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Abstract— A generic methodology to plan increasingly stable
paths for mobile platforms travelling over uneven terrain is
proposed in this paper. This is accomplished by extending
the Fast Marching level-set method of propagating interfaces
in 3D lattices with an analytical kyno-dynamic metric which
embodies robot stability in the given terrain. This is particularly
relevant for reconfigurable platforms which significantly modify
their mass distribution through posture adaptation, such as
robots equipped with manipulator arms or varying traction
arrangements. Results obtained from applying the proposed
strategy in a mobile rescue robot operating on simulated and
real terrain data illustrate the validity of the proposed strategy.

I. INTRODUCTION AND MOTIVATION

One of the many application domains where mobile robots

are deployed is on environments which are inaccessible or

considered too dangerous for humans to operate in, such

as those frequently encountered by planetary exploration

rovers, mining or search and rescue robots whose navigation

does not generally occur over well-known, flat, homogeneous

terrains. On the contrary, platforms have to deal with rough,

uneven surfaces and many uncertainties, and these character-

istics have a strong influence on the robot’s ability to perform

as planned. For the specific case of reconfigurable robots op-

erating under these conditions, their kinematic configuration

also plays a crucial factor in the interaction between vehicle

and terrain, and having the ability to actively assume safer

poses that reduce potential instabilities, such as those leading

to vehicle tip-over, is a desirable feature. Various stability

criterions have been proposed in the literature to analyse the

qualitative performance of robot stability, mostly with the

aim of real-time short-term tip-over monitoring, prediction

and prevention, or off-line trajectory optimisation. In this

study, a stability measure is also employed to provide a

reliable measure for the stability about each tip-over axis of

the robot. However, based on this analysis, a novel variational

formulation of the classical Fast Marching Method is pro-

posed to enhance the safe traversability of the resulting path

over irregular terrain. The proposed algorithm thus combines

the remarkable computational properties of the wavefront

propagation proposed by the Fast Marching method, with

the non-Euclidean metrics derived from the vehicle stability

constraints, to extract traversable stable paths for the given

three-dimensional environment.
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Fig. 1: The iRobot PackBot robot with sensor payload unit,

in a mock-up Urban Search And Rescue (USAR) test arena.

In this work, the proposed planning strategy is illustrated

with the quasi-static model of the multi-tracked iRobot

PackBot platform, mounted with an arm and a pan and tilt

sensor-head unit, as depicted in Figure 1.

II. LEVEL SET METHODS FOR PATH PLANNING

The Fast Marching Method (FMM) [1] is an efficient

numerical method for solving boundary value partial differ-

ential equations in the general context of level set methods

for propagating interfaces. The FMM gives the evolution

of a continuous front wave in an inhomogeneous medium,

whose travel-time is governed by an (approximate) solution

to a well-understood non-linear continuous mathematical

formula known as the Eikonal equation. The minimal length

properties of the resulting geodesic paths have a wide

range of applications, including problems in fluid mechanics,

combustion, computer animation, image processing, or the

structure of snowflakes to name a few.

The extraction of shortest paths has been extensively

surveyed in the literature, and it is not the objective of

this paper. However, some background is hereby provided,

which is by no means comprehensive but for the benefit of

contextualising the FMM. Probably the canonical method for

computing shortest paths on graphs or discretised settings is

Dijkstra’s algorithm [2]. To speed up the computations, some

heuristics have been proposed that reduced the search space,

and the A* algorithm is extensively used [3], particularly

when a path from a given start point to a known goal

needs to be calculated in real-time. However, it should be

noted that A* requires different searches for each pair of

start and goal points. Other tree-search strategies, such as

IDA* [4], have also been proposed. For the case of Euclidean

metrics, the exploitation of specific data structures have also

given rise to faster algorithms, such as visibility graphs [5].
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Despite saving in processing time, in general terms a notable

constraint of these discrete-computation methods is the need

of “smoothing” operators to produce realistic paths, as the

solutions need to follow existing gridding connections. It is

clear that the breadth-first nature of the FMM search has

an undeniable weakness in the computing overhead when

compared with other methods. In contrast, it also exhibits a

number of strengths which make it rather attractive to extract

geodesics, particularly for three-dimensional data sets : it can

be used with non-Euclidean (and continuous) metrics, it can

find geodesic paths that follow arbitrary directions, and it is

guaranteed to find the optimal paths to each and every one

of the units defining the search space, a particularly precious

resource in active exploration.

Alternatives to save processing time by heuristically re-

stricting the FMM front propagation between a given pair of

points have also been proposed [6].

A. The Fast Marching Method (FMM)

The following is a brief description of the FMM. For a

detailed description, the reader is referred to [1]. The FMM

has been typically applied in problems which deal with

evolving fronts, such as seismology. The analogy with seis-

mic theory is rather effective to understand the fundamentals

of the FMM [7]. Topographic terrains provide information

about elevation of the surface above sea level by contour

lines. Each point on a contour line has the same elevation,

so a contour line represents an equipotential curve. A set

of contour lines tells the trained interpreter the shape of

the terrain: hills are represented by concentric loops, stream

valleys by vees, steep slopes have closely spaced contour

lines, gentle slopes have widely spaced contour lines. The

contour interval is the elevation difference between adjacent

contour lines. In seismic theory, the travel-time distance

surface T (x) is a function of the spatial terrain coordinates

that is analogous to the potential, whereas its contour curve

represents the propagating wavefronts. The gradient vector

is perpendicular to the contour curve, and its magnitude

indicates the steepness of the slope. The geodesic curve r(t)
traced out by the seismic energy vector moves in such a

manner that its direction at any point coincides with the

direction of the gradient at that point. The FMM makes use of

the fact that this motion relationship satisfies the non-linear

Eikonal equation, which in scalar form is given by:

‖ ∇T (x) ‖= s(x) (1)

where the left side implies the wavefront of the potential,

and the right side the reciprocal of the seismic velocity, or

slowness, a weighting factor dictated by the given terrain.

Hence, given s(x), the weighted geodesic distance be-

tween two points x0, x1 ∈ R
d can be defined as

d(x0, x1) = min
r

(

∫ 1

0

‖ r(t) ‖ s(r(t)) dt) (2)

where r(0) = x0 and r(1) = x1. It is worth noting that

when s = 1, the integral in (2) corresponds to the length

Fig. 2: Shortest FMM path on a 2D scenario, path cost

depicted as colour gradient wave from blue to red.

of the curve r(t) and therefore d is the classical Euclidean

distance.

The key feature behind the FMM is a careful selection of

the grid points when evaluating the travel time. This order

is based on the causality relationship, which states that the

arrival time t at any point depends only on the neighbours

that have smaller values. During the evolution of the front,

each grid point x is assigned one of the three possible tags:

1) Known: the computed travel time at x will not be

changed later.

2) Narrow-Band (or trial set): the computed travel time

at x may be changed later.

3) Far-Away: the travel time at x is not yet computed and

initially set with infinitely large values.

The procedure to update T (x) for a given point xi is

based on the upwind first-order approximation to solve (1),

a quadratic equation given by:

∑

j

=

(

T (xi) − T (xj)

∆xij

)2

= s2(xi) (3)

where j is the (variable) number of neighbouring points

and ∆xij the grid size in the ij direction (depends on the

dimensionality of the problem).

In simple terms, all initial points (one in case of the

front emanating from a single point, some other arbitrary

shape otherwise) are tagged as Known. Then, their nearest

neighbours are tagged as Narrow-Band after computing

their arrival time by solving (3) and the fact that a grid’s

point arrival time gets updated by neighbouring points with

smaller travel-times only. This monotonicity property allows

for the maintenance of a small Narrow-Band of candidate

points around the front representing its outward motion.

Arrangement of the elements of Narrow-Band in a heap is

often used in the implementations to efficiently track multiple

propagating fronts emanating from different points in the

domain.

As a result of the updating, either a Far-Away point is

marked as Narrow-Band, or a Narrow-Band is assigned a

new value. When all points have been visited (and unlike

other front propagation algorithms each grid point is visited

only once [8]), the geodesic curve can then be computed by
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the back-propagation of the steepest gradient descent. Note

that this is a local computation, and only uses the value of

T (x) for a small fraction of the visited grid points, all located

within the Known set at the end of the front propagation

procedure. An example of the evolution of the FMM on a

2D environment with walls and empty rooms is depicted in

Figure 2. It can be observed how the resulting path is not

necessarily the safest but the shortest one.

III. STABILITY METRIC

There have been a number of propositions to address

the issue of stability in mobile robots. Some research has

focused on the analysis of the robot’s Centre of Gravity

(CoG) to find suitable controls to cope with specific scenarios

like overcoming obstacles and small ditches [9] or climbing

stairs [10]. A multi tracked robot on a steep slope was exam-

ined in [11] to determine boundaries for the CoG and came

up with a strategy to traverse a given slope. A stability margin

measure was introduced by Papadopoulos and Rey [12] to

estimate the predicted time until tip-over for large mobile

manipulator robots, such as forestry vehicles. They also

recommended stabilising steps by using certain actuators.

Stability indices have understandably played a decisive role

in the history of walking robots, and a number of measures

have been proposed in the literature (e.g., the Static Stability

Margin [13] or the Energy Stability Margin [14]). More

general approaches for the stability control of reconfigurable

mobile robots have also taken into account other constraints

such as traction optimisation [15], [16]. In both works,

the original Force-Angle Stability Margin (FASM) [12]

was used. While that proved sufficient for platforms with

relatively high and not significantly changing CoG’s, it

was nevertheless not a representative measure of stability

for many other robot configurations, such as those more

strongly subjected to external forces and moments. A revised

version to the original FASM was subsequently proposed

by Papadopoulos and Rey to allow for dynamical changes

in the robot configuration [17]. It also constitutes a more

suitable stability measure for mobile robots/manipulators as

it exhibits a more simplistic geometric interpretation and thus

could be more easily computed. It is for this reason that this

is the metric employed in this work. As the metric was in-

troduced in two different versions, these are briefly reviewed

in the next Section to better understand the influence of the

CoG’s height for platforms that can significantly reposition

their centre of mass to improve stability in uneven terrains.

A. The Force-Angle Stability Margin (FASM)

The FASM measure β was first proposed in 1996 [12] as

β = min(θi‖fi‖) (4)

where fi is the net force (including all static and dynamic

forces, as well as moments) contributing to a potential roll-

over about a particular tip-over axis ai. The tip-over axes ai

are given as the lines between m arbitrary supporting points

pi, i = {1, ..,m}

ai = pi+1 − pi, i = {1, ..,m − 1} (5)
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Fig. 3: Example FASM in 2D.

am = p1 − pm (6)

θi is the angle between fi and the tip-over axis normal

through the tip-over axis and the CoG. Figure 3 illustrates

these parameters in a two dimensional example, where a1

and a3 are perpendicular to the paper representing the tip-

over axes through p1/p2 and p3/p4 respectively.

The revised version of FASM was published in 2000 [17]

and besides fi and θi also included di, the distance between

ai and fi as

β = min(θi ‖di‖ ‖fi‖) (7)

This enables the metric to become sensitive to varying

heights of the CoG. The greater the value of the stability

measure βi, the more stable the vehicle becomes in terms

of tipping over about the given axis. Negative values of the

measure indicate an occurring tip-over instability.

The tip-over axis normal li that intersects the CoG is given

by

li = (I − âiâ
T

i )(pi+1 − pCoG) (8)

where âi is the normalised vector of ai, pCoG is the position

of the CoG and I is the 3 × 3 identity matrix.

Given fr, the net force acting on the CoG which includes

gravitational, external and inertial forces, and nr, the net

moment encompassing all external and inertial moments

about the CoG axis, the effective net force fi that contributes

to a potential tip-over about one specific axis ai can be

determined by

fi = (I − âiâ
T

i )fr +
l̂i × ((âiâ

T

i
)nr)

‖li‖
(9)

The first term considers the part of the net force perpen-

dicular to the tip-over axis. The second term considers the

moment that participates about the tip-over axis, converted

into an equivalent force couple, where one member of the

couple passes through the CoG and thus can be added to

the net force, whereas the other member passes through the

tip-over axis and hence does not contribute to fi.

The angle θi for each tip-over axis can then be computed

by

θi = σi cos−1(f̂îli) (10)
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(a) Flippers up contact points.
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(b) Flippers down contact points.

Fig. 4: Surfaces defined by the contact points used to calculate the robot Centre of Gravity.

where

σi =

{

+1 (f̂i × l̂i)âi > 0
−1 otherwise

(11)

The revised FASM also requires the shortest distance di

between ai and fi, which can be obtained by adding the

projection of li on fi to negative li, i.e.

di = −li + (lTi f̂i) f̂i (12)

For more details on these derivations, the reader is referred

to [17].

B. Normalisation

The stability measure for a given configuration is nor-

malised over the weakest tip-over axis in the most stable

“home” robot pose (flat on the horizontal floor, with arm and

flippers folded for the PackBot). Normalisation facilitates the

general interpretation of the stability measure independently

of the vehicle type, and permits meaningful comparisons

based on the stability measures, for different vehicles or for

different terrains, an important factor in this work.

IV. ROBOT MODEL

The PackBot robot depicted in Figure 1 was the platform

employed to validate the practical aspects of this research. It

consists of a skid-steer vehicle base, equipped with two front

flippers that enable the robot to traverse obstacles and rough

terrain. A manipulator arm attaches to the vehicle base via a

1 Degree of Freedom (DoF) shoulder joint. It carries a 2-DoF

pan-and-tilt unit equipped with several cameras and lights.

An additional sensor head unit is also mounted on top of the

arm head to enhance the search and rescue capabilities of the

robot in its navigational and victim identification activities. It

incorporates a laser scanner, a 3D time-of-flight camera and

a thermal camera. The robot is battery powered and features

two battery compartments on its left and right hand side.

Communication with the operator control unit is wireless.

A modelling of the robot serves as the foundation for the

application of the FASM. As expressed in (9), this is captured

via the computation of the CoG based on the robot posture

and the consideration of the dynamic effects that arise during

robot motion. The CoG obtained in the robot frame is given

by:

RCoG =

∑n

i=1
pmimi

mtot

(13)

where pmi is the position of the lumped mass mi and mtot

is the total robot mass.

The influence of head panning and tilting on the robot’s

CoG is very small in comparison to the effects that arise from

the position of the arm and flippers, and have therefore been

neglected here. Thus, the arm and the flipper poses are the

key reconfigurable DoFs considered. While the formulation

allows for full dynamic effects to be readily incorporated, as

the rover is operated at very low speeds in Search and Rescue

operations only results with static forces are presented in this

work.

The contact footprint between the platform and the surface

is defined by four points. They are assumed to be lengthwise

symmetrical, depicting two possible convex quadrilateral

contact surfaces as shown in Figure 4. Two contact points

are always fixed at the robot base rear sprocket. As flip-

pers operate simultaneously on the PackBot, the other two

contacts are chosen based on the flipper pose. When the

flippers touch the ground, the front contact is at the flipper’s

front sprockets, defining an isosceles trapezoid as depicted in

Figure 4b. When the flippers do not interact with the terrain,

the front contact is assumed to be at the robot base front

sprockets, thus describing a rectangular area, as shown in

Figure 4a. The connecting lines between the ground contacts

represent the tip-over axes ai, i = {1, .., 4}.

V. THE STABLE FMM ALGORITHM FOR PLANNING IN

3D LATTICES

Incorporating the computations for the stability of the

robot into the FMM path planning framework constitutes

the main proposition of this paper. By encouraging the robot

to move along paths of higher stability instead of arbitrary

metrics, as those illustrated in Figure 5, the planning stage

is shifted towards finding paths that quantitatively aim to

guarantee the stability of the robot for a given terrain.

This has been accomplished by merging the stability

margins into the FMM potentials through the environmental
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(a) FFM shortest path. (b) FFM with vertical penalty.

Fig. 5: FMM paths (in yellow) on the same 3D real scenario

with two potentials: shortest topographical path on the left,

and with an arbitrary vertical displacement penalty.

slowness factor s(x) in (1). The steps are as follows: the set

of data points that represent the terrain to be traversed by the

robot is first tessellated using Delaunay triangulation (see,

for example, Figure 6a). Among other possible triangulation

alternatives, Delaunay is preferred for mesh generation as

it maximises the minimum triangulation angles. In practice,

this means that no data points are contained in the circles

circumscribing each triangle. It is assumed in this work that

each planar tessellate is sufficiently large to span the robot

contact points with the terrain. Having obtained the slope for

each surface in the mesh, the elevation and bank angles of the

robot at an arbitrary number of possible orientations within

can be calculated for the entire environment, and fed as

required to the FASM. Four orientations have been computed

in the results presented here, although finer orientations are

equally attainable. Since anticipated orientations can not be

computed until the path is generated and the vehicle is

unconstrained to traverse the mesh surface in any orientation,

the number of orientations is an arbitrary decision to coarsely

cover the whole spectrum of vehicle orientations. Many

feasible alternatives are possible, such as for instance a

variable discretization number based on how levelled each

mesh surface is. While some have been tested, they do not

add to the discussion and general results, are have not been

included for brevity.

An example of the resulting environment potential for the

artificial terrain shown in Figure 6a is depicted in Figure 6c,

where colour-coding has been used to visualize in each given

2D lattice the best of the stability margins for the four

robot orientations considered here, or black if the robot is

found to be unstable. Blue equals North, yellow represents

South, green is East and red represents West. This terrain

representation is then employed by the proposed FMM to

propagate the wavefront and find optimally stable paths.

A. Results and Analysis

Two distinctive examples are provided to show the pro-

posed algorithm in operation in challenging and representa-

tive environments. Results depicted in Figure 6 have been

artificially created to better illustrate the advantages of the

proposed metric. A ramp has been added to a walled en-

(a) Shortest geodesic. (b) Most stable geodesic 3D.

(c) Stability map. (d) Most stable geodesic 2D view.

Fig. 6: Example of stable geodesic paths on simulated data.

vironment. It can be seen in Figure 6a how the standard

wavefront propagation would miss the preferred route, as

it is not the shortest path, jeopardising the balance of the

platform over the wall. A specific potential for this terrain

could also be found that would follow the exit ramp, for

instance penalising large discontinuities. However, this is not

necessarily a measure applicable to generic environments.

On the other hand, the proposed methodology is able to

exploit robot reconfigurations along the geodesic path in

a generalised way to confidently derive stable paths, as

depicted in Figure 6b.

The algorithm has also been applied to point cloud data

obtained from the range camera mounted on the Packbot,

deployed in a traditional USAR scenario as the one depicted

in Figure 1. Results representative of those obtained are

collected in Figure 7, where it can be seen how the proposed

planner is able to come up with more stable (if generally

more winding) geodesics than those where no stability is

accounted for. Cost and grid length for each of the token

paths considered are collected in Table I. Potentials have

been normalized with respect to largest value, so that in

both instances a value of 1 is largest (in the case of the

standard FMM this is the equi-potential value used to plan

throughout the entire terrain). While this allows for a more

meaningful comparison of the terms, the real measure of

comparison is the inability of the shortest geodesic to travel

over a terrain that guarantees a stable pose for the platform
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(a) Shortest geodesic. (b) Most stable geodesic.

Fig. 7: Shortest and most stable geodesics on real terrain

data. Colour coding cost increases from blue to red.

TABLE I: Comparison of FMM paths

Potential Grid path length Cost Guaranteed stability

Constant 32 16.66 No

Stability 35 13.14 Yes

along the path. On the contrary, the shortest path in the

given example would result in the platform tipping over, no

matter what configuration is assumed. Inducing stability in

the planner via the kyno-dynamic metric hereby proposed

guarantees that, if a path exists, the resulting geodesic will

be stable.

B. Shortcomings

The proposed planning mechanism constitutes a formali-

sation of a stability metric in order to supplement geometric

planning. Being intrinsically based on a weighting factor, it

is important to raise awareness about the sensitivity of the

solution to variations in gridding or the choice of stability

scaling, both of which would results in different paths.

While results indicate that suitable stable geodesics can be

practically computed for a given gridding pattern, this is

nevertheless an issue that is being investigated further, as

there is no known generalised solution to overcome this

limitation at this stage.

VI. CONCLUSIONS AND FUTURE WORKS

A path planner aimed at improving the safe deployment

of mobile platforms when operating in uneven terrain has

been proposed in this work. The methodology is particular

applicable, although not restricted to, reconfigurable plat-

forms that can actively engage in safer poses to reduce

potential instabilities, such as those leading to vehicle tip-

over. A variational computation based on the Force-Angle

Stability Measure has been proposed in combination with

the Fast Marching Level Set Method to reliably generalise

robot instabilities and derive more balanced paths for the

robot to follow. Simulations with real and artificial 3D data

sets have been provided to demonstrate the performance of

the algorithm for a tracked vehicle operating in rough terrain.

Future work includes accounting for full dynamics and the

addition of other parameters known to jeopardise reliable

robot operation, such as slippage. Both the assumption of a

symmetrical footprint, and one that fits in the meshed trian-

gles are known to be oversimplifications when operating in

highly unstructured terrain, and work is currently underway

to soften this restrictions. Inferring data when working with

incompletely sensed terrains and the use of “constrained”

triangulation to preserve features such as edges are also

highly desirable to yield feasible and stable paths.
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