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Abstract— We propose in this paper a new concept of unified
position/orientation control of robot manipulator by describing
the end-effector motion as a dual quaternion involving both
translation and rotation. The development of the forward
kinematic model and Jacobian matrix in dual quaternion space
is detailed as well as the stability of the controller. At last,
simulation and experimental results highlight the efficiency and
performance of this controller.

I. INTRODUCTION

Many robotic applications involve not only pick and place

operations but also grasping and fine manipulation of any

kind of objects. The task is then described by means of end-

effector motion which should be efficiently controlled. In the

case of a robot manipulator, the gripper or possibly the hand

attached to the end-effector can be viewed as an actuator

manoeuvring the position and the orientation of the object.

As a result, the desired task can be described by a desired

position and orientation of the coordinate frame attached to

the robot end-effector with respect to the base frame (i.e.

the task-space variables). Control of the end-effector motion

is commonly performed using feedback of either the joint

variables or the task-space variables. The joint-based control

requires the solution of the inverse kinematics to convert the

desired task-space trajectory into the desired joint trajectory,

but the inverse model is often difficult to obtain. In contrast,

task-space control does not need the inverse kinematics.

However, the precise and stable control of the end-effector

position and orientation must be ensured.

The position and orientation can be parametrized in differ-

ent ways, such as with the well-known 4× 4 homogeneous

transformation matrix, Euler angles [6], unit quaternion [9],

[10] or dual quaternion [3], [8]. In an homogeneous transfor-

mation matrix, twelve parameters are used to represent the

position and orientation of a body. When the unit quaternion

is adopted for the rotation, a seven-dimensional vector must

be defined. Only the Euler angles and any kind of three-

element orientation vectors can provide a six-dimensional

vector as a unified representation of position and orientation.

But a 4×4 matrix is still to be used for deriving the forward

kinematics and extracting the unit quaternion or the Euler

angles.

Moreover, all types of Euler angles have a "rotation-in-

sequence" nature. Thus, the Euler angle method is suitable

for representing a single frame orientation but not for rep-

resenting orientation paths in the case of trajectory tracking.

Another critical issue for the Euler angles is that they

suffer from representation singularities. The unit quaternion

represents the end-effector orientation without singularities

but complicates the controller design since the position and

orientation errors are separately calculated [9], [10].

Indeed, position control schemes are usually made of two

control loops, for controlling the rotation and the translation,

respectively [7]. The angular velocity is typically obtained

through the approximate differentiation of some orientation

representation, provided that it is differentiable.

Despite the eight-dimension of the dual quaternion, some

authors [1], [4] stated that the dual quaternion is the most

compact and efficient way to express the screw motion,

that is, both translational and rotational transformations in

a robot kinematic chain. The dual quaternion turns out to be

an elegant and useful tool for kinematic analysis in many

researches such as in inertial navigation [8] and computer

vision [3].

In this paper, we use the dual quaternion as the basis for a

position control scheme of a manipulator robot. The error

between desired and actual position/orientation is simply

expressed as a difference between both corresponding dual

quaternions, which widely facilitates the error computation

in comparison with classical methods. Considering main

position control strategies [7], we have built two different

control schemes - with pseudo-inverse Jacobian and Jacobian

transpose, respectively - allowing position and orientation

control in only one control loop, hereafter called dual po-

sition control strategy. The global asymptotic stability is

proven for each.

In order to test the validity of the computation methods and

to evaluate the efficiency of the control strategies, a 6-axis

Adept Viper robot is used in simulated and real conditions.

This paper is organized as follows: Section II presents

the mathematical background that will be useful for the

remaining of the paper. Two methods for dual position

control are proposed in Section III. Section IV describe a

systematic way for finding the forward kinematic model and

the Jacobian matrix in the dual quaternion space. Then, to

validate our technique based on dual quaternions, a variety

of experiments with computer simulations and a real robot

are carried out and reported in Section V. Finally, Section

VI presents the conclusions and proposes future works.
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Therefore, the unit dual quaternion is a useful tool to

represent the transformation between two frames F1 and F2

resulting from either a rotation q succeeded by a translation

t2 with respect to F2, that is,

q = q+ ε
1

2
qt2 (18)

or a translation t1 with respect to F1 succeeded by a

rotation q, i.e.,

q = q+ ε
1

2
t1q (19)

III. DUAL POSITION CONTROL SCHEME

Since a dual quaternion is a compact representation for the

position and the orientation, we can easily define the desired

position and orientation of the robot end-effector with respect

to the base frame by a unit dual quaternion as follows:

~q
d
=

(
~qd ~q′

d

)T
(20)

where the unit quaternion ~qd represents the desired ori-

entation and the quaternion ~q′

d representing the desired

translation is calculated according to (19).

When using joint based position controllers, a natural

metric for the error calculation arises as being the vector

difference between the desired input vector ~θd and the

measured vector ~θ. And the aim of the position control loop

is to make this error converge to zero. For this to happen,

two different position control schemes are commonly used,

based on the pseudo-inverse Jacobian matrix in one hand and

on the Jacobian transpose matrix in another hand [7].

Let us consider the dual quaternion error ~q
e

as being

the difference between the desired and the actual dual

quaternions:

~q
e
= ~q

d
− ~q (21)

The aim of the dual position control loop presented in this

paper is to make this dual quaternion error converge to zero.

This dual quaternion error ~q
e

turns out to be an arbitrary

vector in a ℜ8 manifold. Although this vector does not

satisfy the constraints of (16), it can be used as a metric

for the error in a joint based position scheme provided that

an appropriate analytical Jacobian matrix JA(q) is derived

in the dual quaternion space of the manipulator, relating the

joint velocity vector ~̇θ and the time derivative of the dual

quaternion as:

~̇q = JA(q)~̇θ (22)

The usual position control schemes are modified accord-

ingly to (22) and are represented in Fig. 2a and Fig. 2b,

respectively.

Let us prove in the following that both solutions ensure

the convergence of the dual quaternion error to zero. The

time derivation of (21)

~̇q
e
= ~̇q

d
− ~̇q (23)
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(a) Dual position control scheme using the Jacobian pseudo-inverse
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(b) Dual position control scheme using the Jacobian transpose

Fig. 2: Dual position control strategies.

leads to

~̇q
e
= −JA(q)~̇θ (24)

when the reference ~q
d

is constant. In the case of the pseudo-

inverse Jacobian scheme (Fig. 2a), the choice ~̇θ = J+

AK~q
e

leads to the equivalent linear system

~̇q
e
+K~q

e
= 0 (25)

If K is a positive definite (usually diagonal) matrix, the

error tends to zero with a convergence rate that depends on

the eigenvalues of matrix K; the larger are the eigenvalues,

the faster is the convergence. The system is asymptotically

stable.

In the case of the Jacobian transpose scheme (Fig. 2b),

let us choose as Lyapunov candidate the positive definite

quadratic function:

V (~q
e
) =

1

2
~q
T

e
K~q

e
(26)

where K is assumed to be a symmetric matrix.

Differentiating (26) with respect to time gives:

V̇ =
1

2
~̇qT

e
K~q

e
+

1

2
~q
T

e
K~̇q

e
(27)

=
(24)

−
1

2
~̇θTJT

AK~q
e
−

1

2
~q
T

e
KJA

~̇θ (28)

Since K is a symmetric matrix, the choice ~̇θ = JT
AK~q

e
leads to

V̇ = −~q
T

e
KJAJ

T
AK~q

e
(29)

If K is positive definite, the derivative of the Lyapunov

function obtained in (29) is negative. Hence, the system is

asymptotically stable.

Both control schemes ensure stable control of the end-

effector motion proving that the task can efficiently be

described in terms of dual quaternions, which greatly sim-

plifies the implementation of the controller since position

and orientation are no more separately controlled. The posi-

tion/orientation error is expressed in a unified and compact

vector which avoids singularities related to the representation

of the orientation.
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IV. ROBOT KINEMATICS IN DUAL QUATERNION

SPACE

This section details the computation of the forward kine-

matic model (FKM) and of the Jacobian matrix in the dual

quaternion space that are required in both control schemes.

A. Forward kinematic model in dual quaternion space

To derive the forward kinematic model (FKM) of a serial

link manipulator, the standard Denavit-Hartenberg conven-

tion [6] has widely been used. Having assigned coordinate

frames to each link, the transformation between two succes-

sive frames Fn−1 and Fn is described with the following

rotations and translations:

1) Rotation about axis zn−1 of an angle θn :

Rot(zn−1, θn)
2) Translation along axis zn−1 of a distance dn:

Trans(zn−1, dn)
3) Translation along axis xn of a distance an:

Trans(xn, an)
4) Rotation about axis xn of an angle αn: Rot(xn, αn)

Similarly, in the dual quaternion space, the transformation

between these frames is obtained by multiplication of the 4

dual quaternions corresponding to each transformation:

q
n−1,n

=

q
rot
(zn−1, θn)qtrans

(zn−1, dn)qtrans
(xn, an)qrot

(xn, αn)

(30)

The subscripts rot and trans indicate whether the trans-

formation is a pure rotation or a pure translation, respectively.

In these cases, the dual quaternions are simplified. For a pure

rotation, the translation vector is ~0 and thus q
rot

= qrot. For

a pure translation, the rotation quaternion is the identity and

hence q
trans

= 1 + ε
t

2
.

The FKM can be then calculated for an n-link robot as:

q = q
01
q
12

. . .q
n−1,n

(31)

B. Jacobian matrix in the dual quaternion space

For any robot manipulator with n joints, the kinematic

expression that relates the end-effector velocity vector Ẋ

to the joint velocity vector θ̇ is given by the well-known

relationship [6]:

~̇X = J(θ)~̇θ (32)

where the Jacobian matrix J(θ) is given analytically by

J(θ) =
d ~X

d~θ
(33)

In the dual quaternion space, (32) becomes

~̇q = J(q)~̇θ (34)

Now the Jacobian matrix relating the joint velocity vector

θ̇ and the time derivative of the dual quaternion ˙̂q is given

analytically by

J(q) =
d~q

d~θ
=

d

dθ




q1
...

q4
q5
...

q8




=




∂q1

∂θ1
. . .

∂q1

∂θn
...

. . .
...

∂q8

∂θ1
. . .

∂q8

∂θn




(35)

where ~q = [q1, q2, q3, q4]
T

and ~q′ = [q5, q6, q7, q8]
T

, with

q and q′ being the components of the dual quaternion q =
q+ εq′.

V. EXPERIMENTS

To validate the dual position control approach proposed

and presented in Section III, we have implemented both con-

trol schemes (Fig. 2a and Fig. 2b) on a six-link manipulator.

To this aim, we have derived for this Adept Viper robot

(Fig. 3) the forward kinematic model in the dual quaternion

space and the corresponding Jacobian matrix using (31) and

(35).

Fig. 3: Adept Viper s850 robot

A. Chosen task

We have conducted a variety of experiments in simulated

and real conditions, and in all of them the proposed ap-

proaches achieved an efficient performance.

As initial configuration, we consider all joint positions

equal to θinit =
(
20 −110 190 25 45 20

)T
. This

configuration corresponds to the following vector in the dual

quaternion space:

~q
init

= (0.3530 0.0651 0.8660 0.3482

−0.2192 −0.2526 −0.0098 0.2938)T
(36)

The task consists of moving the robot’s end-effector so

that the tool frame coincides with the desired frame, as

illustrated in Fig. 4. This movement combines a translation
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(a) Time response of the end-effector position components
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Fig. 7: Dual position control using the pseudo-inverse Jaco-

bian matrix

0 200 400 600 800 1000 1200 1400 1600 1800
60

70

80

90

100

110

120

130

140

iteration

a
n
g
le

 (
d
e
g
re

e
)

Times response of the angle of rotation

 

 

desired angle

K=2

K=0.7

Fig. 8: Time response of the angle of rotation with different

values of K when using the pseudo-inverse Jacobian matrix
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Fig. 9: Time response of the angle of rotation for the dual

position control using the transpose Jacobian matrix
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