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Abstract— This paper presents a 3D model-based tracking
suitable for indoor position control of an unmanned aerial vehi-
cle (UAV). Given a 3D model of the edges of its environment, the
UAV locates itself thanks to a robust multiple hypothesis tracker.
The pose estimation is then fused to inertial data to provide the
translational velocity required for the control. A hierarchical
control is used to achieve positioning tasks. Experiments on a
quad-rotor aerial vehicle validate the proposed approach.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have a large range of in-

door or outdoor applications such as surveillance, search and

rescue, inspection for maintenance, etc. To achieve such tasks

as autonomously as possible, UAVs are usually equipped

with at least one embedded camera. The visual information

received is used for the vehicle control, combined or not

with other available sensors like an inertial measurement unit

(IMU).

For safe vision-based navigation or servoing tasks, the

choice of the visual features to use is crucial since their

ability to be robustly matched and tracked will determine

the good realization of the task. This choice mainly depends

on the knowledge we have about the environment. Feature

points, (Sift points, Harris corners...) can be extracted and

tracked in any textured environment, which makes them

particularly suitable for outdoor applications, in unknown

areas. For this reason, they have been used in various

aerial applications, from structure from motion [13] [1] to

optical flow computation [8]. However, in indoor structured

environments with nude floor and walls, feature points can

be less frequent, leading to robustness issues. They are also

sensitive to the noise produced by transmission interferences.

In most image-based visual servoing (IBVS) approaches,

the target is assumed to be known [3] [6], and the error to

regulate is expressed directly in the image. On the other hand,

position-based visual servoing (PBVS) uses visual informa-

tion to retrieve the relative pose (position and orientation)

between the embedded camera and the target, to use it in

the control loop [16], [17]. The main difficulty for this kind

of approach is then to get a robust estimate of the pose.

In this paper we propose to use a robust model-based

tracking to estimate the pose of the UAV through its mo-

tion. The tracking algorithm requires a 3D CAD model of
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Fig. 1. Quad-rotor in indoor environment.

the edges of the environment. This condition is obviously

not suitable for unstructured outdoor missions, but could

perfectly be fulfilled in indoor inspection tasks. Moreover,

edges are very frequent in such structured environments,

and robust to some illumination changes, or even noise due

to transmission interferences. In [9] a model-based tracking

was already applied to UAV navigation, with a different

tracking approach. Payload constraints prevented the author

to consider fusion with inertial sensors which makes the

system more sensitive to tracking errors. In our work, the

pose estimate obtained using a 3D tracking is fused with in-

ertial data to estimate the translational velocity of the vehicle,

required for the control. Position-based visual servoing has

been experimented on a quad-rotor aerial vehicle developped

by CEA LIST [6], which is capable of stationary or quasi-

stationary flight. The next section gives an overview of the

overall system.

II. OVERVIEW

In this paper we propose a model-based vision system

for the position control of a quadrotor (see Figure 3). The

vehicle considered is equipped with camera attached to the

airframe of the UAV. In our experiments the camera is

pointing downward. The vehicle is also equipped with an

inertial measurement unit (IMU). Except for the low level

embedded attitude control, the computations are deported

to a ground station. The data are transmitted between the

ground station and the UAV via a radio transmission. For

clarity purpose, the system is divided into 3 parts which are

more precisely described in the next sections (see Figure 2).

• The control scheme is presented in section III. Estima-

tions of the position and translational velocity of the

vehicle are used to achieve a positioning task.

• The visual tracking subsystems aims at providing an

estimate of the 3D pose of the camera with respect to

the world frame. Given a 3D CAD model composed of
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edges of the environment, its role is to evaluate which

camera pose provides the best alignment between the

model projected edges and the edges detected in the

image. To achieve this in a robust way, the proposed

approach considers multiple hypothesis. This tracking

system is presented in section IV.

• The velocity estimator relies on an extended Kalman

filter which fuses inertial data with the pose estimate

given by the vision subsystem to estimate the transla-

tional velocity of the vehicle. It also filters the tracked

pose. Section V describes the estimation process.

Experiments using the quad-rotor UAV are presented in

section VI.

Fig. 2. Overview of the system.

III. CONTROL SCHEME

In this section we present the control scheme used for the

position control. First the motion equations for the UAV in

quasi-stationary flight conditions are given. Then the control

laws are presented.

A. UAV Modelling

The UAV is represented by a rigid-body of mass m and

of tensor of inertia I ∈ R
3×3.

Let us define the frame ℜc attached to the vehicle in its

centre of mass, and assume it coincides with the camera

frame (see figure 4). The position of the centre of mass of

the vehicle relative to the world frame wpc is denoted by

p. For simplicity of notation the rotation wRc of the body

frame ℜc relative to ℜw = (ex, ey, ez) is denoted by R. Let

v (respectively Ω) be the linear (resp. angular) velocity of

the center of mass expressed in the world frame ℜw (resp. in

ℜc). The control inputs to send to the vehicle are: T , a scalar

input termed thrust or heave, applied in direction ez and Γ =
[ΓxΓyΓz]

⊤ the control torques relative to the Euler angles.

Assuming the world frame is Galilean, Newton’s equations

of motion yield the following:



ṗ = v

mv̇ = TRez − fv2uv +mgez

Ṙ = [Ω]×

IΩ̇ = −Ω× IΩ+ Γ

(1)

where g is the gravity constant. fv2uv is a friction force

opposed to the direction of motion uv , with f a friction

coefficient. The notation [a]× denotes the skew-symmetric

matrix associated with any vector a ∈ R
3 such that for any

vector b ∈ R
3, [a]×b = a× b .

The quad-rotor UAV is an underactuated system with 4
inputs. Its translational motion results from the rotations. In

this work we assume that the system’s attitude is already

controlled onboard. Therefore, our control scheme acts as

a controller sending orientation commands to a low-level

controller which is responsible for robust flight.

Fig. 3. Quad-rotor aerial vehicle used in our experiments.

B. Yaw control

The yaw angle ψ is controlled by using a proportional

controller.

Ω∗
z = −Kpψ(ψ

∗ − ψ) (2)

ψ∗ is the desired yaw angle. The yaw velocity Ωz is then

controlled onboard using gyrometers.

C. Translational control

The translational control architecture is illustrated in Fig-

ure 2. The position and velocity errors are defined by:

ep = p∗ − p (3)

ev = v∗ − v (4)

where p∗ is the desired position, that is the position we want

the vehicle to reach.

We use a hierarchical control. The inner-loop is a PI

controller on the velocity, and the outer-loop a simple pro-

portional control on the position:

v∗ = −Kpep (5)

The inner-loop on the velocity is required to ensure the

stability of the system. It acts as a damping in the UAV

control. This control scheme thus requires good estimates of

the position (at least p and ψ) and velocity v of the vehicle.

The next sections describe how they are obtained.

IV. MODEL-BASED TRACKING SYSTEM

In this section the visual tracking system is presented. The

role of this system is to provide an estimate of the relative

pose between the moving camera and the fixed environment

using a 3D model of linear edges.

The issue of model-based tracking has been widely inves-

tigated in the past years [11] and different approaches have

been proposed to address it. These approaches can be divided

into two classes:
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Fig. 4. Frame definitions

• Registration methods use non linear optimization tech-

niques (Newton minimization, virtual-visual servo-

ing,...) to find the pose which minimizes a given repro-

jection error between the model and the image edges

[12], [5], [4]. The robustness of these methods has

been improved by using robust estimation tools [2],

[5], [4]. However, they can fail in case of ambiguities

(different edges can have very similar appearances) or

large displacements.

• Bayesian methods, on the other hand, have been recently

proposed to achieve the same task by estimating the

probability density associated to the pose [15], [10],

[14]. In particle filtering, this density is represented by a

set of samples (the particles) each of them correspond-

ing to a potential pose. Each particle is associated with

a weight depending on how well it reprojects the model

with regard to what is observed in the image.

For the considered application, the tracking algorithm has

to be robust to noise and interferences (See Figure 6), to

large displacements and run fast enough for the control to

be effective. In a previous work [18], we proposed a multiple

hypothesis registration process and embedded it in a particle

filtering framework. This method provided a robust pose

estimate. However, it is too computationnaly expensive for

using it directly in the control loop of a UAV.

In this paper, we propose a simplified version, adapted to

real-time capabilities. The multi-hypothesis registration ap-

proach is similar to [18] without particle filtering. Instead, the

filtering is achieved in the Kalman filter which fuses inertial

and visual measurements (see section V). This section recalls

the principles of our multiple hypothesis tracker.

A. Considering multiple low level hypothesis

In order to track the relative pose between the camera and

the modelled environment, our multiple hypothesis tracker

relies on a similar basis than the one used in [4], [5] and

[19]. Assuming the camera parameters and an estimate of

the pose are known, the CAD model is first projected into

the image according to that pose, which can be the previous

one or a prediction obtained from a filter (see section V).

The projection of an edge li of the 3D model according to

the pose cMw is denoted by Ei = li(
cMw). Each projected

edge Ei is then sampled, giving a set of points {ei,j} (see

Figure 8). From each sample point ei,j a search is performed

along the edge normal to find strong gradients.

Fig. 5. Example of 3D model.

Fig. 6. Corresponding scene (undistorted).

Fig. 7. Tracking result.

As illustrated in Figure 8, two close edges can lead to

ambiguities when several strong edges are found along the

normal to the contour. In [4] and [5], the point of maximum

likelihood with regard to the initial point ei,j is selected. It

is denoted by e′i,j in the following. An optimization method

is then used to find the camera pose which minimizes the

errors between the selected points and the projected edges

[12], [4] and [5], that is:

ĉMw = argmincMw

∑

i,j

d⊥(Ei, e
′
i,j) (6)

where d⊥(Ei, e
′
i,j) = d⊥(li(

cMw), e
′
i,j) is the squared dis-

tance between the point e′i,j and the projection Ei of the

linear segment li of the model. The quantity to minimize is

then expressed by:

S =
1

Ne

∑

i

∑

j

ρ
(
d⊥(Ei, e

′
i,j

)
) (7)

where Ne is the total number of sampled points, and ρ is a

robust estimator.
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In our approach, we keep several low level hypothesis

{e′i,j,l} corresponding to local extrema of the image gradient

along the edge normal in ei,j . Instead of performing one

single minimization from these points like in [19] resulting

in one single pose, we go from these multiple low level

hypothesis to multiple hypothesis on the camera pose itself.

The next section explains how this is achieved.

Fig. 8. In classic edge based tracking, the model is projected into the image
plane and points are sampled on the projected edges. A search is performed
along the normal (top). When multiple strong edges are close in the image,
ambiguities can occur when searching along the normal (bottom).

B. Segmenting the low level hypothesis into edge hypothesis

In order to get multiple hypothesis on the camera pose

corresponding to the detected low level hypothesis, several

minimizations can be performed, using different sets of

points in (7). Since considering all the possible combinations

of points is obviously not an option, we first determine the

underlying lines of the set of points {e′i,j,l}, to group the

points into different sets corresponding to potential edges

(see Figure 9). This is achieved using a k-mean classification

algorithm [7]. For each projected edge Ei, the algorithm

segments the candidate points {e′i,j,l} into ki sets of points

or classes (ci1, ..., c
i
ki
). The mean of each of the ki classes is

in our case the line which best fits the points of that class,

obtained by a robust least square minimization. The number

ki of classes for the edge Ei is set to the maximum number

of candidate points detected, that is: ki = maxj{ni,j}. The

classes (ci1, ..., c
i
ki
) are initialized using the order in which

the hypothesis have been found on the normal. That is for

each class cim: cim = {e′i,j,m}j . At each iteration of the

algorithm, the mean line of each class is computed. Each

point is then assigned to the class with the nearest mean

line. The algorithm is deemed to have converged when the

assignments no longer change.

Finally, the k-mean algorithm corresponding to the ini-

tial edge Ei provides us with a set of classes cim =
({e′i,j,m}j , rim) where rim is the residue of the least square

minimization, and represents a likelihood criterium that will

be used in the next step. In practice, only lines with a

sufficient number of points are taken into account. In most

cases ki does not exceed two or three. Figure 9 illustrates

this process.

Fig. 9. Classes of points are extracted from low level hypothesis,. For each
projected edge a random weighted draw is performed among the classes to
determine the points that will be used for the minimization process. The
minimization provides a candidate pose.

C. From edge hypothesis to pose hypothesis

Once candidates have been obtained for each edge in

the form of sets of points associated to a residue, random

weighted draws are performed. Weights wim considered for

each candidates are deduced from the residues by:

wim =




e
−λ

(

rim−ri
min

rimax−ri
min

)

2

if rimax 6= rimin

1 otherwise.

(8)

where λ is a parameter that can be tuned according to the

selectivity that is desired.

For each edge Ei a class cipi is drawn from the ki
classes. From the resulting set of points, a numerical non-

linear minimization is performed according to equation (9),

resulting in a camera pose. Different set of points, built from

different draws among the low level detected hypothesis, thus

lead to different potential camera poses.

S =
1

Ne

∑

i

∑

e′
i,j,l

∈cipi

ρ
(
d⊥(Ei, e

′
i,j,l)

)
(9)

The weighted draw allows to favour among all the possible

combinations the ones with the candidates of lowest residue,

which are more likely to correspond to real edges. The

process is illustrated in Figure 9.

In practice, since the number of candidate lines per edge

is small, so will be the number of optimizations to be

performed and thus the number of pose candidates obtained.

In [18] those hypothesis were integrated in a particle filter.

Here, the pose giving the smallest residue is selected as the

current estimate, and sent to the velocity estimator which is

described in the next section.

V. TRANSLATIONAL VELOCITY ESTIMATION

The visual tracking system provides an estimate of the

full 3D pose of the vehicle. However, in order to build a

control scheme, an estimate of the translational velocity is

also required (see Figure 2 and section III).
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To take advantage of the pose estimate from the vision

system and the data from the IMU, an extended Kalman filter

(EKF) is used. The state to estimate is X =
(
p⊤v⊤a⊤

)⊤
where a is the acceleration of the UAV. The proposed

model equations are derived from the translational dynamics

equation in (1) with the following simplifying assumptions:

• the x and y velocities are assumed to be decoupled

• the friction coefficient f is assumed to be constant,

independant of the direction of the motion

• the small angles assumption is made, which is rea-

sonnable in quasi-stationary flight

• T is assumed to be quasi-constant. In indoor applica-

tions, without wind perturbations, the thrust has small

variations which can be ignored in first approximation.

Errors will be compensated by the visual observation.

From equation (1) the following discrete model equations

are derived:

ax
(t+δt) =

T

m
φ(t−τ) − sign(vx)

f

m
vx

2 + nax (10)

ay
(t+δt) =

T

m
θ(t−τ) − sign(vy)

f

m
vy

2 + nay (11)

where τ is a possible time delay. The attitude angles θ and

φ are respectively the pitch and roll angles, obtained from

the IMU. For the vertical translation, a constant acceleration

model has been used:

az
(t+δt) = az

(t) + naz (12)

nax, nay , naz are assumed to be the components of a

white noise na = N (0,Qa). Qa is the covariance matrix

associated with the acceleration model. Then, the position

and velocity are simply deduced by:
{
v(t+δt) = v(t) + a(t+δt)δt

p(t+δt) = p(t) + v(t+δt)δt.
(13)

Note that the constant τ , α = T
m

and β = f
m

have been

learnt, in our case from a genetic algorithm, but could be

derived experimentally from any other estimation technique.

Since the model equations (13) are non-linear, an extended

Kalman filter (EKF) is used. The Jacobian matrix Jx is given

by:

Jx =



I δtI 0

0 I δtI

0 −sign(v)2βva 0


 (14)

The prediction of the covariance matrix of the state P is then

given by:

P(t+δt)|t = JxPt|tJx

T + JnQJn

T (15)

where

Q =



I 0 0

0 I 0

0 0 Qa


 (16)

Jn is the matrix of the derivative of the model equation

relative to the noise components.

The observation is simply the position estimate p̂ given

by the visual tracking system.

Xt+δt =
[
I 0 0

]⊤ [
p̂
]

(17)

VI. EXPERIMENTAL VALIDATION

This section presents the experiments conducted on the

quad-rotor (X4-flyer) developped by the CEA LIST (Figure

3). The UAV sends the images from its embedded camera

to the ground station (PC) via a wireless analogical link of

2.4GHz. In parallel, it also sends inertial data from the IMU

at a frequency of 15Hz. The data is processed on the ground

station and the desired orientation and thrust are sent back to

the quad-rotor vehicle. Onboard, the exponential stability of

the orientation toward the desired one is ensured by a ’high

gain’ controller (in the DSP running at 166Hz) [6]. One of

the difficulties of such systems comes from the time latency

between the inertial and visual data. On the ground station,

the overall system (visual tracking, velocity estimation and

control computation) runs with a framerate of 20Hz. There

is a time delay between the time the image is acquired on

the embedded camera and the time the desired attitude is

computed and reached by the vehicle. This delay is roughly

estimated and used in the prediction of the acceleration

(equation (10)).

A. Velocity estimation

Figure 10 and 11 show the velocity obtained with our

filter (in red) as compared to a simple differentation of the

positions given by the tracking system (in green) and the

velocity obtained with the prediction model alone (in blue).

The differentiation between consecutive frames gives poor

results. The filtered velocity is smoothed with little time lag

thanks to the prediction model.
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Fig. 10. Velocity on x axis.
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Fig. 11. Velocity on y axis.

B. Position control

The proposed approach was validated on positioning tasks.

A scene was built, combining planar and 3D objects (see
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Figure 5). The tracking initialization has not been consid-

ered in this paper. During the experiment, the tracking is

automatically initialized by detecting a black dot in its first

position (Figure 6). Then the vehicle can locate itself thanks

to the model-based tracking, without using the dot anymore.

The task considered was to autonomously reach several set

points successively: first the vehicle is stabilised 2 meters

above the dot target (p = (0, 0,−2)). Then the set points are

successively set to (0,−2,−2), (−2,−2,−2), (0,−2,−2),
(0, 0,−2), (−2, 0,−2). The desired yaw angle is set to 0 all

along the sequence. A video of the quad-rotor performing

this sequence is submitted with this paper.

Figure 12 and 13 show the position error (3) on each axis.

Peaks on x and y axis correspond to the manual change of

the set points. At convergence, the UAV stays within 15cm

of the desired position on x and y axis, and up to 30cm on z

axis. Figure 14 gives the velocity error (4). Small oscillations

on the velocity error are mainly due to latencies.
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Fig. 12. Positioning error on x (red) and y (blue) axis.
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Fig. 13. Positioning error on z axis.
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Fig. 14. Velocity error on x (red) and y (blue) axis.

The small velocities observed confirm that the small angles

hypothesis is satisfied. The aerial vehicle was able to achieve

the task with a satisfactory behavior.

VII. CONCLUSIONS

In this paper, we proposed a model-based tracking suitable

for the position control of a UAV in indoor environment.

A multiple hypothesis tracker provides an estimate of the

relative pose between the vehicle and its environment in real

time. It is also robust to the noise produced by transmission

interferences. By fusing this pose with inertial measurement,

a velocity estimate is obtained, and the position is filtered.

These two estimates allow to perform the position control

of the UAV. Although no ground truth was available in

the experiment to evaluate the precision of the position and

velocity estimates, which we plan to do next, the experiment

shows the feasibility of the proposed approach in indoor

structured environments.
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