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Abstract—At the heart of multi-robot task allocation lies the
ability to compare multiple options in order to select the best. In
some domains this utility evaluation is not straightforward, for
example due to complex and unmodeled underlying dynamics
or an adversary in the environment. Explicitly modeling these
extrinsic influences well enough so that they can be accounted
for in utility computation (and thus task allocation) may be
intractable, but a human expert may be able to quickly gain
some intuition about the form of the desired solution.

We propose to harness the expert’s intuition by applying
imitation learning to the multi-robot task allocation domain.
Using a market-based method, we steer the allocation process by
biasing prices in the market according to a policy which we learn
using a set of demonstrated allocations (the expert’s solutions
to a number of domain instances). We present results in two
distinct domains: a disaster response scenario where a team of
agents must put out fires that are spreading between buildings,
and an adversarial game in which teams must make complex
strategic decisions to score more points than their opponents.

I. INTRODUCTION

The goal of any multi-robot task allocation mechanism is

to maximize utility, an essential and unifying concept which

represents an estimate of the system performance [1]. For

example, a team of robots exploring an unknown environment

may wish to maximize the area observed while minimizing

costs for traveling [2], or a team of searchers may want to

maximize the likelihood of finding an evader while minimiz-

ing the time-to-capture [3]. In domains such as these, the

utility metric is simple to express, and can easily be derived

from the high-level goals.

In some domains, however, evaluating utility is not as

straightforward. There may exist rich underlying dynamics

or an adversary team in the domain that is not fully modeled.

Although forming a complete and explicit understanding of

the world may be intractable or impossible, a human observer

may have some previous experience or be able to quickly

gain some intuitive understanding from observing the envi-

ronment. Though this knowledge may be hard to articulate

into an explicit algorithm, policy, or utility mapping, the

expert will generally be able to recognize a good solution.

Although this domain expert may have an end-result

behavior in mind when allocating tasks, developing a hand-

tuned utility mapping to produce it is a tedious and sometimes

difficult process involving many iterations of policy tweaking

and testing [4]. As the number of “knobs” to tune grows

with increasing domain complexity more and more potential

policies must be validated, and this approach quickly grows

intractable.

To address this problem, we apply imitation learning to the

problem of multi-robot task allocation. We generalize from a

set of expert demonstrations to learn a utility mapping which

biases the allocation process and yields the demonstrated

allocations. Our approach is based on Maximum Margin

Planning (MMP), a popular imitation learning framework

which has successfully been used to learn utility mappings

in other domains such as overhead imagery interpretation,

footstep prediction, and 3D point cloud classification [4], [5].

Imitation learning provides an intuitive method for specifying

a task allocation policy, and is much more efficient than

manually crafting a utility function.

In our approach, we have chosen to use a market-based

task allocation mechanism. Though any allocation method

can be used, markets have been shown to be fast, scalable,

and yield solutions that are close to optimal [6]. Based

on empirical evidence, markets converge quickly to locally

optimal solutions for even complex problems [7]. A market-

based task allocation mechanism is ideally suited for our

imitation learning approach because prices represent the

system utility very compactly, and can easily be biased by

the auctioneer through the introduction of incentives for task

completion that are independent of the task’s true reward.

We demonstrate our approach in two distinct simulated

domains: a disaster response scenario and an adversarial

strategic game. In the disaster response scenario, the ex-

pert’s intuition about the underlying fire dynamics given

the surrounding layout of buildings may be hard to artic-

ulate algorithmically, but the expert can quickly and easily

demonstrate their response to a particular disaster. In the

adversarial strategic game, the expert is able to learn (through

repeated games) a strategy which can effectively counter the

opponent’s. Harnessing the expert’s experience, we observe

them playing the game to collect training examples. In

both domains we show that imitation learning can be used

to generalize from expert demonstrations to learn a utility

mapping for a complex task allocation domain.

We begin by reviewing related work in both task allocation

and imitation learning (Section II). We introduce Maximum

Margin Planning and market-based task allocation in Sec-

tions III and IV, and illustrate how both are used together

to imitate an expert’s task allocations by biasing prices in

the market. We illustrate experimental results from both
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Fig. 1. Intuitive visualization of one iteration of the Max Margin subgradient update step for task allocation described in Section III. Starting with
some demonstrated and computed task allocations (1a), the reward (in feature space) is then decreased for the computed allocation and increased for the
demonstrated allocation (1b). This process iterates until convergence (1c).

domains (Section V) and provide an analysis (Section VI),

then conclude and discuss potential future directions for this

work (Section VII).

II. RELATED WORK

Learning is playing an increasingly important role as

robotic systems become more complex. Within this large

body of work, techniques that utilize imitation learning (also

known as learning from demonstration) are of particular

interest, as they benefit from the presence of an expert who

can provide examples of the optimal (or desired) behavior [8].

For example, imitation learning has been used to develop an

autonomous driving vehicle [9], improve overhead imagery

interpretation [4], and develop helicopter controllers [10].

Market-based task allocation is also a well-studied mecha-

nism that is used in many applications including mapping [2]

and cooperative manipulation [11]. Though this approach

has been used successfully to tightly coordinate robots in

complex scenarios, the utility function the team is optimizing

has so far been fairly straightforward to express and can be

derived directly from the domain goals. For example, Kalra

et al. use Hoplites (a market-based framework) to tightly

coordinate robots in a security sweep domain, where the

goal is to sweep through an environment while detecting

any evaders [12]. Accordingly, they use the market to reward

agents for sweeping parts of the environment, and assess large

penalties for violating perimeter connectivity constraints.

Learning has been applied to markets to influence trad-

ing. In an oversubscribed disaster-response scenario, Jones

et al. enhance task allocation by modifying agent bids to

better predict task penalties assessed for failing to complete

tasks [13]. In their approach, learning was used to model

the underlying causes for disparities between expected and

actual rewards the agents receive, something which would

be hard to explicitly model a priori. After collecting a large

number of example allocations and their associated penalties,

they use regression to improve future bidding by creating a

model for the task’s actual value given the agent’s current

schedule and other task features. Similarly, Schneider et al.

learn (online) the opportunity cost for taking on tasks in a

market-based multi-robot scenario [14].

Though these approaches have successfully applied super-

vised and reinforcement learning techniques to task alloca-

tion, we believe there are many applications where imitation

learning is a superior approach for several reasons:

• Imitation learning explicitly utilizes an expert’s knowl-

edge. This expert may bring a deep and complex under-

standing of the domain, which can lead to better system

performancemuch faster than if the system trained itself.

• The time and resources required to learn using rein-

forcement learning may not be acceptable in some real-

world scenarios, where there is no training phase and

poor performance is not acceptable at any time.

• Some domains (such as disaster response) may not

easily provide labeled examples, whereas an expert can

easily demonstrate their response to any hypothetical

scenario (the final outcome being unnecessary to train

using imitation learning).

• An expert who is monitoring the system can detect

changing conditions before a decrease in the total ob-

jective or utility, and therefore may be able to re-train

the system before performance is greatly impacted.

We use the term expert loosely: in many cases a few rounds

of experience is enough for a human player to gather enough

information to create a rough internal model of the underlying

dynamics or adversary, and this intuition can be used to train

the system.

III. MAXIMUM MARGIN PLANNING

Maximum Margin Planning is an imitation learning frame-

work for structured prediction over the space of policies [4].

We denote by µ a particular set of allocations from the space

of possible allocations G. We can extract a feature vector

f ∈ R
d for each possible task allocation and accumulate

these features in a matrix F (the product Fµ represents the

accumulation of features encountered by following the policy

µ [4]). Each training example i consists of a set of tasks,

agents, and the expert allocation µi ∈ Gi. Each example also

includes a loss field li, so that l
T
i µ quantifies how bad a policy

µ is compared to the demonstrated policy µi. Written more

concisely, our training data set is D = {(Fi,Gi, µi, li)}
N
i .
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Our goal then is to learn a set of weights w so that each

demonstrated allocation is better than every other possible

allocation for the same scenario:

wTFiµi ≥ wTFiµ+ lTi µ ∀i, µ ∈ Gi (1)

The loss field li in this inequality requires that the demon-

strated allocation be better than every other allocation by

some margin during training (similar to support vector ma-

chines), and improves testing performance [4].

If the constraint (1) holds for all allocations in Gi it must

hold for the best allocation [15], thus the only constraint we

need to consider is the tightest one, corresponding to:

µ∗
i = argmax

µ∈Gi

[(

wTFi + lTi
)

µ
]

(2)

which allows us to rewrite the constraints from equation (1)

as

wTFiµi ≥ max
µ∈Gi

[

wTFiµ+ lTi µ
]

∀i (3)

This presents us with the following quadratic program [4]:

min
w,ξi∈R+

λ
2
‖w‖2 + 1

N

N
∑

i=1

ξi

s.t. wTFiµi + ξi ≥ max
µ∈Gi

[

wTFiµ+ lTi µ
]

∀i
(4)

where ξi are slack terms and λ is a regularization constant.

While solving this quadratic program is difficult, we note

that at the optimum, the slack variables will exactly equal

the constraint violation [16], and they can thus be substituted

into the objective function:

c(w) =
λ

2
‖w‖2+

1

N

N
∑

i=1

(

max
µ∈Gi

[(

wTFi + lTi
)

µ
]

− wTFiµi

)

(5)

Though this objective is convex, it is not differentiable. We

can, however, optimize it efficiently by using the subgradient

method and a fast task allocation solver [4]. The subgradient

of Equation (5) is:

gw = λw +
1

N

N
∑

i=1

(Fiµ
∗
i − Fiµi) = λw +

1

N

N
∑

i=1

Fi∆
wµi

(6)

where µ∗
i = argmaxµ∈Gi

[(

wTFi + lTi
)

µ
]

is the solution to

the loss-augmented problem, and ∆wµi = µ∗
i −µi computes

the difference in feature accumulations between the computed

and demonstrated allocations (under the current policy w).

Our subgradient update rule then becomes:

wt+1 = wt − αgw (7)

for a learning rate α. Intuitively, this gradient update rule

increases the reward (in feature space) on the demonstrated

allocation (µi) and decreases the reward (again in feature

space) on the chosen allocation (µ∗
i ). Note that when the

demonstrated and computed allocations match, ∆wµi is zero.

A simplified visualization of the Max Margin update step for

task allocation is shown in Figure 1.

IV. MARKET BASED TASK ALLOCATION

The market-based approach for task allocation models

robots as self-interested agents and the team of robots as an

economy [17]. Each robot estimates their fitness for a task

and encodes this utility in a price which can be understood

by all other agents on the team. Since all revenue is generated

from accomplishing team-wide goals, maximizing an agent’s

individual profit yields better overall team performance [6].

Furthermore, since agents and the auctioneers only reason

about (and transmit) price information, task allocation is

decentralized, fast, and robust, making it ideally suited for

allocating tasks in dynamic environments.

A. MMP and Market Based Task Allocation

In order to steer the task allocation mechanism towards the

demonstrated allocations, we introduce a bias term into bids,

so that the profit used for bidding is now [13]:

profit = reward− cost + bias. (8)

This biasing term uses the learned feature weighting vector

w (see Section III):

biask = wT fk (9)

for features fk associated with task k. Note that we are not

restricted to use a linear combination of the features [4].

V. EXPERIMENTAL RESULTS

We performed imitation learning on task allocations from

two differing domains: a disaster response scenario in which

the goal is to minimize the total damage to all buildings

after a disaster event occurs, and an adversarial strategic

game where the goal is to maximize points scored while

minimizing the adversary’s score. Both are difficult domains

for task allocation, exhibiting complex unmodeled elements,

and require a considerable amount of reasoning to make an

informed allocation.

A. Disaster Response

The disaster response scenario models a world immediately

following a disaster. A number of buildings of different sizes

exist in a simulated world which is affected by a disaster

event, igniting a number of them. Fires spread between

buildings and fires may randomly appear (caused by the

disaster’s aftershocks). A team of responders attends to the

fires, attempting to minimize damage to the buildings. We

note that the team is oversubscribed, as there are many more

tasks than agents available, and thus allocations must be

made carefully. Although the agents know which buildings

are currently on fire, they do not know which buildings

are most likely to combust in the future. Determining these

fire dynamics would involve reasoning about the distribution

of buildings (buildings are more likely to combust if they

are closer to fires) and their past (fires spread more the

longer they burn). However, an expert may already have some

understanding of the fire dynamics and an intuition for the

best response. For example, traveling to a small fire which is

near a large cluster of unaffected buildings may be preferable

to traveling to a building which may be closer but is isolated.
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Fig. 2. Simple example showing the default (left) vs. learned (right)
strategies. Under the learned policy, the leftmost agent travels further to
reach a cluster of tasks, preventing fire spread. The rightmost agent goes for
a distant building instead of a closer building which is almost burned down.

Fig. 3. A randomly generated world for head-to-head testing with three
agents (red circles) and 18 buildings (solid white squares).

1) Demonstrations: The demonstrations are hand-picked

examples of common scenarios encountered during alloca-

tion. They are identified or created by the expert as exhibiting

a qualitatively good allocation strategy. The system in this

domain was trained using six examples, each consisting of

an instance of tasks, agents, and allocations for the team.

2) Task Features: Each task in the environment has a set

of features that encapsulates discriminative information about

each individual task and its relation to other tasks in the

world. We list below the features that are computed per task

(omitting normalizing information):

• Fire: Whether a building is on fire or not.

• Size: Building size.

• Health: Current building health.

• Closest Task Neighbor: Proximity to next-closest task.

• Closest Agent Neighbor: Proximity to closest agent.

• Blurred building sizes: A Gaussian blurring representing

the density of buildings in the neighborhood.

• Blurred building health: The same density measure as

above, but with each building weighted by its current

health.

• Constant: Constant term (1.0).

The first features depend only on the current state of

each individual building. The distance to the closest neighbor

Fig. 4. Strategic domain before the game begins. Three passageways have
Offensive and Defensive agents from the red team allocated to each. The
opposite (blue) team’s allocation is hidden until after the game begins.

feature provides a biasing for tasks which are closer to other

buildings. The Gaussian features are a “smoothed” map of

the building sizes (weighted by the health for blurred building

health). The features listed here were chosen for their saliency

and ability to encode the information an expert might use to

make allocation decisions.

3) Results: A side-by-side comparison of the default and

learned policies applied to a sample environment is shown

in Figure 2. The default policy does not bias tasks during

allocation (and thus attends to the closest fire). The expert’s

strategy of attending to tasks in clusters is evident under the

learned policy.

We also evaluated the learned policy on a random instance

of the disaster domain with three agents and 18 buildings

(show in in Figure 3). One hundred trials were run for 500

time steps each, with a different random initialization of

the starting fires for each trial. We established a metric of

percentage of total building value remaining (sum over all

buildings of size × health).

For a baseline comparison in our evaluation, we ran each

trial twice: once with the learned policy and once with

the default policy. In the head-to-head trials, the learned

policy outperformed the default policy in 63 of 100 tests.

Histograms of the remaining building value at the end of the

trials are shown in Figure 5. The mean value for the learned

policy was higher overall (64% compared to 53%), and this

policy produced a much larger proportion of instances where

more than half of the starting health remained.

B. Adversarial Strategic Game

The adversarial domain has two teams playing against (and

reasoning about) each other in a zero-sum game. Both teams

have an equal number of agents starting in their respective

bases, and each team’s goal is to maximize the number of

agents that reach the opposite base while minimizing the

number of adversary agents reaching their base. A number

of passageways (or bridges) connect the two teams, and

before the game begins the teams must allocate their agents

to a single passageway either as offense or defense (these
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Fig. 5. Comparative results in the disaster response scenario between the learned policy and a default policy over 100 trials (p = 5× 10
−6).

become their strategic task allocations). The only difference

between the different passages is that each has a different

“strategic advantage” associated to them, a value which

indicates how likely the offense (or defense) is to win a one-

on-one matchup.

Neither team is aware of the other’s allocations as they

allocate agents, and the game begins after both teams com-

plete their allocations. The outcome of all matchups (one

team’s offense vs. the other team’s defense) is decided using

a stochastic process which favors the offense (or defense)

proportionally to its strategic advantage value (with a slight

defensive bias). This process repeats itself for each passage-

way until there are no remaining agents on one team. The

remaining offensive agents from all teams advance and score

one point each, whereas the remaining defensive agents score

no points. After the game is played out the allocations of

both teams are revealed as well as their final score in the

game (points scored minus points scored on). This short

game can be played many times with a different number of

passageways and strategic advantage distributions.

Obviously, each team’s allocation strategy strongly impacts

their eventual score. A team can choose to be more defensive

and risk scoring fewer points, while allowing a smaller

number of points to be scored on them. Similarly, a team may

choose to allocate more agents to defend a passage where the

offensive advantage is high, or they can instead re-allocate

their agents to offense if they believe no opponents will be

allocated to that task.

Through repeated games, a human player can learn an

intuitive opponent model and hence develop a strategy they

use to play the game. This strategy may be a combination

of many complex factors and can be hard to explicitly

articulate, much less code into an algorithm or allocation

policy. However, we can use imitation learning to generalize

a policy from the allocations the expert makes.

1) Demonstrations: The demonstrations used in this do-

main are much denser than those used in the disaster response

scenario. They are extracted from recording the player’s

allocations during game play (after a training period where

they can learn about the opponent). We record how many

agents were assigned to each task as offense and defense,

but since our goal is to match the expert’s strategy and

not necessarily maximize the score (which is dependent on

stochastic elements), we do not record the outcome of the

games.

2) Task Features: Because the space of allocation policies

in the strategic domain is much larger, we require more

features to express the full range of potential policies. We

use 20 features, based on the properties of each strategic task

as well as its relation to the other tasks in the game (ex: the

strategic advantage and its relationship to the advantages of

all tasks). We also consider the current allocation properties

(such as the mean and variance of the number of allocated

agents per task, and the percentage of offensive and defensive

agents). Allocations are made sequentially and task features

are computed before each auction, so initial agent allocations

have an effect on future allocations.

3) Results: To evaluate the strategic domain we generated

two strategies the adversary could pick from: a “blitz”

strategy and a “sneak” strategy. The blitz strategy allocates

all agents to be on offense for the single task with the

highest offensive advantage, trying to maximize the number

of agents that reach the opposite base. The sneak strategy

takes a different approach: it attempts to spread out its agents

on tasks with lower strategic advantages (still allocating

all agents on offense). Our objective is to use imitation

learning to learn policies which can effectively counter both

of these by maximizing the score. For these trials, each game

was an instance of three passageways with random strategic

advantages and two teams with 8 agents each; the maximum

and minimum scores possible are thus +8 and -8 respectively.

We allowed the expert about a dozen games to learn

about the opponent’s strategy by playing the game man-

ually. We then recorded the expert’s allocations to use as

training examples. For each opponent policy, we recorded

16 demonstrations against that adversary and ran MMP for

500 iterations. Using these learned policies, we ran 200

trials against their respective opponents. Table I summarizes
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TABLE I
STRATEGIC GAME RESULTS AGAINST TWO OPPONENTS

Opponent Counter-strategy Mean score
Proportion of

games won

Sneak

Best tuned 0.485 .46

Learned 1.295 .53

Expert 1.389 .58

Blitz

Best tuned 0.455 .44

Learned 0.615 .53

Expert 0.631 .53

the results of the learned policies compared against the

hand-tuned strategies (which were generated manually) and

the expert human player. We successfully learned counter-

strategies for the blitz and sneak adversaries that increased

the mean score and proportion of games won. The sneak

opponent was easier to counter (as the agents were easier

to defend against), but both learned strategies were a drastic

improvement over the engineered (hand-tuned) strategies and

approached the expert’s level of performance.

VI. ANALYSIS

These results show that imitation learning can be used

in task allocation domains that contain complex unmodeled

elements. The expert in the disaster response scenario was

able to impart an overall team strategy by picking demon-

strations which they considered to be best responses given

their knowledge and experience of the fire dynamics. This

did not require the expert to explicitly write down a policy or

hand-tune a complicated reward function. After a policy was

learned, head-to-head trials showed that this learned policy

was more successful at retaining overall building value.

In the strategic domain, the human player was able to learn

about the opponent’s strategy in a few trials and counter it by

adjusting their allocation policy. A number of demonstrations

were then recorded from this counter-strategy, and a policy

was learned which proved to be effective against the same

opponent.

Using imitation learning (as opposed to reinforcement

learning) allows us to explicitly make use of the expert’s

experience and knowledge about the domain and learn a

policy without an extended exploration phase (in which

performance may be arbitrarily bad) or requiring extensive

time or computational resources.

VII. CONCLUSIONS AND FUTURE WORK

We have successfully applied imitation learning to the

problem of allocating tasks in a complex multi-robot setting.

Informally, it learns a task utility function which biases prices

in the market to make the demonstrated allocations optimal.

Imitation learning provides an intuitive way to utilize the

expert’s knowledge about the environment, while requiring

only a small set of demonstrations and no manual tuning of

high-dimensional reward functions.

Using imitation learning can enable us to influence the

task allocation process in other ways than improving the

performance of the team. When many solutions exist that are

equally-valid, we can use imitation learning to impart a high-

level strategy to the team, in effect performing preference

elicitation. Future work will focus on this preference elicita-

tion as well as field trials involving human-robot teams, as an

economy is not straightforwardly defined when robot costs

and human preferences mix. We will furthermore extend the

disaster response scenario to study wildland fire response.
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