robot was walking on

the ground floor. As can be seen, foot slippage and joint

backlash quickly lead to a drift in the odometry estimate.

Contrary to that, our localization accurately tracks the robot’s

movements.

Since any Monte Carlo method is susceptible to the effects

of pseudo-random number generators, we evaluate the errors

as mean and standard deviation over ten differently seeded

localization runs of the same recorded sensor data. The

tracking error of the localization is plotted in Fig. 4. The

average translational xy-error over the whole trajectory is

2.6 cm±0.8 cm, the average absolute yaw error is 1◦±0.9◦.

The corresponding values are 0.3◦ ± 0.3◦ for the roll and

0.3◦ ± 0.2◦ for the pitch error, and 0.6 cm ± 0.2 cm for the

error of the torso height. This illustrates that our localization

method is able to accurately track the 6D pose of the

humanoid’s torso while it is navigating in the environment.

Ignoring the roll and pitch angles during localization

results in a larger error of the robot’s pose: The average

translational error increases to 5 cm, the yaw error to 2◦, and

the z error to 2 cm. This demonstrates that the humanoid’s

swaying motion of up to 5◦ in each direction needs to be

considered and a full 6D pose localization is required.

Furthermore, we evaluate the pose tracking performance in

a real multi-level environment which is depicted in Fig. 5. As

can be seen in Fig. 6 and 7, our localization system reliably

estimated the real robot’s torso pose while it was walking

through the environment and climbing stairs. Opposed to

that, accumulated errors from foot slippage quickly lead to

an erroneous odometry estimate.

Throughout all tracking experiments, n = 500 particles

were sufficient to track the robot’s pose. More particles did

not lead to a significant increase in accuracy. Note that our

proposed localization method efficiently runs online on a

standard desktop computer, without any special optimization

towards computing speed.

Fig. 5. The real-world experimental environment for the humanoid robot,
consisting of two levels connected by a staircase.

start

Odometry
Localization
Ground truth

1m
start

Fig. 6. Experiments carried out in our real-world environment (Left: ground
floor only; right: ground floor and two stairs). Ground truth was obtained
through a laser-based external tracking system. While odometry quickly
diverges, our localization keeps track of the correct pose.

B. Global Localization

The plots in Fig. 8 display the evolution of 20, 000
particles during a global localization experiment in the envi-

ronment shown in Fig. 2. After initialization, the particles

were distributed uniformly in the free space on different

levels. As can be seen, the distribution quickly converged to

two clusters of hypotheses on different height levels, i.e., on

the ground floor and on the top platform of the staircase.

After integrating the sixth observation, the particle cloud

finally converged to the true pose.

VII. CONCLUSIONS

In this paper, we proposed a probabilistic localization

technique for humanoid robots using a 3D representation

of arbitrary complex environments. Our system deals with

all challenges occurring during humanoid robot navigation.

This includes only very rough odometry information, in-

herently noisy sensor data, and the violation of the flat

x
robot climbs stair

top of stair reached

straighten torso

Fig. 7. The robot reliably tracks its torso height during the stair-climbing
trajectory in Fig. 6 (right). Only the last part of the trajectory is shown. Note
that during stair-climbing, the motion model is only applied after completing
a step.
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