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Abstract— We address the problem of vehicle (mobile robot)
navigation by combining visual-based reconstruction and local-
ization with metrical information given by the proprioceptive
sensors such as the odometry sensor. The proposed approach
extends the navigation system based on a monocular vision [1]
which is able to build a map and localize the vehicle in the real
time way using only one camera. An extended kalman filter is
used to integrate odometric information to estimate the vehicle
position. This position is updated by the localization obtained
from the vision system. Experimental result carried out with
an urban electric vehicle will show the improvement of the
navigation system and its robustness to the temporary loss of
images.
Keywords: robot navigation, urban vehicles, data fusion, visual
navigation, odometry, kalman filter.

I. INTRODUCTION

Autonomous vehicle concept has been for few years a

topic of great interest in the urban traffic. They appear to be

very suitable in specific areas where the public demand is

properly structured, as in airport terminals, attraction resorts,

university campus, hospitals, or inner-cities pedestrian zones.

Such that system should meet the public expectation with

a high flexibility to answer to many different individual

request. Usually, passengers call a vehicle from any station

to reach any other one in an automatic way, and vehicles

could park autonomously to the station supply for refill-

ing and reuse. In order to autonomously navigate in an

unknown environment, the vehicle must be able to built

a representation of the surrounding map and self-localize

with respect to it. These information can be provided to the

vehicle as a following task of a learned trajectory. Several

kinds of sensor are used for outdoor vehicle localization. The

most popular of them is the GPS receiver. The Real-Time

Kinematic (RTK) GPS allows a consistent accuracy of 1 cm

for the navigation applications. However, this accuracy drops

considerably in dense urban environment where buildings

can mask some satellites. To overcome this limitation, the

fusion with other sensors such as odometry can be considered

[2]. Vehicle localization can also be supplied by odometry

(see [3]) since the odometry sensor is a proprioceptive sensor

(often embedded on the vehicle). Nevertheless, this sensor

has a major problem of sensitivity to errors due to the

integration of velocity measurements over time for position

estimates. As a consequence, to efficiently use odometry

information it often requires complementary information to
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enable a correction of the cumulative drift errors. Odometry

is usually combined with other exteroceptive sensors using

known landmarks as GPS (see [4]), numerical map (see [5])

or visual landmarks (see [6]).

Vision system is well know to provide an accurate localiza-

tion. Moreover, the use of camera sensor is very attractive

since in urban environment such as city centers, there are

usually a lot of visual features. We think so that the vision-

based localization system could make a good complementary

sensor to the odometry.

Two main approaches for visual navigation with respect

to a learned trajectories, have been proposed: appearance-

based approach (or visual memory-based approach) and map-

based approach. The former use only images to represent

the reference trajectory. From bounded quantity of images

(called key frames) gathered in a database, the vehicle

moves from one frame to the next frame using for example

visual servoing [7]. The latter needs to build a map of the

trajectory and the environment, most often done off-line. The

localization process is then fast since the map has been built

beforehand. Furthermore, data fusion from different sensors

can be considered since the localization is incurred in the

global coordinates system. In [8], two cameras and odometry

are used to build a map of the environment, which is used

to compute a global localization of the robot. In the same

approach but opposed to stereo vision, a monocular vision-

based map building and localization has been proposed in

[1]. Since only one camera is used, the cost and size of the

localization system are considerably reduced.

When the vehicle is localized in the map, it will follow

the same learned path. To do that, its error deviation to the

reference path should be regulated to zero. If we consider the

system as proposed in [1], the camera position is obtained

in the global camera frame (the frame of the first camera).

So as to control the vehicle, its position should be given

in the metric coordinates system with respect to a global

frame system. Moreover, the vehicle positions provided by

the camera are up to a scale factor. It may be set knowing the

real length of the path for example. Unfortunately, this scale

factor is not all along fix. It can vary along the trajectory.

We show in this paper that the fusion of data given

by the odometry and camera sensors overcomes the scale

factor problem and improve the navigation system. Indeed,

the odometry sensor provide the distance between each key

frames to set the local scale factor rather than the global one.

Then, the vehicle position provided by the camera will update

the estimated position using the odometry information. We

show also that this approach will increase the robustness of
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the navigation system. Precisely, if for example the camera

field of view is masked, the proposed navigation system

continue with success since the odometry data is always

present.

The remainder of this paper is organized as follows. In

section II, the building map process from the reference

video sequence and the localization algorithm are recalled.

In section III, the localization using data fusion is presented.

Section IV is devoted to the control law design. Finally,

experimental results are presented in section V.

II. MAP BUILDING AND REAL TIME

LOCALIZATION

Real time vision-based localization can be done in two

steps. After an off-line building of a 3D map of the learning

video sequence, the camera is localized within this map in

real-time. In the sequel, we recall briefly these steps. More

details can be found in [1].

A. 3D map reconstruction

The Map building process using a single camera can

be addressed to the structure from motion problem which

has been studied for several years [9]. The reconstruction

process is realized from a set of key frames selected from

the reference image sequence. The criterion of the selection

is based on the motion between key frames which should

be the longer while still being able to match the images.

This will improve the geometry epipolar computation since

it is an ill conditioned problem for a small motion. For

each image, interest points are detected with Harris corner

detector. The image matching is established by thresholding

the correlation score (Zero Normalized Cross Correlation)

between the neighborhoods of each couple of detected points

within two images. The camera motion computation is done

using the triplet of key frames. The first image of the

reference sequence is ever selected as the first key frame. The

second key frame is selected such as is the farthest image

with at least N common interest points with the first key

frame. The third key frame is chosen so that is the farthest

image with respect to the second key frame. It has at least N
common interest points with the second key frame and has

at least M common interest points with the first key frame.

These conditions are used for the next key frames selection

until the end of the image sequence. The camera locations

are computed using the hierarchical bundle adjustment as

proposed in [1].

B. Real time localization

Before starting the autonomous navigation, the vehicle

should be localized over the reconstructed 3D map. To do

that, the current image is localized in the set of the key

frames by matching interest points between the current image

and each key frame. The position of the current camera is

then obtained with RANSAC. This step is required only at

the start and it takes only few seconds. Note that in order to

accelerate this step, one can initialize it by an approximate

pose using a low-cost GPS. The current image may be thus

localized over a few key frames.

After this step, The vehicle position is updated at each

acquired image. This process can be established through the

following steps (details can be found in [1]):

• visible landmarks are selected from the closest key

frame,

• image points of these landmarks are approximated in

the current frame using an estimated pose based on the

motion model,

• from these image points, the landmarks are matched to

the detected points in the current frame,

• the position of the current frame is computed using a

bundle adjustment.

Note that in the second step, the odometry could be incor-

porated rather than using the motion model to incur a better

initial estimate of the camera pose. Even though, this will

not change the localization accuracy.

In the next section, we fuse the visual-based localization

and the odometry data.

III. LOCALIZATION BASED ON DATA FUSION

Under natural conditions, the vision-based localization

could be come up against bad visibility such as obstacle

hiding or camera blinding. In order to overcome these

situations and keep the vehicle well localized, a fusion-

based localization approach is presented. It consists in fusing

information provided by proprioceptive and exteroceptive

sensors using an Extended Kalman filter ([10], [11]). It can

be thought of as operating in two distinct phases: prediction

and update. In the prediction phase, the old state is used

to generate the current state of the vehicle with the tricycle

model. Next, in the update phase, the current observation is

used to correct the predicted state for accuracy purpose.

Fig. 1. Tricycle model of the vehicle
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A. state prediction and evolution

Let x and y the coordinates of the vehicle, υ its speed and

ϕ its orientation (see Figure 1). The vehicle can be described

by the state vector x = [x y υ ϕ]
�

and the covariance

matrix P. The motion of the vehicles can be modeled by

the function f using the tricycle model. We assume that the

error affecting the encoders data vector u can be modeled

by a normal distribution as:

ũ ∼ N (u,Q) (1)

where u is the measured data and Q the covariance matrix

of the noise affecting it. The evolution equation of the state

vector x and its covariance matrix P can be written as

following:

x̂k+1|k = f(x̂k|k,uk) (2)

Pk+1|k = JxPk|kJx
� + JuQkJ

�
u +B (3)

where k is the time, x̂k+1 is the predicted x̂k, Jx and Ju

are respectively the jacobian matrix of the function f with

respect to the state x and u, and B is the covariance of

the noise affecting the motion model of the vehicle. The

predicted state x̂k+1 at the time k + 1 will be updated with

the information provided by the vision system.

B. state updating

The vehicle update its state vector x using information

received from the vision system and represented by the vector

z. We assume that these information are noised according to

the normal distribution model:

z̃ ∼ N (z,Bz)

with z = [x y ϕ]
�

is the pose of the vehicle and Bz is the

covariance matrix of noise affecting it. The state vector x is

updated with the observation z as:

Kk+1 = Pk+1H
�(HPk+1H

� +Bz)
−1 (4)

x̂k+1|k+1 = x̂k+1|k +Kk+1(zk+1 −Hxk+1|k) (5)

Pk+1|k+1 = (I−Kk+1H)Pk+1|k (6)

with the observation matrix H given as:

H =

⎛
⎝ 1 0 0 0

0 1 0 0
0 0 0 1

⎞
⎠

Typically, the predict and update phases alternate. How-

ever, if observations are unavailable for some reason during

a short time, the update may be skipped and multiple predic-

tion steps performed. In our approach, we exploit this idea to

keep the vehicle localized in lacking of visual observation.

Certainly, the vision system may meet some problems to

provide the position of the vehicle in some situation such as

hiding the camera field of view with obstacles or blinding

the camera because of sunrays.

Likewise, the observations may be affected with delays

and thus penalize the estimation accuracy. This problem

can be solved by dating the observations in an absolute

time reference. Indeed, the observations are affected to their

true arrival date and put back in chronological order in an

observations table. Then, the state is updated with the new

observations.

An example is shown in figure 2. The state of the vehicle

at t2 is computed with the observation arrived at that instant

and the previous state at t1. Let us suppose that a camera

image arrived at t3 but the image processing which provides

the pose estimation of the vehicle takes time and the result is

given at t5. During this time, other observations can arrive.

Those observations can be used to compute the current state

using the previous one. When the pose estimation is provided

by the image processing (at t5), the observation is replaced at

the right time (t3). The state at t5 is recomputed by updating

the state at t2 with the observations at t3 and t4.

Fig. 2. Observations scheduling

In the next section, a control law is established to follow

the reference path using the accurate localization of the

vehicle.

IV. CONTROL LAW

A. Vehicle modeling

In order to design a control law, the vehicle must be

modeled. We consider a non-holonomic system with classical

kinematics since the vehicle is supposed to move on an

urban horizontal ground under the conditions of pure rolling

and non-slipping at low speed. The well known tricycle

model is used. Using the estimated state vector x̂ and

the reconstructed reference path, the new state vector of

the vehicle may be described with respect to the path by[
s ỹ θ̃

]�
where:

• s is the curvilinear coordinates of the vehicle rear axle

center along the path,

• ỹ and θ̃ are respectively the lateral and angular devia-

tions of the vehicle with respect to the path,

The control vector is constituted in the vehicle linear velocity

υ and the front wheel steering angle δ. The state and control
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vectors are related by the following kinematics equations:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ṡ = υ
cos θ̃

1− ỹ c(s)
˙̃y = υ sin θ̃

˙̃
θ = υ

(
tan δ

l
− c(s) cos θ̃

1− ỹ c(s)

) (7)

where:

• c(s) is the curvature of the path at s,

• l is the vehicle wheelbase.

Note that this model has two singularities for υ = 0 and

y =
1

c(s)
(this occurs if the vehicle is on the path curvature

center). These situations never arise in experiment since the

vehicle is assumed to be always running and remains close

to reference path.

B. Control law design

The control objective is to bring and maintain the lateral

deviation ỹ and angular deviation θ̃ to 0. The vehicle model

(7) is clearly nonlinear. However, it has been established in

[12] that mobile robot models can generally be converted

in an exact way into almost linear models, named chained

forms. This property offers two very attractive features:

on one hand, path following control law can be designed

and tuned according to celebrated Linear System Theory,

while controlling nevertheless the actual non linear vehicle

model. Control law convergence and performances are then

guaranteed whatever the vehicle initial configuration is. On

the other hand, chained form enables to specify, in a very

natural way, control law in term of distance covered by the

vehicle, rather than in term of time. Vehicle trajectories can

then easily be controlled using the expression of the control

variable δ given as (details are given in [13]):

δ = arctan

(
l

[
A
cos3 θ̃

α2
+

c(s) cos θ

α

])
(8)

with:⎧⎪⎨
⎪⎩

α = 1− c(s)ỹ

A =
d c(s)

d s
ỹ tan θ̃ −Kd(1− c(s)ỹ) tan θ̃ −Kpỹ

+c(s)(1− c(s)ỹ) tan2 θ̃

V. EXPERIMENTAL RESULTS

The proposed approach was implemented and tested on

the real electric vehicle called Robucab (see Figure 3).

This vehicle is manufactured by the society Robosoft. Its

dimensions are 1.50 m of length and 1.20 m of width and

its velocity is limited to 5 m/s. Its front and rear wheels

can be steered. In our experiments, only front wheels are

steered. The vehicle is equipped with an odometric sensor at

the wheels. A camera providing 512× 384 pixels grayscale

images is embedded on the vehicle. The rigid transformation

between the camera frame and the vehicle frame (or the

control frame) is calibrated manually. For the accuracy

checking purpose, the accurate positions (2 cm of accuracy)

provided by the RTK-GPS are used as the ground truth.

Fig. 3. Experimental vehicle: Robucab

Two computers are embedded in the vehicle. The first one

called low-level deals with the control variables (velocity υ
and steering angle δ). Proprioceptive sensors are connected

to the low-level computer which sends measurements to the

second computer called high-level through an ethernet link.

The vehicle localization algorithms (vision based and fusion)

are implemented on the high-level computer in C++ language

using the library AROCCAM presented in [14].

In order to investigate our approach, the experiments are

realized over daylight and overnight. In the both lighting

conditions, a reference video sequence was recorded and a

3D map was reconstructed. Since the 3D map reconstruction

algorithm is based only on vision, the coordinates system is

defined by the first camera frame in the reference sequence.

Furthermore, the reconstruction is up to an unknown scale

factor. However, the position of the vehicle should be pro-

vided in the metric coordinate system to be able to control

the vehicle. In [1], a global scale factor is obtained using

the length of the path. Nevertheless, the scale factor varies

differently depending on the vehicle displacement if it goes

straight or if it turns. To date and to our knowledge, this

variation is not proved but only observed. In our case, the

scale factor was set between each two key-frames using

the odometric information. Figures 4 shows clearly that the

trajectory obtained using our scale factor setting method is

better than the one using a global scale factor comparing

to the trajectory provided by the RTK-GPS. The vehicle is

then localized in real time in autonomous navigation over

the 3D map using our approach. The videos of the presented

experiments can be found as multimedia material submitted

with this paper.

A. Experiment 1

For the first experiment, the reference video sequence

was recorded over daylight, preferably on a cloudy day.

Indeed, the sun can be sometimes in the field of view of

the camera on a clear day which penalizes the quality of

the 3D map reconstruction. But during the navigation, the
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Fig. 4. Reference trajectories obtained by the GTK-GPS and vision with
local scale factor correction

vehicle could be localized under sun blinding or obstacle

hiding conditions thanks to the fusion algorithm. To show

clearly the robustness of the navigation system under these

conditions, we hind totaly the camera field of view along few

meters during the autonomous navigation. Figure 5 shows the

reference path (drawn in red line), the realized path by the

vehicle (drawn in green line) and the trajectory given by the

RTK-GPS as the ground truth. In this experiment, the camera

is hidden at the position indicated by the point a. The vehicle

is navigating from the point a to the point b (thereabouts 21

meters) using only the odometry measurements. Actually,

only prediction steps are performed until the point b where

the vehicle state is updated since visual observation is

available. Noting that when the camera is unmasked, the

vehicle is deftly localized since its position is very close

to the predicted one through the odometry data. Note that

during the camera hiding, the guidance performances are

slightly damaged, but are still satisfactory (see Figure 6).

Indeed, the lateral deviation estimated using odometric data

is well regulated to zero by the control law (8). However, this

estimated lateral deviation is different to the real distance of

the vehicle with respect to the reference path. Therefore, the

vehicle does not lie on the reference path because of the drift

occurred by the odometric data. One can observe in Figure

Fig. 5. Reference, ground truth and realized trajectories

Fig. 6. A local view around the points a

7 that after the vehicle position updating (point b) the real

trajectory of the vehicle given by the RTK-GPS comes closer

to the reference trajectory. This will be carry out in a few

meters depending on the gains Kd and Kp of the control law

(about 5 meters in our case).

B. Experiment 2

This experiment is realized overnight. For that, the ref-

erence video sequence was recorded in the same condition

(overnight). The headlights of the vehicle are used during

the map reconstruction and the autonomous navigation for

a reasonable visibility. The frame rate is reduced to 1 fps

(rather than 15 fps over daylight) since the camera keep the

shutter open longer for the successful night video acquisition.

The proposed approach can handled these conditions to carry

out successfully the navigation system. Indeed, the low frame

rate can be viewed as the camera masking during a short

time. Example of images acquired overnight and detected

features for localization is shown in Figure 8.
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Fig. 7. A local view around the points b

VI. CONCLUSION

Robustness of the autonomous vehicle with respect to

the visibility constraints is extremely important for human

transport. To improve this robustness, odometric information

can be exploited. In this paper, we have addressed the prob-

lem of vehicle navigation by fusing information delivered

by the odometric sensor (proprioceptive) and the camera

sensor (exteroceptive). We have detailed the fusing process

using an extended kalman filter where data were integrated at

their true acquisition date. The proposed approach can deftly

integrate information from various proprioceptive sensors

(for example the gyroscope, the accelerometer, etc). We

have validate our approach with an urban electric vehicle.

Experimental results show clearly the robustness of the

proposed navigation system to the temporary camera hiding

and overnight navigation. Future work will be devoted to

study a vision-based reconstruction and localization using

two cameras locking forward and behind the vehicle. This

configuration will be advisable to overcome several problems

such as long-time sun blinding.
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