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Abstract— This paper is concerned with the problem of
keyframe detection in appearance-based visual SLAM. Ap-
pearance SLAM models a robot’s environment topologically
by a graph whose nodes represent strategically interesting
places that have been visited by the robot and whose arcs
represent spatial connectivity between these places. Specifically,
we discuss and compare various methods for identifying the
next location that is sufficiently different visually from the
previously visited location or node in the map graph in order
to decide whether a new node should be created. We survey
existing techniques of keyframe detection in image retrieval and
video analysis. Using experimental results obtained from visual
SLAM datasets, we conclude that the feature matching method
offers the best performance among five representative methods
in terms of accurately measuring the amount of appearance
change between robot’s views and thus can serve as a simple
and effective metric for detecting keyframes. This study fills an
important but missing step in the current appearance SLAM
research.

I. INTRODUCTION

Robot simultaneous localization and mapping (SLAM)
attempts to solve the problem for a robot to build a map
of its environment while localizing itself with respect to
the map at the same time. Robotics research community
has expended considerable efforts in the past two decades
or so, and achieved much success, in terms of a mature
understanding of – and effective solutions to – the SLAM
problem [9]. Implementation of SLAM solutions initially
relied heavily on range-bearing sensors (laser range finder,
radar, etc.), and more recently on visual sensors (both stereo
and monocular vision). Due to the rich textural information,
the latter offers the advantage of more effectively handling
the issues of data association and loop closing detection, than
using range-bearing sensors.

Popular SLAM solutions mostly follow a Bayesian frame-
work in which the state to be estimated consists of robot
pose and landmark variables to serve as references in the
environment for robot localization. As a result, the com-
plexity of these algorithms directly depends on the number
of landmarks, and high computational cost is incurred in
order to maintain the probabilistic descriptions of the state
variables, in spite of the efforts in efficient implementations
such as submaps [4] and extended information filter [19].
In addition, major challenges exist in data association and
loop closing detection where the correspondence between
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sensor data and landmarks of the robot map must be correctly
resolved.

To address these challenges, more recently, appearance-
based visual SLAM (aSLAM) has been introduced [7], [3].
In aSLAM, the environment is modeled not geometrically
but topologically by a graph each node of which represents
a strategically interesting location that has been visited by the
robot and each arc represents spatial or visual connectivity
between physical locations. aSLAM removes the need to
explicitly estimate the 3D descriptions of the landmarks
and replaces matching features for data association with
matching images of the nodes so that spatial constraints
among visual features can be exploited to the advantage of
a robust matching algorithm. The complexity of matching
the current robot view with all previously visited places is
tackled by the bag-of-words (BoW) approach [16] in which
visual features are clustered and an inverted index is built for
retrieving candidate locations efficiently. In addition, spatial
information between map locations can be established and
maintained locally, to facilitate navigation [2].

One outstanding issue in aSLAM is keyframe detection,
i.e., deciding when to introduce a new node into the topo-
logical graph. This is an important functional component of
the system in order to achieve a sufficient visual coverage
of the robot’s environment and, at the same time, keep the
representation simple for computational efficiency during, for
example, path planning and loop closing detection. Current
approaches to keyframe detection are ad hoc. Common
approaches include (a) uniform sampling in space, i.e., every
unit linear or angular distance traveled by the robot [7], [5],
(b) uniform sampling in time, i.e., every nth frame captured
by the camera [10], [14], and (c) uniform sampling in appear-
ance [1], i.e., every fixed amount of change in appearance
since the last keyframe, based on some measure of image
similarity. Distance-based sampling assumes a correlation
between appearance change and spatial change, but this
correlation is highly sensitive to the unknown geometry of the
environment. Similarly, time-based sampling assumes a good
correlation between the time interval of successive image
captures and appearance change, and this would not perform
well when the robot accelerates, decelerates or comes to a
stop. Appearance-based sampling measures the change in
appearance directly, and is the most reasonable approach to
take. In fact, appearance change via visual feature similarity
calculation has been used not only in the current research
in aSLAM [1] but also in research in view-based robot
navigation [13]. and in loop closing detection [11]. However,
there is usually little justification for the choice of the
adopted method to measure appearance change.
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In this paper, we investigate the applicability of similarity
measures in video analysis and content-based image retrieval
(CBIR) algorithms to the keyframe detection problem in
aSLAM. Our key contribution is a systematic comparison
of keyframe detection algorithms and a recommendation
of a feature matching method that has been shown to be
superior to the other algorithms. The rest of the paper is
organized as follows. In Section II, we will review the
relevant literature in CBIR and video analysis as the basis
of our analysis. In Section III we describe in detail five
representative methods for measuring image similarity in
CBIR and video processing due to their direct relevance
to aSLAM. In Section IV, an experimental procedure is
described to compare the performance of keyframe detection
methods in an objective and application-independent manner.
The results of applying this procedure to indoor visual SLAM
datasets are provided in Section V. Finally in Section VI,
conclusions are drawn and future work outlined.

II. REVIEW OF RELEVANT CBIR AND VIDEO ANALYSIS

TECHNIQUES

A problem similar to keyframe detection has been studied
extensively in CBIR and in video analysis and segmen-
tation, though for different purposes and under different
constraints [8], [17]. CBIR is concerned with obtaining
images from an image database that are similar to a query
image based on an analysis of image contents, whereas video
processing research addresses the problem of segmenting a
video into scenes for its indexing, annotation, compression
or semantic interpretation. In both cases, a reliable similarity
measure between two images serves as the basis for many
algorithms. As a result of their efforts, a variety of techniques
have been developed. However, only a subset of these
techniques are directly applicable to the keyframe detection
problem in aSLAM.

There are two main approaches in CBIR – discrete and
continuous [8] – and their distinction lies in whether the
visual feature space is discretized in some fashion. In the
continuous approach, each image is described in terms of the
original visual features extracted from the image, whereas
in the discrete approach the BoW (or Bag-of-Features)
technique is used to map the visual features to visual words
so that efficient text retrieval techniques can be applied.
A great number of features have been proposed for image
comparison, and they can be grouped into appearance/color,
texture, local features, and shape [8]. Of interest to us
are those based on appearance and local features since
the texture features are not expected to work well for a
robot environment cluttered with various objects, and shape
extraction is both computationally expensive and unreliable.

In video processing, keyframes of a video sequence are
defined as a subset of the frames in the sequence that can
faithfully represent or characterize the visual contents of
the video. Keyframe extraction techniques can be broadly
grouped into three categories: cluster based, energy based
and sequential techniques [6], [15]. Cluster and energy based
methods are global; i.e., they examine the video sequence in

its entirety to determine which frames among all frames can
best serve as keyframes. They are therefore not applicable
to aSLAM, which does not have available images from the
future, not to mention the consideration of computational
cost associated with global techniques. Sequential methods,
on the other hand, consider the video frames one at a
time [18], and are therefore appropriate for aSLAM ap-
plications. Specifically, methods based on sufficient content
change are the most relevant to our application, and these
methods make use of visual features similar to those in
CBIR.

III. IMAGE SIMILARITY MEASURES FOR KEYFRAME

DETECTION

In view of the rich research in CBIR and video processing,
we choose five representative methods to study in this paper:
pixel-wise (pw), global-histogram (gh), local-histogram (lh),
feature matching (fm), and Bag-of-Words (BoW). The pixel-
wise method is a representative appearance-based technique,
the two histogram-based methods are popular in both CBIR
and shot-boundary detection, and both the feature matching
and BoW methods use image features but one is continuous
and the other discrete. These five methods account for the
major applicable techniques in CBIR and video processing.
Comparison among these five methods will provide us with a
reasonable guideline with respect to how keyframe detection
should be handled.

Each of the five methods we study computes a similarity
measure 𝑆 between two images, 𝐼𝑖 and 𝐼𝑡, which in our case
are those associated with the last node 𝑖 and the current view
at time 𝑡, respectively. This similarity measure is related to
a distance function between the two images as shown in
Equation (1).

𝑆(𝐼𝑖, 𝐼𝑡) = 1− 𝐷(𝐼𝑖, 𝐼𝑡)−𝐷𝑚𝑖𝑛

𝐷𝑚𝑎𝑥 −𝐷𝑚𝑖𝑛
(1)

where 𝐷 is a distance function between two images based
on their contents, and 𝐷𝑚𝑖𝑛 and 𝐷𝑚𝑎𝑥 are the minimum
and maximum value that 𝐷 can – or is expected to – take
on. It is clear that 𝑆 is normalized between [0, 1]. The five
methods reviewed in this section differ only in the way in
which 𝐷 is defined.

The simplest and somewhat naive method uses a pixel-
wise difference to compute 𝐷 as shown in Equation (2).

𝐷𝑝𝑤(𝐼𝑖, 𝐼𝑡) =
∑

𝑥

∣𝐼𝑖(𝑥)− 𝐼𝑡(𝑥)∣ (2)

where 𝑥 indexes the pixels of each image, and ∣ ⋅ ∣ represents
the absolute value. Due to image noise and disregard of
pixel correlations by 𝐷𝑝𝑤, this method though simple is not
expected to perform well for keyframe detection.

Another popular image similarity measure characterizes an
image in terms of its histogram, and defines image difference
by that between two histograms, according to some metric.
Specifically, we compute the norm:

𝐷𝑔ℎ = ∥𝐻(𝐼𝑖)−𝐻(𝐼𝑡)∥ (3)
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where 𝐻(𝐼) is the histogram of image 𝐼 , and ∥ ⋅ ∥ is a
distance metric defined by, among others, 𝜒2 statistic, 𝐿2-
norm, cosine distance or K-L divergence. 𝐷𝑔ℎ captures the
difference in global intensity distribution but loses spatial
information within which difference between two images
may exist. This can be partially alleviated through the use
of local histograms.

Image difference function via local histogram comparison
divides an image into local sub-regions or blocks and com-
putes a histogram for each block. The distance function in
this case is defined as

𝐷𝑙ℎ =
∑

𝑥

∥𝐻(𝐼𝑖,𝑥)−𝐻(𝐼𝑡,𝑥)∥ (4)

where 𝑥 indexes the image blocks, and 𝐻 is still the
histogram function as before. ∥ ⋅ ∥ is once again a proper
distance metric of one’s choice. 𝐷𝑙ℎ degenerates either to
𝐷𝑝𝑤 when the block size is a pixel or to 𝐷𝑔ℎ when the
image is of one block.

Difference or similarity between two images can also
be computed via more sophisticated methods that involve
feature extraction and matching. These methods are compu-
tationally more costly than those based on image statistics
such as Equations (3) and (4), but can yield more robust
measures due to the invariance properties of the visual
features. In this case, visual features of the two images are
first extracted, and their descriptors derived and matched.
A matching score can be computed to describe how many
common features are shared by the two images. The features
can be matched directly or mapped to a visual dictionary first
and then matched in terms of visual words [16], as commonly
practiced in aSLAM.

Let 𝑁𝑖 and 𝑁𝑡 be the number of visual features in image
𝐼𝑖 and 𝐼𝑡, respectively, and N be the number of features
that match. A distance function based on feature matching
is usually defined one of two ways:

𝐷𝑓𝑚 = 1− 𝑁

𝑚𝑖𝑛{𝑁𝑖, 𝑁𝑡} or 1− 2𝑁

𝑁𝑖 +𝑁𝑡
(5)

where 𝑚𝑖𝑛{⋅} is the minimum operator. Example visual
features include SIFT, MSER, Harris affine, and SURF. SIFT
descriptor has been considered as superior to other feature
descriptors and is a popular choice in describing the above
visual features. Euclidean distance or distance ratio can be
employed to match features.

BoW has become a popular technique to use in aSLAM for
both loop closing detection and map representation. In this
case, an image description vector 𝑉 is first derived by map-
ping the visual features in an image to words in the visual
dictionary and weighing the visual words by, for example, tf-
idf (term-frequency inverse document frequency). A distance
function can then be defined based on the description vectors
of two images. Specifically,

𝐷𝐵𝑜𝑊 = 𝑑𝑖𝑠𝑡(𝑉 (𝐼𝑖)− 𝑉 (𝐼𝑡)) (6)

where 𝑉 (𝐼) represents the BoW description vector associ-
ated with image 𝐼 , and 𝑑𝑖𝑠𝑡(⋅) is a vector distance metric
of one’s choice (cosine distance, 𝐿2-norm, or voting [3], for
example). Alternatively, one could also consider 𝑉 as a set,
and compute the difference between them in terms of the
intersection-over-union measure [1].

IV. PERFORMANCE EVALUATION METHODOLOGY

In this section, we describe our methodology to compare
the performance of the five image similarity measures for
keyframe detection in aSLAM. An image similarity measure
is considered useful only if it can capture the view change
objectively and accurately, so that when selected keyframes
are used later for, localization or loop closing detection,
they provide a sufficient coverage of the environment and do
not over-sample the environment at the same time to cause
unnecessary computational burden. An accurate similarity
measure must truthfully reflect the degree of change in
the robot’s view and, in the ideal case, establish a linear
relationship with the actual change in the robot’s view, so
that it can be tuned in an application to provide a proper
sampling of the environment.

To investigate and compare performance, it is important
to establish ground-truth with respect to the actual change in
the robot’s view. With the ground-truth, various similarity
measures can be applied and evaluated in terms of their
consistency with the ground-truth. For this purpose, we can
choose an image sequence such as the one in Figure 3 in
which the robot or camera motion is simple enough that
overlap between a pair of images can be easily determined
through simple one-dimensional image alignment. To achieve
this, we can limit robot motion to be a pure translation
parallel to the scene so that objects that remain visible
experience only translation but no rotation or scale change.
While this type of camera motion does not include all
possible types of view change, it is the only viable way
by which ground-truth can be constructed. The procedure is
tedious but important in order to compare the performance
of the candidate similarity measures fairly.

With such an image sequence, we build the ground-truth
similarity by evaluating Equation (7) for all images in the
sequence,

𝑆𝑡 = ∣𝐼0 ∩ 𝐼𝑡∣/𝑁 (7)

where 𝐼0 is the first image in the sequence, 𝐼𝑡 is a subsequent
image at time 𝑡, and 𝑁 is the number of pixels in an
image. 𝐼0∩ 𝐼𝑡 calculates the amount of overlap between two
images, after they are aligned using a method, in our case,
that maximizes normalized image correlation. 𝑆𝑡 ∈ [0, 1]
measures the similarity of all images in the sequence with
respect to the first.

V. COMPARATIVE RESULTS OF KEYFRAME DETECTION

ALGORITHMS

We applied the methodology described in the previous
section to evaluate the five image similarity measures in
Section III. The datasets used in our study come from typical
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indoor environments, one in a research laboratory (Labora-
tory II) and three from the hallways of a laboratory building
(Floor 3, Hallway I and Hallway V)1. The images were
acquired by a Pointgrey Dragonfly firewire camera mounted
on a Magellan Pro robot. There are between 200 and 500
images in each dataset, and the image resolution is 320x240
in all but one dataset, whose image resolution is 640x480.
Examples of these images are shown in Figure 1. The first
50 images in Hallway I at approximately five centimeters
per image and the four sequences, each approximately 40
images long and involving only translation in Laboratory
II at approximately three centimeters per image, were used
to create a total of five sequences of ground-truth similarity
values. Figure 3 shows a sequence of five consecutive images
from the Laboratory II dataset to illustrate the amount of
robot motion in this study.

The experimental parameters are defined as follows.
For the global histogram-based method, we used a 64-bin
grayscale histogram. For the local-histogram based method,
each image was divided in a 4x4 grid, and a 64-bin grayscale
histogram was built for each sub-image. For feature matching
method, we used the standard SIFT extractor and a descriptor
vector of dimension 128. Finally, for the BoW method, we
used a dictionary of 500 visual words obtained by running
k-means to cluster the visual features in the first 70 images
of the a dataset (either Hallway I or Laboratory II). For
similarity calculation, tf-idf was used to weigh the visual
words found in each query image, and the voting scheme
in [3] was used to measure the distance between the two
vectors or the likelihood that two images match. Equation (1)
was then used to normalize the distance so as to obtain a
similarity value between 0 and 1.

(a) (b)

(c) (d)

Fig. 1. Example images from the four visual SLAM datasets used in this
study: (a) Hallway I, (b) Laboratory II, (c) Floor III and (d) Hallway V

For each of the five sequences for which ground-truth
was created, we used all five methods to calculate image
similarity between the images in the sequence and the
first in the sequence. Figure 2 shows the raw data of the

1All datasets are available online at
http://webdocs.cs.ualberta.ca/˜hajebi/datasets/.

comparative study. Figure 2(a) shows the result from the
Hallway I sequence and (b) from one of the four sequences
in Laboratory II. In each figure, the horizontal axis is the
ground-truth similarity value, and the vertical axis is the
similarity computed by the five methods Obviously, the
diagonal line corresponds to the ground-truth gt result. All
methods track the ground-truth proportionally, but different
methods exhibit quite different behaviors.
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Fig. 2. Experimental results of the comparative study, showing the
similarity values computed by the five methods on (a) dataset Hallway I
and (b) one of the four sequences of dataset Laboratory II

Table I shows quantitatively the performance of the five
methods in terms of their root-mean-squared (RMS) error
with respect to the ground-truth. With the exception of the
global histogram method in the case of Hallway I dataset,
the feature-matching method is obviously superior.

To further quantify the performance evaluation, we fit
linear lines through the data points of the five methods, and
the slopes of their line fittings are shown in Table II for
two image sequences of Hallway I and Laboratory II. In
general, the closer a slope is to 1 (a 45∘ line), the more

2074



Fig. 3. A example sequence of the Laboratory II dataset used in the experimental study, to illustrate the amount of robot motion relative to the scene

TABLE I

RMS ERRORS OF THE FIVE SIMILARITY MEASURES

𝑆𝑝𝑤 𝑆𝑔ℎ 𝑆𝑙ℎ 𝑆𝐵𝑜𝑊 𝑆𝑓𝑚

Hallway I 0.164 0.137 0.212 0.172 0.135
Laboratory II 0.275 0.093 0.147 0.237 0.060

closely the corresponding method computes similarity to the
ground-truth, and the more accurate the method. Feature-
matching is found to be superior to the other four methods,
with the BoW method performing the worst. In addition, we
calculated the R-squared values of the linear fittings of the
five methods and the result is summarized in Table III. R-
squared is a statistical measure of how well a regression line
approximates real data points, or how good one term is at
predicting another. In our case, it captures in the variance of
the similarity measurement. Feature matching has the largest
R-value, and can be best approximated by a line whereas
others are all much less predictable with a linear model.

By comparing the results from two different indoor en-
vironments, we observe that the performance of the fea-
ture matching method is the most stable. Interestingly but
not surprisingly, the BoW method does not work well for
keyframe detection by all measures, largely as a result of the
clustering process it employs to create artificial perceptual
aliasing when features from different objects are forced to
match if they happen to be grouped into the same cluster.
As well, in the BoW method, features in two images image
are matched with each other indirectly in the space of the
visual vocabulary whereas in the feature-matching method
visual features in two images are matched directly with each
other without the interference of visual features from other
images.

TABLE II

SLOPES OF LINEAR REGRESSION MODELS

𝑆𝑝𝑤 𝑆𝑔ℎ 𝑆𝑙ℎ 𝑆𝐵𝑜𝑊 𝑆𝑓𝑚

Hallway I 0.61 0.85 0.90 0.53 0.98
Laboratory II 0.76 0.94 0.89 0.68 0.96

TABLE III

R-SQUARED VALUES OF LINEAR REGRESSION MODELS

𝑆𝑝𝑤 𝑆𝑔ℎ 𝑆𝑙ℎ 𝑆𝐵𝑜𝑊 𝑆𝑓𝑚

Hallway I 0.81 0.94 0.87 0.71 0.98
Laboratory II 0.72 0.89 0.92 0.79 0.98

A good keyframe detection method should sample the

environment fairly, in such a way that a constant threshold
similarity value works equally well independently of the
environment. This property of keyframe detection method
was examined for the five methods in our study. In the ex-
periment, we chose a set of four similarity threshold values,
each leading to the selection of a certain percentage of frames
as keyframes from one image sequence. We then applied the
same threshold values to another sequence, to observe the
change in the proportion of the frames detected as keyframes.
The two sequences come from two novel environments with
similar characteristics: Floor III and Hallway V (Figure 1(c)
and (d)). Hallway V is similar to Hallway I but observed the
scene from a different distance, whereas in Floor III the robot
did not move parallel to the scene but along the length of a
hallway. The average change in the percentage of detected
keyframes for different methods is summarized in Table IV.

TABLE IV

STABILITY OF SIMILARITY THRESHOLD FOR KEYFRAME DETECTION

𝑆𝑝𝑤 𝑆𝑔ℎ 𝑆𝑙ℎ 𝑆𝐵𝑜𝑊 𝑆𝑓𝑚

Hallway V vs. Floor III 3.70% 4.02% 3.92% 2.05% 1.94%
Floor III vs. Hallway V 6.13% 12.89% 7.16% 2.47% 2.31%

Based on the limited experimental data, the feature match-
ing method provided the smallest variation in the percentage
of keyframes selected. The BoW method worked reasonably
well as well. In view of all the performance metrics, in
terms of tracking the ground-truth, linearity, and stability in
keyframe selection, we conclude that the feature matching
method is superior to the other four representative methods.
However, we should note that these results are predicated by
the parameters used especially for the BoW method, and that
an increased vocabulary size could cause the BoW method to
improve, although that would make it approach the feature-
matching method in the limit.

Finally, with respect to computational cost, histogram-
based methods, i.e., pw, gh, and lh, are more efficient than the
feature-based methods, i.e., fm and BoW. Histogram-based
methods have a complexity that is linear with respect to the
image size N. In contrast, the complexity of feature-based
methods is dominated by the feature extraction process,
which has a complexity of at least O(NlogN) for scale-space
features such as SIFT – although features are almost always
detected already in all appearance SLAM algorithms, so
that the only additional cost for keyframe detection is for
matching feature vectors. In addition, the feature-matching
method has the advantage that its complexity is independent
of the map size, whereas the complexity of the BoW method
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increases with the map size since an increased vocabulary
size is required to handle an enlarged map. Practically,
the computational cost for keyframe detection is in general
insignificant compared with other visual SLAM operations
such as visual loop-closure detection because only two
images, 𝐼𝑡 and 𝐼𝑖, need to be involved in keyframe detection.

VI. CONCLUSIONS

In this paper, we have presented our comparative study
of image similarity measures for keyframe detection in
appearance-based visual SLAM. Appearance SLAM repre-
sents a map in terms of a graph whose nodes correspond
to robot poses, and the nodes are characterized by their
appearances viewed by the robot. Keyframe detection is a
critical step in deciding the poses to be included in the map
for an appropriate coverage of the environment. We started
by reviewing literature in CBIR and video processing, and
selected five representative techniques in those fields and in
visual SLAM to be included in our study. A methodology
was established to compare these five techniques objectively,
using several performance metrics. From the experimental
results, we concluded that the feature matching method
performs the best among the five. Our key contribution is
a systematic approach to the selection of an image similarity
measure that serves as the basis for keyframe detection in
appearance SLAM. The emergence of the feature matching
method as the optimal method among the five we have exam-
ined can be used as a useful reference to other researchers.

One extension of this research is to design a keyframe
detection algorithm in a Bayesian framework in which the
image similarity measure serves as the likelihood func-
tion so that the decision of keyframe selection is made
by examining an image sequence. Another extension is to
integrate information about both spatial change of robot
location and visual change in the robot’s view to overcome
the problem with view-only based methods such as when a
robot undergoes pure rotation and triggers incorrect keyframe
creation. Finally, additional methods in CBIR and video
processing such as edge orientation histogram [12] can be
further explored, and the parameters of the methods can be
optimized for the keyframe detection problem in appearance
SLAM.
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