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Abstract— The detection of a pattern in an audio sequence
is considered. An approach relying on the Stochastic Matched
Filtering theory is proposed. It consists in first defining offline
a basis from the statistics of the pattern and of the noise, then
in isolating the pattern by means of a likelihood ratio test
involving the online decomposition of the audio sequence on this
basis. A simulated case study is proposed, which provides some
guidelines to the tuning of the algorithm. Then, experimental
results concerning the application of the method to voice activity
detection are presented.

I. INTRODUCTION

One of the important functions in Robot Audition is Voice
Activity Detection (VAD). In a Human Robot Interaction
context, this is a necessary preprocessing stage, which, when
used upstream an Automatic Speech Recognition (ASR),
improves the recognition performance. Exploiting the power
of the sensed acoustic signal for VAD is unsuited to dy-
namic environments. This is the reason why other algorithms
rely on the coupling of acoustic features and spatial selec-
tivity [1][2], on detection algorithms dedicated to human
voice [3][4]—which require a supervised learning stage from
a basis of speech sequences—or on the fusion of sound cues
with visual-based motion tracking of lips [5].

This paper aims at detecting an acoustic pattern—e.g.,
though not necessarily, a voiced speech—in a noisy audio
signal, by merging information on the power of this signal
with its projection on a subspace synthesized offline from the
statistics of the pattern. Its theoretical roots are formalized
into the Stochastic Matched Filtering (SMF), first proposed
in [6][7] for oceanography applications. It is proved well-
suited to robotics because of its relatively low computational
cost, and because the tuning of the parameters underlying its
detection stage can be systematized.

The paper is organized as follows. In Section II, the
stochastic matched filter (SMF) theory is presented, which
constitutes the framework to detection. Section III proposes a
study based on simulated random signals, whose theoretical
statistics can be perfectly known. This way, some guidelines
to the selection of the single free parameter of the algo-
rithm, namely the detection threshold, are established. Then,
strategies to the estimation of the pattern and noise statistics,
which are required by the robotics context, are proposed in
Section IV. The whole method is illustrated on real VAD
experiments. A conclusion and open issues end the paper.
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Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France
{patrick.danes,julien.bonnal,marc.renaud}@laas.fr

II. THE STOCHASTIC MATCHED FILTERING
(SMF) THEORY

This section outlines the theory of stochastic matched
filtering, which supports the detection algorithm.

A. Decomposition of Continuous-Time Random Signals

Consider a zero-mean random signal Z(t) ∈ R defined on
a domain DZ , onto which it is stationary and ergodic. An
infinite deterministic basis {Ψi(t)}i∈N? can be defined in such
a way that the coefficients {zi}i∈N? of the decomposition of
Z(t) form a zero-mean white discrete random sequence, i.e.

∀t ∈ DZ , Z(t) = ∑
i∈N?

ziΨi(t) (1)

where ∀i, j ∈ N?, E{zi}= 0, E
{

ziz j
}

= δi, jE
{

z2
i
}

, (2)

and δi, j stands for the Kronecker symbol. There exists an
infinite number of {Ψi(t),zi}i∈N? such that the series (1)
satisfies (2). They are united by

∀ t ∈ DZ , ∀i ∈ N?,Ψi(t) =
E{ziZ(t)}

E
{

z2
i

} . (3)

An infinite set of functions {Φi}i∈N? can also be intro-
duced in order to express the random variables {zi}i∈N? as

zi ,
∫

τ∈DZ

Z(τ)Φi(τ)dτ. (4)

Then, by defining ΓZ(t1, t2) as the autocovariance of Z(t) at
times t1 and t2—which, because of the stationarity of Z(t),
depends only on (t2− t1)—(3) can be turned into

∀t, i, Ψi(t) =
1

E
{

z2
i

} ∫
τ∈DZ

ΓZ(t,τ)Φi(τ)dτ. (5)

Besides, in order to ensure the non-correlation property (2),
the following conditions must be put on {Φi}i∈N? :

∀i, j ∈ N?, δi, jE
{

z2
i
}

=
∫∫

t1,t2∈DZ

ΓZ(t1, t2)Φi(t1)Φ j(t2)dt1dt2. (6)

Because of (5), the following holds,∫
t∈DZ

Ψi(t)Φ j(t)dt =
1

E
{

z2
i

} ∫∫
τ,t∈DZ

ΓZ(t,τ)Φi(τ)Φ j(t)dτdt, (7)

which, from (6), leads to the bi-orthogonality relationship∫
t∈DZ

Ψi(t)Φ j(t)dt = δi, j. (8)

Importantly, the above equations are valid whatever the
infinite pair {Ψi(t),zi}i∈N? .
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The Karhunen-Loève (K-L) decomposition [8] is a special
case of (1)–(2)–(4) for which

{
Φ j(t)

}
j∈N? are the eigenfunc-

tions of the ΓZ(., .) kernel, i.e.

∀ j ∈ N?,
∫

τ∈DZ

ΓZ(t,τ)Φ j(τ)dτ = λ jΦ j(t) (9)

with
{

λ j
}

j∈N? the associated eigenvalues. In addition,{
Φ j(t)

}
j∈N? form an orthogonal basis w.r.t. the scalar prod-

uct entailed in (4). Because of (5), the LHS term of (9) is
equal to E

{
z2

j

}
Ψ j(t). So, for the special case of the K-L

decomposition, Ψ j(t) and Φ j(t) are equal up to a constant α .

B. The Discrete-Time Case
Consider a discrete-time stationary random sequence

Z ∈ RM . Similarly to (1), it can be expanded as

Z =
M

∑
i=1

ziΨi, (10)

where {Ψi}i∈{1,...,M} forms a deterministic basis of RM and
the random real scalar sequence {zi}i∈{1,...,M} is zero-mean
and white. The discrete counterpart of (3) writes as

∀i ∈ {1, . . . ,M}, Ψi =
E{zi.Z}
E
{

z2
i

} . (11)

A set of M functions {Φi}i∈{1,...,M} is introduced such that
the sequence {zi}i∈{1,...,M} is obtained by the scalar product

∀i ∈ {1, . . . ,M}, zi , ZT
Φi. (12)

The non-correlation property of {zi}i∈{1,...,M} leads to

∀i, j ∈ {1, . . . ,M}, Φ
T
i ΓZΦ j = E

{
z2

i
}

δi, j, (13)

with ΓZ , E
{

ZZT
}

the autocovariance matrix of Z. Eq. (5)
and the bi-orthogonality property (8) are turned into

∀i, j ∈ {1, . . . ,M}, Ψi =
1

E
{

z2
i

}ΓZΦi and Φ
T
i Ψ j = δi, j. (14)

This stochastic decomposition will be shown to be useful in
the case of a signal corrupted by noise.

C. Expansion of a Discrete-Time Signal into Noise
Consider a discrete-time M-length random signal S of

interest, corrupted by an additive colored noise N. Both are
assumed mutually independent, stationary, zero-mean and of
respective standard deviations σS and σN . Define Z as

Z = S +N = σSS0 +σNN0, (15)

with E
{

S2
0
}

= E
{

N2
0
}

= 1. Similarly to Sections II-A
and II-B, it can be shown that there exist M-dimensional
sets {Ψi}i∈{1,...,M}, {Φi}i∈{1,...,M} such that S0, N0, Z satisfy
the following equations, with {si}i∈{1,...,M}, {ni}i∈{1,...,M},
{zi}i∈{1,...,M} zero-mean scalar random sequences, the latter
being white:

Z=
M

∑
i=1

ziΨi, zi=ZT
Φi, Ψi=

E{ziZ}
E
{

z2
i

} , Ψ
T
i Φ j=δi, j, (16)

S0 =
M

∑
i=1

siΨi, N0 =
M

∑
i=1

niΨi, si = ST
0 Φi, ni = NT

0 Φi, (17)

zi=σSsi+σNni, E{ziZ}=ΓZΦi, ΓZ=(σ2
S ΓS0+σ

2
NΓN0), (18)

E{siS0}= ΓS0Φi, E{niN0}= ΓN0Φi. (19)

Denote {λi,Φi}i∈{1,...,M} the generalized eigenvalues and
eigenvectors of (ΓS0 ,ΓN0), i.e. such that

ΓS0Φi = λiΓN0Φi, i ∈ {1, . . . ,M}, (20)

and assume that {λi}i∈{1,...,M} are sorted in decreas-
ing order and {Φi}i∈{1,...,M} are normalized so that
ΦT

i ΓN0Φ j = δi, j. Let Φ be the impulse response of
a FIR filter, and z = ZT Φ the result of the filtering
of Z. The expected average signal-to-noise ratio (SNR)

ρ ,
E{ |ST Φ|2}
E{ |NT Φ|2} = σ2

s
σ2

N

E{ |ST
0 Φ|2}

E{ |NT
0 Φ|2} = σ2

s
σ2

N

ΦT ΓS0 Φ

ΦT ΓN0 Φ
is maximum iff

Φ = Φ1. From (20) and (17), the following holds:

ΦT
i ΓS0Φi

ΦT
i ΓN0Φi

=
E
{

s2
i
}

E
{

n2
i

} = E
{

s2
i
}

= λi. (21)

Then, truncating the expansion of Z as

ZΦ ,
Q

∑
i=1

ziΨi, (22)

with Q such that λ1 ≥ . . .≥ λQ > 1≥ λQ+1 ≥ . . .λM

defines a projection ZΦ of Z which focuses on the signal and
lowers the effect of noise. In addition, Ψi = ΓN0Φi.

D. The SMF Strategy for Pattern Detection

Consider the discrete-time signal Z defined in (15) and
its projection (22) on the Q-dimensional subspace gener-
ated by {Ψi}i=1,...,Q. The (Q× Q) covariance matrix of
z , [z1, . . . ,zQ]T can be readily shown to write as

ΓzΦ
=

σ2
s λ1 +σ2

N 0
. . .

0 σ2
s λQ +σ2

N

 . (23)

The aim is to detect whether either the hypothesis [H0:Z
is considered as noise] or [H1:Z is the signal of interest S
corrupted by noise] holds. So, we introduce the probability
density functions of z conditioned on H0 and H1. By denoting
NΦ the projection of the noise onto {Ψi}i∈{1,...,Q}, and

ΓnΦ
, σ

2
NIQ×Q (24)

the covariance of σN [n1, . . . ,nQ]T , one gets

H0 :


Z = N ⇔ E

{
z2

i
}

= σ
2
N and

p(z|H0) =
1

(2π)Q/2
√
|ΓnΦ
|

exp
[
−1

2
zT

Γ
−1
nΦ

z
]

and

H1 :


Z = S +N ⇔ E

{
z2

i
}

= σ
2
S λi +σ

2
N and

p(z|H1) =
1

(2π)Q/2
√
|ΓzΦ
|

exp
[
−1

2
zT

Γ
−1
zΦ

z
]

.

(25)

The detection itself is based on the likelihood ratio test
(LRT) [8]

Λ(z) =
p(z|H1)
p(z|H0)

D0
≶
D1

ξ , (26)
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where the threshold ξ can be theoretically related to the
probability of false alarm. A trade-off in order to set ξ is
explained in Section III. Noticeably, (26) is equivalent to

Q

∑
i=1

z2
i

σ2
S λi

σ2
N(σ2

S λi +σ2
N)

D0
≶
D1

ln(ξ )+
Q

∑
i=1

ln
(

σ2
S

σ2
N

λi +1
)

(27)

where the LHS term, depending on zi, is assessed online,
while the RHS term is computed offline.

The essentials of Stochastic Matched Filtering have been
introduced. We now adopt a more practical point of view, by
underlining the offline initialization and online stages.

E. The SMF Algorithm in Practice

The online part of the SMF is summarized into Algo-
rithm 1. It essentially consists in computing the SMF basis,
and in determining the LRT threshold ξ .

Algorithm 1: Detection based on Stochastic Matched
Filtering - Part I (offline)

OFFLINE, do;
begin

1. estimate the signal and noise parameters (σ 2
S ,ΓS0 ,σ 2

N ,ΓN0 );
2. compute the generalized eigenvalues and eigenvectors {λi,Φi}i∈{1,...,M}
of the matrix pencil (ΓS0 ,ΓN0 ) along (20);
3. select Q such that λ1 ≥ . . .≥ λQ > 1≥ λQ+1 ≥ . . .λM ;
4. normalize each eigenvector Φi by setting Φ̃i←

Φi√
ΦT

i ΓN0
Φi

;

5. determine a relevant value for ξ ;
6. compute the right-hand side of (27) for further use;

end

The online steps are listed into Algorithm 2.

Algorithm 2: Detection based on Stochastic Matched
Filtering - Part II (online)

ONLINE, do;
begin

7. compute the random variables zi = ZT Φ̃i, then stack them into vector z;
8. deduce the left-hand side of (27);
9. compute the decision output according to (27);

end

Importantly, the parameters which condition the perfor-
mance of the detection strategy are the characteristics of the
signal of interest S (average power σ2

S and covariance matrix
ΓS0 ), the characteristics of the noise (average power σ2

N and
covariance matrix ΓN0 ), and the LRT threshold ξ .

III. A SIMULATED CASE STUDY

The purpose of this section is to evaluate the influence
of the LRT threshold ξ entailed in Algorithm 1. First,
we introduce a case study and its involved signals. Then,
we define tools which can provide some guidelines to the
selection of an effective value for ξ . Finally, we return to
the practical aspect of the suggested method, and propose a
comprehensive process well-suited to robotics.

A. The Considered Problem

As aforementioned, the parameters which influence the
SMF are the statistics σS,ΓS0 ,σN ,ΓN0 of the speech pattern
and of the noise, as well as the decision threshold ξ . To
study how to set ξ and how this affects the performances of
the decision stage, we first consider simulated signals. This
way, the exact analytical expressions of σS, σN , ΓS0 and ΓN0
are available, and errors due to their practical estimation in
step 1 of Algorithm 1 are eliminated.

In order to synthesize mutually independent zero-mean
stationary signals S and N, these are generated as the outputs
from two separate discrete-time linear dynamic systems
with independent initial conditions and excited by mutually
independent white noises. Such systems are described by
equations of the form —with x ∈ {S,N}—

x(k +1) = axx(k)+Kx(1−ax)wx(k), ax ∈ [0;1[. (28)

The independent—Gaussian—input noises and initial condi-
tions are sampled from the distributions

wx(k)∼N (0,1) and x(0)∼N

(
0,

K2
x (1−ax)2

1−a2
x

)
. (29)

So, the processes are stationary, zero-mean, and their vari-
ance and autocovariance write as

σ
2
x , E

{
x(k)2}=

K2
x (1−ax)2

1−a2
x

(30)

Γx(k +n) , E{x(k)x(k +n)}= an
x

K2
x (1−ax)2

1−a2
x

. (31)

Then, the signal Z is readily obtained by adding the signal
of interest S and the colored noise N. Admittedly, these
signals are not supposed to represent auditive signals in a
Robotics context. Nevertheless, the degrees of freedom in
the selection of aS,aN ,KS and KN can be exploited so as to
obtain a signal more correlated than the noise, with various
signal to noise ratios (SNRs).

B. Towards Guidelines to the Tuning of the LRT Threshold

As aforementioned, the aim is to assess the impact of
the LRT threshold ξ on the performances of the pattern
detection. The probabilities of false alarm PFA and of non-
detection—or miss—PM constitute basic classical metrics.
PFA is the probability that the algorithm detects the occur-
rence of the signal (H1) while there is none, i.e. while H0 is
actually in effect. Contrarily, PM is the probability to detect
no pattern (H0) although the signal of interest is in fact
present (H1). These can be summarized as

PFA = p(DECISION = H1|Z = N), (32)
PM = p(DECISION = H0|Z = S +N). (33)

Refs. [9][10] propose analytical expressions of PFA and PM
for many Gaussian LRTs. However, in the considered case,
depending on whether H0 or H1 is in effect, the expression
of E

{
z2

i
}

is either equal to σ2
N or to λiσ

2
S +σ2

N , respectively.
As the {λi}i=1,...,Q may be distinct, there seems not to exist
any general closed-form expression of PFA and PM , and one
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may be reduced to establish approximations. The accustomed
reader can refer to [9][10] regarding this point. However, due
to the complexity of analytical calculations, simulation based
estimation of PFA and PM will henceforth be preferred.

From the signal Z described above, ξ is successively set
to various values in order to get an experimental receiver
operating characteristic (ROC) curve (see Figure 1), describ-
ing the performance of the LRT. This process is repeated for
−6dB and −3dB SNRs so as to evaluate the influence of
the environmental noise.

Fig. 1. ROC diagram for two simulated signals Z with −3dB (dash line)
and −6dB (plain line) SNR. For the two signals, ξ is selected so as to
obtain the better trade-off between PFA and PM (marked with blue dots).
The effect of variations of +/−20% around the true σ2

S is pointed by red
dots.

C. The Approach in Practice

Returning to Algorithm II-E and assuming that
stages 1-4—estimation of the signal and noise parameters
and computation of the SMF basis—are carried out offline,
the aim is to select “the best” ξ in practice. The method
we suggest consists in requiring from the user to record
a “reference” sequence so as to tune the LRT. From
this measurement of Z, the user can vary ξ in order to
visually exhibit the zones of detection and non-detection
of the pattern S out of Z. Indeed, in order to compute
the probabilities PFA and PM , S should be segmented by
hand from Z. This operation, though more rigorous, seems
us quite tiresome and unsuitable for a quick setup/fast
initialization, so that we prefer a representation such as
Figures 3-4 with the detection zones that vary online
depending on the value of ξ selected by the user.

IV. SMF BASED VOICE ACTIVITY DETECTION
FOR ROBOTICS APPLICATIONS

A critical step of the algorithm is to estimate the statistics
σ2

S , σ2
N , ΓS0 and ΓN0 , which condition the performances of

the detection. In this section we attempt to propose a viable
experimental procedure to be embedded on a robot. As σ2

S
may vary in the audio sequence, its influence is taken into
account, and detection results on robotics signals are shown.

A. About the Stationarity of the Signals

The assessment of the stationarity of a random signal,
though studied for a long time, constitutes a complex prob-
lem. Indeed, experimentally, this property is tightly linked to
the length of the window over which the signal is considered.
In our case, this duration is set to M/ fs with fs = 15024Hz
the sampling frequency of the “Embedded Audition for
Robotics” (EAR) sensor [11]. The purpose of this paragraph
is to define the number of consecutive samples M for which
the signals S and N can be considered as stationary.

In the contexts of speaker or speech recognition, the
typical length of a time window used to study a voiced signal
is about 20ms, which is related to the phoneme articulation
by the vocal tract [12][13]. However, in a context of voice
activity detection (VAD), much shorter signals can intervene.
This can be compared with some methods of voiced signal
segmentation where the window length is about 5−7ms [14].
Based on these studies, we set M = 100.

Though M has been set based on some work in the field of
audio signal processing, its value has been checked against
the underlying assumption that the autocovariance function
computed on an M-length sliding window should be constant
all along the time sequence. Another representation, based
on spectral components of the windowed signal has been
derived from the log-spectra equation described in [15].
Other contributions to the field characterize the stationarity
of a signal using tools originally used to study transitory
signals, such as multiscale representations [16]. A further
study on the subject is planned, which consists in testing
the stationarity of the pattern and the noise under a wider
window of study, and check its impact on the performance
of SMF based detection.

B. Estimation of ΓS0

In addition to ensuring the signals stationarity, it is
necessary to estimate a covariance matrix which is most
representative of the pattern to detect. However, in the case
of VAD, the focus is put on voiced speech. Many syllables
can be portrayed as voiced [17] and it would be interesting
to consider several different vowels, which have their own
autocovariance function, see Fig. 2. However our algorithm
relies on a single signal covariance matrix ΓS0 . Future work
will study how to detect voiced speech through a single
SMF, rather than running several instances of the algorithm
in parallel, each one being dedicated to a specific syllable.

Fig. 2. Covariance matrix estimate Γ̂S0 for the two vowels [a] and [e] at
the same pitch, together with standard deviations (in red).

In practice, the signal covariance matrix cannot be es-
timated online. Indeed, the training sequence S must be
recorded in advance, in a quiet environment so that the
quality of the estimate Γ̂S0 is not corrupted by noise. As for
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the noise covariance matrix estimation, using a long sequence
Z will tend to cancel the presence of intermittent non desired
voiced speech during the acquisition. Indeed, Γ̂N0 is obtained
by averaging the autocovariance matrix of several M-samples
non-overlapped segments.

C. The Importance of σS

Up to now, estimates of the covariance matrices ΓS0 and
ΓN0 were discussed. This paragraph concerns the practical
estimations of σS and σN . Despite the expression ΓS0 requires
to be learned beforehand in order not to be corrupted by
noise, the variance σ2

S can be estimated during the initializa-
tion phase. By assuming that the occurrences of the signal S
and these of the noise N in the signal Z are conveniently
segmented, one gets

Zinit noise = N and Zinit signal = S +N, (34)

which leads to the basic estimates

σ̂N
2 =

1
T

T

∑
t=1

Zinit noise(t)2 (35)

and σ̂S
2 ' 1

T

T

∑
t=1

Zinit signal(t)2− σ̂N
2
, (36)

where T stands for the length of the signals Zinit noise and
Zinit signal .

To assess this basic approximation, a simulation was
conducted in the aforementioned theoretical context, and the
influence on the ROC chart of errors on σ̂S

2 was measured.
In this framework, the uncertainties on the noise and signal
variances can be reduced by an appropriate choice of the LRT
threshold. Indeed, although the ROC graphs are similar, the
performance of the algorithm are very different with a same
threshold ξ and different values of σ̂S

2. On Figure 1, ξ is
set as a good trade-off between PFA and PM , and marked
with a blue dot. Setting the estimate σ̂S

2 = βσ2
S with β =

[0.8,0.9,1.1,1.2] and considering the same ξ , significantly
distinct performances are obtained, pointed by red dots.

This experimentation, though carried out in simulation,
shows the influence of errors in the estimation of σ2

S .
Moreover, the weaker the SNR, the more the performances
of the LRT are affected. So, the estimate of σ2

S proposed
above may be a limiting factor at low SNRs.

D. Experimentations

The following experiments rely on real speech signals
acquired by the EAR sensor [11]. The noise is produced
by a fan located in the vicinity of the speaker. Various SNRs
are emulated.

Concerning the estimated parameters, ΓS0 is estimated
from learned occurrences of the pattern and ΓN0 is estimated
from the whole noise sequence. A particular effort was made
to fit with the constraints related to robotics. Therefore, the
estimation stage follows the aforementioned guidelines.

The forthcoming figures show the results of the VAD for
various SNRs. We can see from Figure 3 the influence of
ξ on the miss probability. For the first experimentation, al-
though the threshold has been set to reduce PM , some parts of

Fig. 3. Detection using the SMF algorithm for 3dB (top) and 0dB (bottom)
SNRs. Blue and red plots respectively correspond to signals Z and S. The
green areas correspond to the detection of [H1:Z is the signal of interest S
corrupted by noise], when Λ(z) (black curve) is higher than ξ (blue line).

the speech are not detected. As speech is not only composed
of voiced signals [17], we conjecture that using a voiced
pattern to estimate ΓS0 affects the miss probability. Figure 4
exhibits a 5-segments sequence in which the noise remains
constant and the SNR ranges between −6dB and 6dB. For
this last experiment, the variance σ2

S has been estimated for
a 0dB-SNR (middle segment). We can see that values of
ln{Λ} (orange curve) vary significantly with the SNR, but
remain very low when Z is essentially made of noise, hence
the non-detection.

V. CONCLUSION

A new strategy to VAD, based on the Stochastic Matched
Filtering, has been proposed. After its theoretical descrip-
tion, we assessed the influence of estimation errors of the
considered signals statistics on the performances of the like-
lihood ratio test entailed in the detection. For an important
range of uncertainties, the algorithm was able to detect an
auditive pattern with a −6dB SNR. The downside is that its
performances seem to fall quickly in an environment with
dynamically changing SNR. So, a planned issue concerns
the online re-estimation of some statistics, so as to enhance
the robustness of the algorithm to environmental acoustic
changes.

In addition, based on [14], the duration of signal analysis
presented here was set to 6.6ms. A higher window size would
increase the differences between ΓS0 and ΓN0 , and thus the
discrimination of the projection of the genuine signal on
the SMF basis. So, a more efficient stationarity test will be
envisaged.

Finally, some portions of the pattern of interest were
shown to be missed in experiments of Section IV. So, a
work will be conducted in order to perform a better offline
characterization of the pattern statistics.
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Fig. 4. Detection using the SMF algorithm for a 5-segments signal with −6dB < SNR < 6dB. Blue and red plots respectively correspond to signals Z
and S. The green areas correspond to the detection of [H1:Z is the signal of interest S corrupted by noise], when Λ(z) (orange) is higher than ξ (blue line).
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