
Network-assisted target tracking via smart local routing

Jason M. O’Kane and Wenyuan Xu

Abstract— Target tracking problems have been extensively
studied for both robots and sensor networks. In this paper, we
consider a target tracking problem in which a sensorless track-
ing robot must maintain close proximity to an unpredictably
moving target. To assist the robot, a network of sensor nodes,
each equipped with a binary proximity sensor, is spread through
the environment. This architecture has the benefit of eliminating
the need for information-rich sensors on the tracker, while
supplying it with nonlocal observations of the target. However,
it also introduces new complications due to the mobility of
the tracker and the energy limitations of the sensor nodes. To
address these issues, we present algorithms that allow both the
tracker and the sensor nodes to maintain partial information
about the target’s location. The contribution of this work is
an algorithm that manages the propagation of information
across this network, making message delivery decisions on-the-
fly, based on each message’s informative value for the tracker.
We present an implementation along with simulation results.
The results show that our system achieves both good tracking
precision and low energy consumption in both start-up and
steady state phases of the problem, and that its performance is
superior to that of earlier methods for this problem.

I. INTRODUCTION

Tracking problems for mobile robots have received sub-

stantial attention in recent years. In these problems, a robot

tracker seeks to maintain close proximity to an unpredictable

target. Effective target tracking algorithms have many im-

portant applications, including monitoring and security. Al-

gorithms have been proposed to solve this problem with

mobile robots under various constraints and sensor models

[8], [9]. However, these existing methods for robotic tracking

are hampered by two primary limitations.

First, existing tracking methods generally rely on sensors

onboard the robot, which by nature only provide information

about the target’s location when the target is nearby. This

limitation is particularly problematic in cases where (a) the

tracker starts with little or no knowledge of the target’s

location or (b) the tracker loses contact with the target

during its execution. To recover from these situations using

only local information is a challenging problem, requiring

extensive search in the worst case [3], [4].

Second, prior work assumes that the robot has access to

sensors such as visual or range sensors that are, in spite of

their local nature, relatively powerful and information-rich.

Such sensing capabilities add additional cost and complexity

to the robot. It is desirable to design and deploy simpler

robots with less sophisticated sensing hardware. Moreover,

tracking with limited sensing is of independent interest for

J. M. O’Kane and W. Xu are with the Department of Computer Science
and Engineering, University of South Carolina, 301 Main St., Columbia,
SC 29208, USA. e-mail: {jokane, wyxu}@cse.sc.edu.

Fig. 1. A time-lapse view of an example tracking problem, in which a
tracker (triangle shape) to find and maintain close proximity to a target
(circle shape). A wireless sensor network deployed in the environment
provides the tracker with information about the target’s whereabouts. Edges
connect nodes within communication range of one another.

cultivating understanding of the information requirements of

the target tracking task.

In this paper, we propose a tracking technique that resolves

these limitations by allowing the robot to utilize a wireless

sensor network to assist in the tracking task. The tracking

task can be divided into two parts: sensing the target and

following its movements. As such, we decouple these parts

and delegate the sensing task to a stationary sensor network.

The mobile tracker then follows the target using only the

observations made by these sensor nodes. This arrangement

eliminates the need for complex sensors on the tracker,

and also provides an efficient means for delivering nonlocal

information to the tracker.

The contribution of this paper is to describe and evaluate

a tracking technique for a robot cooperating with a sensor

network in which:

1) Nothing is known about the target’s motion other than

its maximum speed.

2) The tracking robot has no sensors that directly provide

information about the target.

3) The sensor nodes detect only when the target is nearby,

but do not provide any precise location information,

and are subject to frequent, unpredictable failures.

4) Each sensor node has a limited energy budget for

making transmissions.

Specifically, we demonstrate that for such systems, both

tracking performance and energy-efficient network operation

can be achieved simultaneously.

The remainder of this paper has the following structure.

We begin by reviewing related work in Section II. Next, we

formalize the tracking problem in Section III. Sections IV

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 4818

and V describe the strategy for controlling the tracker and the

protocol to deliver sensing data to the tracker, respectively.

In Section VI, we present and discuss simulation results.

Concluding remarks appear in Section VII.

II. RELATED WORK

Target tracking problems for mobile robots have been

studied for some time. The objective for these problems is

generally to maintain visibility between the target and the

tracker. Algorithms are known for planning the tracker’s mo-

tions using dynamic programming [6], sampling-based [9],

and reactive approaches [8].

Wireless sensor networks (WSNs) have been deployed to

track the positions of humans [13], moving vehicles [14],

and other moving targets [12]. Sensor nodes passively

collect measurements and rely on multi-hop communication

to deliver data to a central data collection unit. As a result,

the communication can become expensive when the network

size is large.

The use of mobile sensor networks, in which individual

nodes have both sensing and motion capability, has also been

proposed as a means to track moving targets [11], [15]. The

primary concern in this area is to track the targets while

maintaining the network connectivity. We propose a different

architecture where the connectivity problem and mobility

management issues are decoupled.

The efficiency of our approach stems in part from the idea

of data aggregation, in which the sensor nodes combine and

synthesize the information they receive about the target’s

position, rather than simply forwarding messages unchanged.

This concept of in-network data aggregation has also been

studied in the context of WSNs. Typically, the data aggrega-

tion algorithm, such as TAG [7], routes the aggregated values

up towards the root of a pre-established routing tree with

partial data aggregated at internal tree nodes. The unique

idea presented in this paper is that the in-network state

computation is used to assist route selection, so that messages

are delivered efficiently between the sensors near the target

and the ones near the tracker.

The idea of combining WSNs with mobile robots has been

investigated as well. In particular, mobile robots are used

for sensor network deployment with the goal of achieving

good sensor coverage [1]. Our work complements theirs in

the sense that we focus on the tracking application after the

deployment is done. WSNs are also proposed to assist mobile

robots to track targets [5], using sensors that can supply

precise location information to the robot. In comparison,

we aim to achieve good tracking performance using simple

sensor devices and robots.

III. PROBLEM STATEMENT

This section formalizes our target tracking problem and

the performance criteria we use to measure its success.

A. System model

A point target moves unpredictably, but with maximum

speed stgt, in a closed, bounded, polygonal, planar environ-

ment E ⊂ R
2. Time is modeled as a continuous progression

along the interval [0, T]. Let q(t) ∈ E denote the position of

the target at time t ∈ [0, T].
A point robot called the tracker also moves in E. At time

t, the position of the tracker is denoted p(t). The tracker can

choose its velocity vector u(t). The velocity is constrained

by a maximum speed strk. The tracker knows its position

p(t) within E. The tracker has no sensors that directly report

on the position of the target; it instead must rely solely on

the communications from the network, as described below.

The state x(t) = (p(t), q(t)) comprises the target and tracker

positions.

To assist the tracker, a network of k stationary wireless

sensor nodes is distributed through E at positions n1, . . . , nk.

Each node knows its own position. To simplify the notation,

we assume that the nodes are identical, with a fixed sensing

range rs and a fixed communication range rc. Each node ni

can:

1) Possibly detect the target whenever ||q(t)−ni|| ≤ rs.

This sensing is boolean: The node knows only whether

or not the target has been detected, but no other

information. This detection is also unreliable, in the

sense that failing to detect the target does not imply

that ||q(t)− ni|| > rs.

2) Broadcast a message to all nodes nj for which ||ni−
nj || ≤ rc. We assume that the time required for each

transmission is negligible compared to the physical

speeds of the robots. In our algorithm, the content of

these messages is a description of the information the

node has accumulated. Specifically, the content of each

message is a description of a disk-based information

state denoted η. Section V-A describes disk-based

information states in detail. Informally, η is a compact

description of a set of possible states. Because of

the broadcast nature of the wireless network, a single

transmission is sufficient to send the message to all of

a node’s neighbors.

In addition, the tracker is equipped with network commu-

nication hardware, so that it can receive messages that are

broadcast by nodes within rc of p(t). The tracker also uses

this hardware to transmit a beacon that informs the wireless

sensor nodes of its presence. This beacon is detected by the

node at ni whenever ||p(t) − ni|| ≤ rc. As with the target

detection sensors, receipt of this beacon signal is subject to

frequent false negative errors.

B. Evaluation criteria

To evaluate our system’s success, we use three criteria.

The tracker’s primary objective is to minimize the average

distance between p(t) and q(t) throughout the system’s

execution:

P =
1

T

∫ T

0

||p(t)− q(t)||dt. (1)

However, because the energy available to each wireless

sensor node is limited by battery capacity, a secondary

objective is to minimize the average number of message

broadcasts made in the network per unit time. Let C(i)

4819

denote the number of broadcasts made by the node at ni

between t = 0 and t = T . The system seeks to keep

C =
1

T

k∑
i=1

C(i) (2)

as small as possible1. Finally, note that the system’s exe-

cution can informally divided into a startup phase, during

which the tracker works to reduce a relatively large distance

between itself and the target, and a steady state phase, during

which the tracker has moved near the target and works to

maintain this proximity. As T increases, the relative emphasis

placed on the startup phase by P decreases. Therefore, we

also consider the capture time S, which measures the length

of the startup phase, and is defined by

S = min{t ∈ [0, T] | ||p(t)− q(t)|| ≤ ǫ}, (3)

in which ǫ is a small positive constant.

IV. CONTROLLING THE TRACKER

This section describes the algorithms used by the tracker

to respond to the data it receives from the network. Since

the current state x(t) is not necessarily known, the tracker

faces two challenges: First, it must efficiently represent the

limited knowledge it has about the target’s position. Second,

it must use this representation to plan its motion toward the

target. Our approach overcomes these challenges using the

the tracker’s information states (I-states). In this context, the

I-state is the set of possible states that are consistent with the

information the tracker has received. The tracker computes

its I-state, then chooses its motions as a function of this

current I-state.

We first describe how to maintain the I-state (Section IV-

A), then we present strategies used by the tracker to utilize

this information (Section IV-B). Note that we are concerned

here only with the control of the tracker; we defer to

Section V our discussion of approaches to efficiently deliver

target location information to that tracker.

A. Computing tracker information states

The tracker does not know the target’s precise location,

and instead must rely on the history of messages it has

received to direct its motions. Suppose that tracker, as

of time t, has received m messages, each describing an

observation of the target: {(c1, t1), . . . , (cm, tm)}, with each

ci describing a circle known to contain the target at time

ti < t. Let Q(t) ⊆ E denote the set of target positions for

which there exists a valid target trajectory consistent with

that information. The tracker always knows its own position,

so the tracker’s I-state (that is, the set possible states) at time

t is η(t) = {p(t)} ×Q(t). Algorithms are already known to

efficiently maintain such I-states [10].

1By multiplying a coefficient, C(i) can be easily scaled up to reflect
energy consumed by receiving, since on average each broadcast is received
by a fixed number of nodes that are evenly distributed.

B. Tracker strategy

We now describe how the tracker moves. Notice that,

aside from knowing its own position p(t) and a set of

possibilities Q(t) for the target’s position, the tracker cannot

draw any additional conclusions about the state. Given this

uncertainty, the ideal position for that tracker, that minimizes

average the distance to the target across all its possible posi-

tions is, by definition, the centroid of Q(t). Note, however,

that the centroid of Q(t) may not be inside E. Based on these

observations, we use the following strategy for the tracker:

Move with speed strk along the shortest path in E

from p(t) to the closest point in E to the centroid

of Q(t).

Computing this motion takes time linear in the complexity

of Q(t), for both the centroid and shortest path elements [2].

Each time the I-state is updated, the tracker’s motion plan is

also recomputed accordingly.

V. SENSING AND DATA DELIVERY

As discussed in Section III, we consider a network of k

nodes spread throughout E. Whenever a node detects the

target or the tracker, it may choose to transmit a message to

disseminate this information. We have already briefly argued

in Section II that existing routing methods for stationary or

mobile ad hoc networks are not suitable in our scenario. As

a result, instead of establishing routes ahead of time, in our

method the nodes send broadcast messages, but do so in a

strictly controlled way to minimize energy costs.

The key insight behind our approach is the notion of smart

local routing. We store partial information about the tracker

and target positions at each sensor node. Each node uses this

information to transmit messages only if they provide useful

information to facilitate the target tracking. We present the

details of this approach in three parts: how to compute the

information state at each sensor (Section V-A); when a sensor

will initiate a message (Section V-B); and what information

shall be sent (Section V-C).

A. Computing node information states.

Each node maintains an I-state similar to that used by

the tracker. However, the computation power and memory

available to small scale sensors will, in general, be much

smaller than that available to a full-fledged mobile robot.

Therefore, we reduce the computational load by using a

provable overestimate of the precise I-state called the disk-

based I-state. This disk-based I-state can be stored with a

small constant amount of memory and updated in constant

time. Because the sensor nodes do not know the tracker’s

position, but could benefit from this information in assessing

the relative of sending a message, the disk-based I-state

contains information about both the tracker and the target

locations.

Specifically, each sensor node ni maintains a pair of disks

Pi(t) and Qi(t), with the invariant that

p(t) ∈ Pi(t) and q(t) ∈ Qi(t). (4)

4820

These two disks constitute the node’s disk-based I-state. As

initial values, each node assigns arbitrary centers and infinite

radii to both disks. From this initial I-state, four types of

updates are required in order to maintain the invariant.

1) Target detection. When the node detects the target, it

knows that the target is within distance rs of itself. In

this case, therefore, Qi(t) is replaced by the smallest

disk containing Qi(t) ∩ B(ni, rs), in which B(c, r)
denotes the open ball with center c and radius r.

2) Tracker detection. When the node receives the tracker’s

beacon signal, it knows that the tracker is within

distance rc of itself. Similar to the previous case, Pi(t)
is replaced by the smallest disk containing Pi(t) ∩
B(ni, rc).

3) Message receipt. When the node receives a message

from another node nj , that message will describe the

disk-based I-state of nj . Specifically, this message

contains the center coordinates and radius of both

Qj(t) and Pj(t). The node at ni uses this information

to refine its own knowledge, replacing Qi(t) with the

smallest disk enclosing Qi(t) ∩ Qj(t) and replacing

Pi(t) with the smallest disk enclosing Pi(t)∩Pj(t). In

this way, each node can refine its own knowledge based

on messages it receives from neighboring nodes. This

information sharing is the means by which knowledge

is propagated across the network.

4) Passage of time. When time ∆t passes without any of

the previous three events occurring, then new disks

are computed with the same centers, and having

radius(P (t + ∆t)) = radius(P (t) + ∆tstrk) and

radius(Q(t + ∆t)) = radius(Q(t) + ∆tstgt). As

with the tracker’s I-state, this expansion of the disks

corresponds to the unknown motions that tracker and

target might have made during this time.

These update operations depend on the ability to compute the

smallest disk enclosing the intersection of two other disks. In

general, this computation can be performed in constant time

and constant space using relatively straightforward geometric

reasoning. (We omit the details due to space limitations.)

The approach is, therefore, well-suited to simple sensor

nodes with limited computation power.

B. When to send a message?

The nodes’ message-sending strategy is based on the disk-

based I-state that each node maintains. Whenever a node

receives new information, either by detecting the tracker,

detecting the target, or receiving a message from another

node, it must decide whether to broadcast a message of its

own to propagate this information across the network. The

node’s I-state allows it to identify a number of situations

in which it should not broadcast such a message to its

neighbors:

1) If the new information did not result in any change

the node’s disk-based I-state, then the node should not

broadcast its knowledge. This improves efficiency by

filtering redundant messages.

Pi(t)

Qi(t)

Fig. 2. The geodesic hull of two disks. If a node is far from the
geodesic hull formed by the two disks in its disk-based I-state, it knows
that information about the target can reach the tracker without it.

2) If the node received new information about the tar-

get’s position, but has already broadcast a message

triggered by target information in the recent past,

it should not broadcast its knowledge. This rule fa-

cilitates data aggregation, preventing the node from

generating frequent messages, of which each has only

limited informative value. The definition of “recent

past” is governed by a parameter τ , such that no

node will generate two broadcasts triggered by tracker

knowledge within time τ of each other.

3) Similarly, if the node received new information about

the tracker’s position, but has already broadcast a

message triggered by tracker information in the last

τ units of time, it should not broadcast its knowledge.

This rate limiting is governed by the same parameter

τ , but is controlled by separate timeout counter. These

“dual timeouts” are crucial to facilitate free flow of in-

formation in both directions—from the tracker toward

the target, and from the target toward the tracker.

4) Finally, if the node can conclude, based on its disk-

based I-state, that it is not near the shortest path

between p(t) and q(t), then it should not broadcast

its knowledge. This condition prevents the wasting of

energy by transmitting data to remote portions of the

environment that are not active parts of the tracking

problem. Details about this condition appear below.

To implement the above constraint (4) in a precise, formal

way, the node must compute the geodesic hull of its disk-

based I-state. We define the geodesic hull of a pair of point

sets A and B as the union of all shortest paths in the

environment E from a point a ∈ A to a point b ∈ B. The

key insight is that if a node ni is not near the geodesic

hull formed by A = Pi(t) and B = Qi(t), then ni knows

with certainty that information flowing between the tracker

and target need not pass through ni. The node ni therefore

decides not to broadcast its knowledge. See Figure 2.

So far, the constraint has been expressed in terms of

“nearness” to the geodesic hull. Intuitively, if the network

density is relatively high, then we expect to be able to use

a relatively small threshold for nearness in condition (4),

knowing that other nodes closer to the shortest path are

likely to receive the message and propagate the information.

Likewise, a relatively sparse network suggests the need for a

larger nearness threshold, as a hedge against the possibility

of a large empty space in the network preventing information

flow. Therefore, we allow nodes to broadcast messages when

4821

they, according to their disk-based I-states, could possibly be

within distance rc − d of the shortest path between p(t) and

q(t), in which d is the size of the largest open ball in E that

does not contain any sensor nodes.

Therefore, every node broadcasts its knowledge only when

it is within or near the geodesic hull of its disk-based I-state.

As a result, information collected by nodes that see the target

will propagate to the tracker without delay. Moreover, nodes

that are not on or near the shortest path between target and

tracker will, after receiving one of these messages, know

that they need not broadcast any messages, and therefore

remain silent. In this way, after an initial, one-time flooding,

the disk-based I-states stored at each node enable the nodes

to propagate messages only in a tight corridor around the

relevant parts of the environment.

In practice, the true geodesic hull may be difficult to com-

pute because the points Pi(t) and Qi(t) may be connected

by paths in many different homotopy classes. Therefore, our

implementation approximates the geodesic hull by a point

set consisting of all points in E that meet at least one of

four criteria:

• Points in Pi(t) or Qi(t).
• Points within distance rc − d of the shortest path from

the center of Pi(t) to the center Qi(t),
• Points inside the trapezoid formed by the four common

tangent points of two particular circles. The first circle is

Pi(t). The second circle centered at the second vertex of

the shortest path between the disk-based I-state centers

and has radius rc − d.

• Points inside the trapezoid formed mutatis mutandis

from the penultimate vertex of the shortest path between

centers and Qi(t).

This simplification takes advantage of the fact the infor-

mation need only flow along some short path between the

tracker and target, and not necessarily the definitive shortest

path.

C. What data to transmit?

Each time a node broadcasts a message, it transmits

its entire current disk-based I-state. This design is moti-

vated by a desire to maximize the informative value of

each message. This approach stands in contrast to schemes

that simply forward messages without modification. The

approach proposed here, in particular, indirectly facilitates

data aggregation, by allowing sensor nodes to accumulate

information in their disk-based I-states for a short period of

time (via the timeouts described above) before generating a

single message encapsulating the combined information from

each of the messages it received.

D. Examples

Figure 1 depicts the algorithm’s simulated behavior in

a relatively simple environment, illustrating the motions of

both the tracker and the target.

In Figure 3, we show several views of a single time step of

the algorithm in a more complex environment. Observe that

out of all the nodes that received the message at this time

Fig. 3. Execution snapshots showing the behavior of the network nodes at
one time step. [top left] Nodes that received a message at this time step. [top
right] Nodes that sent a message at this time step. [bottom left] Nodes that
are near the simplified geodesic hulls of their disk-based I-states. [bottom
right] Nodes that are not near their simplified geodesic hulls. These nodes
know that they are not along the path from tracker to target, and therefore
do not spend any energy sending messages.

step (top left), only a portion of them will broadcast the

message (top right) while the remaining nodes (bottom left)

decide not to propagate the information any farther since they

know that they are not sufficiently close to the shortest path.

Note especially that a large fraction of the nodes (bottom

right) cannot rule out being near the shortest path between

tracker and target. For some nodes, this is because they are

in fact near the shortest path. For others this is because they

are far from the shortest path, and the routing algorithm had

effectively prevented data from reaching them. As a result,

these nodes have disk-based I-states that are large, making

them unable to rule out the possibility of being near the

shortest path. However, this limitation will not affect the

energy efficiency of our algorithm for two reasons. First,

a collection of nodes (Figure 3, bottom left) around the

shortest path which do not forward the message acts as

“buffer zone.” Second, even if such a message did reach a

node with very large radii in its disk-based I-state, that node

would immediately update its disk-based I-state, and realize

that it is far away from the shortest path. This behavior is

typical for our algorithm, and shows how our smart local

routing prevents messages from spreading to irrelevant parts

of the environment.

VI. IMPLEMENTATION AND EVALUATION

We have implemented this algorithm in simulation. In

this section, we present a quantitative evaluation of its

performance in comparison to an existing method and to

several naı̈verouting protocols.

To demonstrate that our approach outperforms the ex-

isting TTL-based technique [10], we used an environment

population by a collection of randomly-place obstacles, and

performed a series of 10 trials in which the starting positions

of the tracker and target and the placements of the sensor

nodes were selected randomly. For each trial, we simulated

the startup performance of both tracking algorithms, with 5

different parameter settings each:

4822

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

E
n
er

g
y

co
st

C

Capture time S

dynamic TTLa = 5

a = 8

a = 11
a = 14 a = 17

shortest path

τ = 3

τ = 6
τ = 9

τ = 12
τ = 15

0

5

10

15

20

25

30

35

0 0.5 1 1.5 2 2.5 3 3.5

E
n
er

g
y

co
st

C

Tracking performance P

dynamic TTLa = 5

a = 8
a = 11

a = 14

a = 17

shortest path

τ = 3

τ = 6
τ = 9

τ = 12

τ = 15

Fig. 4. [left] Start-up performance in a simple environment. [right] Steady-
state performance on the same environment.

0

10

20

30

40

50

0 100 200 300 400 500 600 700 800

E
n
er

g
y

co
st

C

Capture time S

dynamic TTL

a = 5

a = 8

a = 11

a = 14

a = 17

shortest path

τ = 3

τ = 6

τ = 9

τ = 12

τ = 15

0

5

10

15

20

0 1 2 3 4 5 6 7

E
n
er

g
y

co
st

C

Tracking performance P

dynamic TTLa = 5

a = 8, 11, 14, 17
shortest path

τ = 3

τ = 6
τ = 9 τ = 12 τ = 15

Fig. 5. [left] Start-up performance for a maze-like environment. [right]
Steady-state performance on the same environment.

• The TTL-based approach, with its timeout parameter a

set to 5, 8, 11, 14, and 17.2

• The current smart local routing approach, with the min-

imum time interval between two successive broadcasts

τ set to 3, 6, 9, 12 and 15.

The performance of each algorithm, averaged over all trials,

is shown in the left part of Figure 4. Because the start-up

phase of our tracking problem has two optimality criteria,

each dimension of the plot measures one of the optimality

criteria. The origin of the plot represents the (unachievable)

ideal of perfect tracking with no energy cost. Each data point,

therefore, dominates—in the sense of faring better in both

performance criteria—any other data points that are both

above it and to its right. These results confirm that the smart

local routing is superior to the the dynamic TTL algorithm

in the startup phase regardless of the parameter value τ , in

the range that we tested.

To evaluate the performance of our algorithms in the

steady-state phase of tracking, we performed ten additional

trials in which the tracker and target are started near one

another. We used T = 1000, and averaged the results over

all ten trials. The right part of Figure 4 depicts the results

of this experiment, showing that the dynamic TTL method

maintained slightly better tracking performance at the cost

of higher energy consumption.

To ensure that these results generalize to more complex

environments, we repeated the same experiment in a maze-

like environment. The results, in which the improvement is

even more pronounced, appear in Figure 5.

VII. CONCLUSION

We presented a target tracking algorithm that uses a

collaboration between a sensorless robot and a network

of unreliable sensor nodes. Simulations demonstrate that

this algorithm has good performance in balancing energy

2The precise role played by this parameter is described in the original
paper [10]. In this context, it is only relevant to note that the performance
of that algorithm depends on a tunable parameter, denoted here as a.

efficiency with tracking accuracy. However, a number of

interesting questions remain unanswered.

Most interestingly, the algorithm we use to compute the

information states would be unsuitable for systems in which

the sensors are subject to false positive errors. We are

currently investigating temporal filters to detect intermittent

failures, and spatial filters that can detect persistent failures

of individual sensors. Our preliminary results (omitted for

space reasons) suggest that these techniques are quite effec-

tive.

ACKNOWLEDGMENTS

Heather O’Kane assisted with preparing the experimental results. This work
is partially supported by grants from the University of South Carolina, Office
of Research and Health Sciences Research Funding Program and by the
DARPA CSSG program.

REFERENCES

[1] M. Batalin and G. S. Sukhatme, “The analysis of an efficient algo-
rithm for robot coverage and exploration based on sensor network
deployment,” in Proc. IEEE International Conference on Robotics and

Automation, Apr 2005, pp. 3489–3496.
[2] L. J. Guibas and J. Hershberger, “Optimal shortest path queries in a

simple polygon,” Journal of Computer and Systems Sciences, vol. 39,
no. 2, pp. 126–152, 1989.

[3] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and R. Motwani,
“Visibility-based pursuit-evasion in a polygonal environment,” Inter-

national Journal on Computational Geometry and Applications, vol. 9,
no. 5, pp. 471–494, 1999.

[4] V. Isler, S. Kannan, and S. Khanna, “Locating and capturing an evader
in a polygonal environment,” in Proc. Workshop on the Algorithmic

Foundations of Robotics, 2004.
[5] B. Jung and G. S. Sukhatme, “Cooperative multi-robot target tracking,”

in Proc. International Symposium on Distributed Autonomous Robotic

Systems, Minneapolis, Minnesota, Jul 2006, pp. 81–90.
[6] S. M. LaValle, H. H. González-Baños, C. Becker, and J.-C. Latombe,

“Motion strategies for maintaining visibility of a moving target,” in
Proc. IEEE International Conference on Robotics and Automation,
1997, pp. 731–736.

[7] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tag: a
tiny aggregation service for ad-hoc sensor networks,” SIGOPS Oper.

Syst. Rev., vol. 36, no. SI, pp. 131–146, 2002.
[8] R. Murrieta, A. Sarmiento, S. Bhattacharya, and S. A. Hutchinson,

“Maintaining visibility of a moving target at a fixed distance: The case
of observer bounded speed,” in Proc. IEEE International Conference

on Robotics and Automation, 2004.
[9] R. Murrieta-Cid, B. Tovar, and S. Hutchinson, “A sampling-based

motion planning approach to maintain visibility of unpredictable
targets,” Autonomous Robots, vol. 19, no. 3, pp. 285–300, 2005.

[10] J. M. O’Kane and W. Xu, “Energy-efficient target tracking with
a sensorless robot and a network of unreliable one-bit proximity
sensors,” in Proc. IEEE International Conference on Robotics and

Automation, 2009.
[11] R. Olfati-Saber, “Distributed tracking for mobile sensor networks with

information-driven mobility,” in Proc. American Control Conference,
2007, pp. 4606–4612.

[12] N. Shrivastava, R. M. U. Madhow, and S. Suri, “Target tracking with
binary proximity sensors: fundamental limits, minimal descriptions,
and algorithms,” in Proc. International Conference on Embedded

Networked Sensor Systems, 2006, pp. 251–264.
[13] G. Simon, M. Maróti, A. Lédeczi, G. Balogh, B. Kusy, A. Nádas,

G. Pap, J. Sallai, and K. Frampton, “Sensor network-based coun-
tersniper system,” in Proc. International Conference on Embedded

Networked Sensor Systems, 2004, pp. 1–12.
[14] F. Zhao, J. Shin, and J. Reich, “Information-driven dynamic sensor

collaboration,” IEEE Signal Processing Magazine, vol. 19, no. 2, pp.
61–72, 2002.

[15] Y. Zou and K. Chakrabarty, “Distributed mobility management for
target tracking in mobile sensor networks,” IEEE Transactions on

Mobile Computing, vol. 6, no. 8, pp. 872–887, 2007.

4823

